Nominal/nominal_dt_supp.ML
changeset 2475 486d4647bb37
parent 2451 d2e929f51fa9
child 2481 3a5ebb2fcdbf
equal deleted inserted replaced
2474:6e37bfb62474 2475:486d4647bb37
    10   val prove_supports: Proof.context -> thm list -> term list -> thm list  
    10   val prove_supports: Proof.context -> thm list -> term list -> thm list  
    11   val prove_fsupp: Proof.context -> typ list -> thm -> thm list -> thm list
    11   val prove_fsupp: Proof.context -> typ list -> thm -> thm list -> thm list
    12 
    12 
    13   val fs_instance: typ list -> string list -> (string * sort) list -> thm list ->  
    13   val fs_instance: typ list -> string list -> (string * sort) list -> thm list ->  
    14     local_theory -> local_theory
    14     local_theory -> local_theory
       
    15 
       
    16   val prove_fv_supp: typ list -> term list -> term list -> term list -> thm list -> thm list -> 
       
    17     thm list -> thm list -> thm list -> thm list -> bclause list list -> Proof.context -> thm list 
    15 end
    18 end
    16 
    19 
    17 structure Nominal_Dt_Supp: NOMINAL_DT_SUPP =
    20 structure Nominal_Dt_Supp: NOMINAL_DT_SUPP =
    18 struct
    21 struct
    19 
    22 
       
