Move lambda examples to manual
authorCezary Kaliszyk <kaliszyk@in.tum.de>
Tue, 23 Mar 2010 08:20:13 +0100
changeset 1593 20221ec06cba
parent 1592 b679900fa5f6
child 1594 892fcdb96c96
Move lambda examples to manual
Nominal/LamEx.thy
Nominal/LamEx2.thy
Nominal/Manual/LamEx.thy
Nominal/Manual/LamEx2.thy
--- a/Nominal/LamEx.thy	Tue Mar 23 08:19:33 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,620 +0,0 @@
-theory LamEx
-imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs"
-begin
-
-atom_decl name
-
-datatype rlam =
-  rVar "name"
-| rApp "rlam" "rlam"
-| rLam "name" "rlam"
-
-fun
-  rfv :: "rlam \<Rightarrow> atom set"
-where
-  rfv_var: "rfv (rVar a) = {atom a}"
-| rfv_app: "rfv (rApp t1 t2) = (rfv t1) \<union> (rfv t2)"
-| rfv_lam: "rfv (rLam a t) = (rfv t) - {atom a}"
-
-instantiation rlam :: pt
-begin
-
-primrec
-  permute_rlam
-where
-  "permute_rlam pi (rVar a) = rVar (pi \<bullet> a)"
-| "permute_rlam pi (rApp t1 t2) = rApp (permute_rlam pi t1) (permute_rlam pi t2)"
-| "permute_rlam pi (rLam a t) = rLam (pi \<bullet> a) (permute_rlam pi t)"
-
-instance
-apply default
-apply(induct_tac [!] x)
-apply(simp_all)
-done
-
-end
-
-instantiation rlam :: fs
-begin
-
-lemma neg_conj:
-  "\<not>(P \<and> Q) \<longleftrightarrow> (\<not>P) \<or> (\<not>Q)"
-  by simp
-
-instance
-apply default
-apply(induct_tac x)
-(* var case *)
-apply(simp add: supp_def)
-apply(fold supp_def)[1]
-apply(simp add: supp_at_base)
-(* app case *)
-apply(simp only: supp_def)
-apply(simp only: permute_rlam.simps) 
-apply(simp only: rlam.inject) 
-apply(simp only: neg_conj)
-apply(simp only: Collect_disj_eq)
-apply(simp only: infinite_Un)
-apply(simp only: Collect_disj_eq)
-apply(simp)
-(* lam case *)
-apply(simp only: supp_def)
-apply(simp only: permute_rlam.simps) 
-apply(simp only: rlam.inject) 
-apply(simp only: neg_conj)
-apply(simp only: Collect_disj_eq)
-apply(simp only: infinite_Un)
-apply(simp only: Collect_disj_eq)
-apply(simp)
-apply(fold supp_def)[1]
-apply(simp add: supp_at_base)
-done
-
-end
-
-
-(* for the eqvt proof of the alpha-equivalence *)
-declare permute_rlam.simps[eqvt]
-
-lemma rfv_eqvt[eqvt]:
-  shows "(pi\<bullet>rfv t) = rfv (pi\<bullet>t)"
-apply(induct t)
-apply(simp_all)
-apply(simp add: permute_set_eq atom_eqvt)
-apply(simp add: union_eqvt)
-apply(simp add: Diff_eqvt)
-apply(simp add: permute_set_eq atom_eqvt)
-done
-
-inductive
-    alpha :: "rlam \<Rightarrow> rlam \<Rightarrow> bool" ("_ \<approx> _" [100, 100] 100)
-where
-  a1: "a = b \<Longrightarrow> (rVar a) \<approx> (rVar b)"
-| a2: "\<lbrakk>t1 \<approx> t2; s1 \<approx> s2\<rbrakk> \<Longrightarrow> rApp t1 s1 \<approx> rApp t2 s2"
-| a3: "\<exists>pi. (rfv t - {atom a} = rfv s - {atom b} \<and> (rfv t - {atom a})\<sharp>* pi \<and> (pi \<bullet> t) \<approx> s)
-       \<Longrightarrow> rLam a t \<approx> rLam b s"
-
-lemma a3_inverse:
-  assumes "rLam a t \<approx> rLam b s"
-  shows "\<exists>pi. (rfv t - {atom a} = rfv s - {atom b} \<and> (rfv t - {atom a})\<sharp>* pi \<and> (pi \<bullet> t) \<approx> s)"
-using assms
-apply(erule_tac alpha.cases)
-apply(auto)
-done
-
-text {* should be automatic with new version of eqvt-machinery *}
-lemma alpha_eqvt:
-  shows "t \<approx> s \<Longrightarrow> (pi \<bullet> t) \<approx> (pi \<bullet> s)"
-apply(induct rule: alpha.induct)
-apply(simp add: a1)
-apply(simp add: a2)
-apply(simp)
-apply(rule a3)
-apply(erule conjE)
-apply(erule exE)
-apply(erule conjE)
-apply(rule_tac x="pi \<bullet> pia" in exI)
-apply(rule conjI)
-apply(rule_tac ?p1="- pi" in permute_eq_iff[THEN iffD1])
-apply(simp only: Diff_eqvt rfv_eqvt insert_eqvt atom_eqvt empty_eqvt)
-apply(simp)
-apply(rule conjI)
-apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1])
-apply(simp add: Diff_eqvt rfv_eqvt atom_eqvt insert_eqvt empty_eqvt)
-apply(subst permute_eqvt[symmetric])
-apply(simp)
-done
-
-lemma alpha_refl:
-  shows "t \<approx> t"
-apply(induct t rule: rlam.induct)
-apply(simp add: a1)
-apply(simp add: a2)
-apply(rule a3)
-apply(rule_tac x="0" in exI)
-apply(simp_all add: fresh_star_def fresh_zero_perm)
-done
-
-lemma alpha_sym:
-  shows "t \<approx> s \<Longrightarrow> s \<approx> t"
-apply(induct rule: alpha.induct)
-apply(simp add: a1)
-apply(simp add: a2)
-apply(rule a3)
-apply(erule exE)
-apply(rule_tac x="- pi" in exI)
-apply(simp)
-apply(simp add: fresh_star_def fresh_minus_perm)
-apply(erule conjE)+
-apply(rotate_tac 3)
-apply(drule_tac pi="- pi" in alpha_eqvt)
-apply(simp)
-done
-
-lemma alpha_trans:
-  shows "t1 \<approx> t2 \<Longrightarrow> t2 \<approx> t3 \<Longrightarrow> t1 \<approx> t3"
-apply(induct arbitrary: t3 rule: alpha.induct)
-apply(erule alpha.cases)
-apply(simp_all)
-apply(simp add: a1)
-apply(rotate_tac 4)
-apply(erule alpha.cases)
-apply(simp_all)
-apply(simp add: a2)
-apply(rotate_tac 1)
-apply(erule alpha.cases)
-apply(simp_all)
-apply(erule conjE)+
-apply(erule exE)+
-apply(erule conjE)+
-apply(rule a3)
-apply(rule_tac x="pia + pi" in exI)
-apply(simp add: fresh_star_plus)
-apply(drule_tac x="- pia \<bullet> sa" in spec)
-apply(drule mp)
-apply(rotate_tac 7)
-apply(drule_tac pi="- pia" in alpha_eqvt)
-apply(simp)
-apply(rotate_tac 9)
-apply(drule_tac pi="pia" in alpha_eqvt)
-apply(simp)
-done
-
-lemma alpha_equivp:
-  shows "equivp alpha"
-  apply(rule equivpI)
-  unfolding reflp_def symp_def transp_def
-  apply(auto intro: alpha_refl alpha_sym alpha_trans)
-  done
-
-lemma alpha_rfv:
-  shows "t \<approx> s \<Longrightarrow> rfv t = rfv s"
-  apply(induct rule: alpha.induct)
-  apply(simp_all)
-  done
-
-inductive
-    alpha2 :: "rlam \<Rightarrow> rlam \<Rightarrow> bool" ("_ \<approx>2 _" [100, 100] 100)
-where
-  a21: "a = b \<Longrightarrow> (rVar a) \<approx>2 (rVar b)"
-| a22: "\<lbrakk>t1 \<approx>2 t2; s1 \<approx>2 s2\<rbrakk> \<Longrightarrow> rApp t1 s1 \<approx>2 rApp t2 s2"
-| a23: "(a = b \<and> t \<approx>2 s) \<or> (a \<noteq> b \<and> ((a \<leftrightarrow> b) \<bullet> t) \<approx>2 s \<and> atom b \<notin> rfv t)\<Longrightarrow> rLam a t \<approx>2 rLam b s"
-
-lemma fv_vars:
-  fixes a::name
-  assumes a1: "\<forall>x \<in> rfv t - {atom a}. pi \<bullet> x = x"
-  shows "(pi \<bullet> t) \<approx>2 ((a \<leftrightarrow> (pi \<bullet> a)) \<bullet> t)"
-using a1
-apply(induct t)
-apply(auto)
-apply(rule a21)
-apply(case_tac "name = a")
-apply(simp)
-apply(simp)
-defer
-apply(rule a22)
-apply(simp)
-apply(simp)
-apply(rule a23)
-apply(case_tac "a = name")
-apply(simp)
-oops
-
-
-lemma 
-  assumes a1: "t \<approx>2 s"
-  shows "t \<approx> s"
-using a1
-apply(induct)
-apply(rule alpha.intros)
-apply(simp)
-apply(rule alpha.intros)
-apply(simp)
-apply(simp)
-apply(rule alpha.intros)
-apply(erule disjE)
-apply(rule_tac x="0" in exI)
-apply(simp add: fresh_star_def fresh_zero_perm)
-apply(erule conjE)+
-apply(drule alpha_rfv)
-apply(simp)
-apply(rule_tac x="(a \<leftrightarrow> b)" in exI)
-apply(simp)