    23 fun lookup xs x = the (AList.lookup (op=) xs x)
    20 
    24 
    21 (* supports lemmas for constructors *)
    25 (* supports lemmas for constructors *)
    22 
    26 
    23 fun mk_supports_goal ctxt qtrm =
    27 fun mk_supports_goal ctxt qtrm =
    24 let  
    28   let  
    25   val vs = fresh_args ctxt qtrm
    29     val vs = fresh_args ctxt qtrm
    26   val rhs = list_comb (qtrm, vs)
    30     val rhs = list_comb (qtrm, vs)
    27   val lhs = fold (curry HOLogic.mk_prod) vs @{term "()"}
    31     val lhs = fold (curry HOLogic.mk_prod) vs @{term "()"}
    28     |> mk_supp
    32       |> mk_supp
    29 in
    33   in
    30   mk_supports lhs rhs
    34     mk_supports lhs rhs
    31   |> HOLogic.mk_Trueprop
    35     |> HOLogic.mk_Trueprop
    32 end
    36   end
    33 
    37 
    34 fun supports_tac ctxt perm_simps =
    38 fun supports_tac ctxt perm_simps =
    35 let
    39   let
    36   val ss1 = HOL_basic_ss addsimps @{thms supports_def fresh_def[symmetric]}
    40     val ss1 = HOL_basic_ss addsimps @{thms supports_def fresh_def[symmetric]}
    37   val ss2 = HOL_ss addsimps @{thms swap_fresh_fresh fresh_Pair}
    41     val ss2 = HOL_ss addsimps @{thms swap_fresh_fresh fresh_Pair}
    38 in
    42   in
    39   EVERY' [ simp_tac ss1,
    43     EVERY' [ simp_tac ss1,
    40            Nominal_Permeq.eqvt_strict_tac ctxt perm_simps [],
    44              Nominal_Permeq.eqvt_strict_tac ctxt perm_simps [],
    41            simp_tac ss2 ]
    45              simp_tac ss2 ]
    42 end
    46   end
    43 
    47 
    44 fun prove_supports_single ctxt perm_simps qtrm =
    48 fun prove_supports_single ctxt perm_simps qtrm =
    45 let
    49   let
    46   val goal = mk_supports_goal ctxt qtrm 
    50     val goal = mk_supports_goal ctxt qtrm 
    47   val ctxt' = Variable.auto_fixes goal ctxt
    51     val ctxt' = Variable.auto_fixes goal ctxt
    48 in
    52   in
    49   Goal.prove ctxt' [] [] goal
    53     Goal.prove ctxt' [] [] goal
    50    (K (HEADGOAL (supports_tac ctxt perm_simps)))
    54       (K (HEADGOAL (supports_tac ctxt perm_simps)))
    51   |> singleton (ProofContext.export ctxt' ctxt)
    55     |> singleton (ProofContext.export ctxt' ctxt)
    52 end
    56   end
    53 
    57 
    54 fun prove_supports ctxt perm_simps qtrms =
    58 fun prove_supports ctxt perm_simps qtrms =
    55   map (prove_supports_single ctxt perm_simps) qtrms
    59   map (prove_supports_single ctxt perm_simps) qtrms
    56 
    60 
    57 
    61 
    58 (* finite supp lemmas for qtypes *)
    62 (* finite supp lemmas for qtypes *)
    59 
    63 
    60 fun prove_fsupp ctxt qtys qinduct qsupports_thms =
    64 fun prove_fsupp ctxt qtys qinduct qsupports_thms =
    61 let
    65   let
    62   val (vs, ctxt') = Variable.variant_fixes (replicate (length qtys) "x") ctxt
    66     val (vs, ctxt') = Variable.variant_fixes (replicate (length qtys) "x") ctxt
    63   val goals = vs ~~ qtys
    67     val goals = vs ~~ qtys
    64     |> map Free
    68       |> map Free
    65     |> map (mk_finite o mk_supp)
    69       |> map (mk_finite o mk_supp)
    66     |> foldr1 (HOLogic.mk_conj)
    70       |> foldr1 (HOLogic.mk_conj)
    67     |> HOLogic.mk_Trueprop
    71       |> HOLogic.mk_Trueprop
    68 
    72 
    69   val tac = 
    73     val tac = 
    70     EVERY' [ rtac @{thm supports_finite},
    74       EVERY' [ rtac @{thm supports_finite},
    71              resolve_tac qsupports_thms,
    75                resolve_tac qsupports_thms,
    72              asm_simp_tac (HOL_ss addsimps @{thms finite_supp supp_Pair finite_Un}) ]
    76                asm_simp_tac (HOL_ss addsimps @{thms finite_supp supp_Pair finite_Un}) ]
    73 in
    77   in
    74   Goal.prove ctxt' [] [] goals
    78     Goal.prove ctxt' [] [] goals
    75     (K (HEADGOAL (rtac qinduct THEN_ALL_NEW tac)))
    79       (K (HEADGOAL (rtac qinduct THEN_ALL_NEW tac)))
    76   |> singleton (ProofContext.export ctxt' ctxt)
    80     |> singleton (ProofContext.export ctxt' ctxt)
    77   |> Datatype_Aux.split_conj_thm
    81     |> Datatype_Aux.split_conj_thm
    78   |> map zero_var_indexes
    82     |> map zero_var_indexes
    79 end
    83   end
    80 
    84 
    81 
    85 
    82 (* finite supp instances *)
    86 (* finite supp instances *)
    83 
    87 
    84 fun fs_instance qtys qfull_ty_names tvs qfsupp_thms lthy =
    88 fun fs_instance qtys qfull_ty_names tvs qfsupp_thms lthy =
    85 let
    89   let
    86   val lthy1 = 
    90     val lthy1 = 
    87     lthy
    91       lthy
    88     |> Local_Theory.exit_global
    92       |> Local_Theory.exit_global
    89     |> Class.instantiation (qfull_ty_names, tvs, @{sort fs}) 
    93       |> Class.instantiation (qfull_ty_names, tvs, @{sort fs}) 
    90   
    94   
    91   fun tac _ =
    95     fun tac _ =
    92     Class.intro_classes_tac [] THEN
    96       Class.intro_classes_tac [] THEN
    93       (ALLGOALS (resolve_tac qfsupp_thms))
    97         (ALLGOALS (resolve_tac qfsupp_thms))
    94 in
    98   in
    95   lthy1
    99     lthy1
    96   |> Class.prove_instantiation_exit tac 
   100     |> Class.prove_instantiation_exit tac 
    97   |> Named_Target.theory_init
   101     |> Named_Target.theory_init
    98 end
   102   end
       
   103 
       
   104 
       
   105 (* proves that fv and fv_bn equals supp *)
       
   106 
       
   107 fun mk_fvs_goals ty_arg_map fv =
       
   108   let
       
   109     val arg = fastype_of fv
       
   110       |> domain_type
       
   111       |> lookup ty_arg_map
       
   112   in
       
   113     (fv $ arg, mk_supp arg)
       
   114       |> HOLogic.mk_eq
       
   115       |> HOLogic.mk_Trueprop 
       
   116   end
       
   117 
       
   118 fun mk_fv_bns_goals ty_arg_map fv_bn alpha_bn =
       
   119   let
       
   120     val arg = fastype_of fv_bn
       
   121       |> domain_type
       
   122       |> lookup ty_arg_map
       
   123   in
       
   124     (fv_bn $ arg, mk_supp_rel alpha_bn arg)
       
   125       |> HOLogic.mk_eq
       
   126       |> HOLogic.mk_Trueprop 
       
   127   end
       
   128 
       
   129 fun add_ss thms =
       
   130   HOL_basic_ss addsimps thms
       
   131 
       
   132 fun symmetric thms = 
       
   133   map (fn thm => thm RS @{thm sym}) thms
       
   134 
       
   135 val supp_abs_set = @{thms supp_abs(1)[symmetric]}
       
   136 val supp_abs_res = @{thms supp_abs(2)[symmetric]}
       
   137 val supp_abs_lst = @{thms supp_abs(3)[symmetric]}
       
   138 
       
   139 fun mk_supp_abs ctxt (BC (Set, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_abs_set 
       
   140   | mk_supp_abs ctxt (BC (Res, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_abs_res
       
   141   | mk_supp_abs ctxt (BC (Lst, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_abs_lst
       
   142 
       
   143 fun mk_supp_abs_tac ctxt [] = []
       
   144   | mk_supp_abs_tac ctxt (BC (_, [], _)::xs) = mk_supp_abs_tac ctxt xs
       
   145   | mk_supp_abs_tac ctxt (bc::xs) = (DETERM o mk_supp_abs ctxt bc)::mk_supp_abs_tac ctxt xs
       
   146 
       
   147 fun mk_bn_supp_abs_tac thm =
       
   148   (prop_of thm)
       
   149   |> HOLogic.dest_Trueprop
       
   150   |> snd o HOLogic.dest_eq
       
   151   |> fastype_of
       
   152   |> (fn ty => case ty of
       
   153         @{typ "atom set"}  => simp_tac (add_ss supp_abs_set)
       
   154       | @{typ "atom list"} => simp_tac (add_ss supp_abs_lst)
       
   155       | _ => raise TERM ("mk_bn_supp_abs_tac", [prop_of thm]))
       
   156 
       
   157 
       
   158 val thms1 = @{thms supp_Pair supp_eqvt[symmetric] Un_assoc conj_assoc}
       
   159 val thms2 = @{thms de_Morgan_conj Collect_disj_eq finite_Un}
       
   160 val thms3 = @{thms alphas prod_alpha_def prod_fv.simps prod_rel.simps permute_prod_def 
       
   161   prod.recs prod.cases prod.inject not_True_eq_False empty_def[symmetric] Finite_Set.finite.emptyI}
       
   162 
       
   163 fun ind_tac ctxt qinducts = 
       
   164   let
       
   165     fun CASES_TAC_TO_TAC cases_tac st = Seq.map snd (cases_tac st)
       
   166   in
       
   167     DETERM o (CASES_TAC_TO_TAC o (Induct.induct_tac ctxt false [] [] [] (SOME qinducts) []))
       
   168   end
       
   169 
       
   170 fun p_tac msg i = 
       
   171   if false then print_tac ("ptest: " ^ msg) else all_tac
       
   172 
       
   173 fun q_tac msg i = 
       
   174   if true then print_tac ("qtest: " ^ msg) else all_tac
       
   175 
       
   176 fun prove_fv_supp qtys fvs fv_bns alpha_bns bn_simps fv_simps eq_iffs perm_simps 
       
   177   fv_bn_eqvts qinducts bclausess ctxt =
       
   178   let
       
   179     val (arg_names, ctxt') = 
       
   180       Variable.variant_fixes (replicate (length qtys) "x") ctxt 
       
   181     val args = map2 (curry Free) arg_names qtys 
       
   182     val ty_arg_map = qtys ~~ args
       
   183     val ind_args = map SOME arg_names
       
   184 
       
   185     val goals1 = map (mk_fvs_goals ty_arg_map) fvs
       
   186     val goals2 = map2 (mk_fv_bns_goals ty_arg_map) fv_bns alpha_bns
       
   187 
       
   188     fun fv_tac ctxt bclauses =
       
   189       SOLVED' (EVERY' [
       
   190         (fn i => print_tac ("FV Goal: " ^ string_of_int i ^ "  with  " ^ (@{make_string} bclauses))),
       
   191         TRY o asm_full_simp_tac (add_ss (@{thm supp_Pair[symmetric]}::fv_simps)), 
       
   192         p_tac "A",
       
   193         TRY o EVERY' (mk_supp_abs_tac ctxt bclauses),
       
   194         p_tac "B",
       
   195         TRY o simp_tac (add_ss @{thms supp_def supp_rel_def}),
       
   196         p_tac "C",
       
   197         TRY o Nominal_Permeq.eqvt_tac ctxt (perm_simps @ fv_bn_eqvts) [], 
       
   198         p_tac "D",
       
   199         TRY o simp_tac (add_ss (@{thms Abs_eq_iff} @ eq_iffs)),
       
   200         p_tac "E",
       
   201         TRY o asm_full_simp_tac (add_ss thms3),
       
   202         p_tac "F",
       
   203         TRY o simp_tac (add_ss thms2),
       
   204         p_tac "G",
       
   205         TRY o asm_full_simp_tac (add_ss (thms1 @ (symmetric fv_bn_eqvts))),
       
   206         p_tac "H",
       
   207         (fn i => print_tac ("finished with FV Goal: " ^ string_of_int i))
       
   208         ])
       
   209     
       
   210     fun bn_tac ctxt bn_simp =
       
   211       SOLVED' (EVERY' [
       
   212         (fn i => print_tac ("BN Goal: " ^ string_of_int i)),
       
   213         TRY o asm_full_simp_tac (add_ss (@{thm supp_Pair[symmetric]}::fv_simps)),
       
   214         q_tac "A",
       
   215         TRY o mk_bn_supp_abs_tac bn_simp,
       
   216         q_tac "B",
       
   217         TRY o simp_tac (add_ss @{thms supp_def supp_rel_def}),
       
   218         q_tac "C",
       
   219         TRY o Nominal_Permeq.eqvt_tac ctxt (perm_simps @ fv_bn_eqvts) [], 
       
   220         q_tac "D",
       
   221         TRY o simp_tac (add_ss (@{thms Abs_eq_iff} @ eq_iffs)),
       
   222         q_tac "E",
       
   223         TRY o asm_full_simp_tac (add_ss thms3),
       
   224         q_tac "F",
       
   225         TRY o simp_tac (add_ss thms2),
       
   226         q_tac "G",
       
   227         TRY o asm_full_simp_tac (add_ss (thms1 @ (symmetric fv_bn_eqvts))),
       
   228         (fn i => print_tac ("finished with BN Goal: " ^ string_of_int i))
       
   229         ])
       
   230 
       
   231     fun fv_tacs ctxt = map (fv_tac ctxt) bclausess
       
   232     fun bn_tacs ctxt = map (bn_tac ctxt) bn_simps
       
   233     
       
   234   in
       
   235     Goal.prove_multi ctxt' [] [] (goals1 @ goals2)
       
   236      (fn {context as ctxt, ...} => HEADGOAL 
       
   237        (ind_tac ctxt qinducts THEN' RANGE  (fv_tacs ctxt @ bn_tacs ctxt)))
       
   238     |> ProofContext.export ctxt' ctxt
       
   239   end
       
   240 
    99 
   241 
   100 
   242 
   101 end (* structure *)
   243 end (* structure *)
   102 
   244