-apply(erule conjE)+
-apply(rule conjI)
-apply(drule alpha_rfv)
-apply(drule sym)
-apply(simp)
-apply(simp add: rfv_eqvt[symmetric])
-defer
-apply(subgoal_tac "atom a \<sharp> (rfv t - {atom a})")
-apply(subgoal_tac "atom b \<sharp> (rfv t - {atom a})")
-
-defer
-sorry
-
-lemma 
-  assumes a1: "t \<approx> s"
-  shows "t \<approx>2 s"
-using a1
-apply(induct)
-apply(rule alpha2.intros)
-apply(simp)
-apply(rule alpha2.intros)
-apply(simp)
-apply(simp)
-apply(clarify)
-apply(rule alpha2.intros)
-apply(frule alpha_rfv)
-apply(rotate_tac 4)
-apply(drule sym)
-apply(simp)
-apply(drule sym)
-apply(simp)
-oops
-
-quotient_type lam = rlam / alpha
-  by (rule alpha_equivp)
-
-quotient_definition
-  "Var :: name \<Rightarrow> lam"
-is
-  "rVar"
-
-quotient_definition
-   "App :: lam \<Rightarrow> lam \<Rightarrow> lam"
-is
-  "rApp"
-
-quotient_definition
-  "Lam :: name \<Rightarrow> lam \<Rightarrow> lam"
-is
-  "rLam"
-
-quotient_definition
-  "fv :: lam \<Rightarrow> atom set"
-is
-  "rfv"
-
-lemma perm_rsp[quot_respect]:
-  "(op = ===> alpha ===> alpha) permute permute"
-  apply(auto)
-  apply(rule alpha_eqvt)
-  apply(simp)
-  done
-
-lemma rVar_rsp[quot_respect]:
-  "(op = ===> alpha) rVar rVar"
-  by (auto intro: a1)
-
-lemma rApp_rsp[quot_respect]: 
-  "(alpha ===> alpha ===> alpha) rApp rApp"
-  by (auto intro: a2)
-
-lemma rLam_rsp[quot_respect]: 
-  "(op = ===> alpha ===> alpha) rLam rLam"
-  apply(auto)
-  apply(rule a3)
-  apply(rule_tac x="0" in exI)
-  unfolding fresh_star_def 
-  apply(simp add: fresh_star_def fresh_zero_perm)
-  apply(simp add: alpha_rfv)
-  done
-
-lemma rfv_rsp[quot_respect]: 
-  "(alpha ===> op =) rfv rfv"
-apply(simp add: alpha_rfv)
-done
-
-
-section {* lifted theorems *}
-
-lemma lam_induct:
-  "\<lbrakk>\<And>name. P (Var name);
-    \<And>lam1 lam2. \<lbrakk>P lam1; P lam2\<rbrakk> \<Longrightarrow> P (App lam1 lam2);
-    \<And>name lam. P lam \<Longrightarrow> P (Lam name lam)\<rbrakk> 
-    \<Longrightarrow> P lam"
-  apply (lifting rlam.induct)
-  done
-
-instantiation lam :: pt
-begin
-
-quotient_definition
-  "permute_lam :: perm \<Rightarrow> lam \<Rightarrow> lam"
-is
-  "permute :: perm \<Rightarrow> rlam \<Rightarrow> rlam"
-
-lemma permute_lam [simp]:
-  shows "pi \<bullet> Var a = Var (pi \<bullet> a)"
-  and   "pi \<bullet> App t1 t2 = App (pi \<bullet> t1) (pi \<bullet> t2)"
-  and   "pi \<bullet> Lam a t = Lam (pi \<bullet> a) (pi \<bullet> t)"
-apply(lifting permute_rlam.simps)
-done
-
-instance
-apply default
-apply(induct_tac [!] x rule: lam_induct)
-apply(simp_all)
-done
-
-end
-
-lemma fv_lam [simp]: 
-  shows "fv (Var a) = {atom a}"
-  and   "fv (App t1 t2) = fv t1 \<union> fv t2"
-  and   "fv (Lam a t) = fv t - {atom a}"
-apply(lifting rfv_var rfv_app rfv_lam)
-done
-
-lemma fv_eqvt:
-  shows "(p \<bullet> fv t) = fv (p \<bullet> t)"
-apply(lifting rfv_eqvt)
-done
-
-lemma a1: 
-  "a = b \<Longrightarrow> Var a = Var b"
-  by  (lifting a1)
-
-lemma a2: 
-  "\<lbrakk>x = xa; xb = xc\<rbrakk> \<Longrightarrow> App x xb = App xa xc"
-  by  (lifting a2)
-
-lemma a3: 
-  "\<lbrakk>\<exists>pi. (fv t - {atom a} = fv s - {atom b} \<and> (fv t - {atom a})\<sharp>* pi \<and> (pi \<bullet> t) = s)\<rbrakk> 
-   \<Longrightarrow> Lam a t = Lam b s"
-  apply  (lifting a3)
-  done
-
-lemma a3_inv:
-  assumes "Lam a t = Lam b s"
-  shows "\<exists>pi. (fv t - {atom a} = fv s - {atom b} \<and> (fv t - {atom a})\<sharp>* pi \<and> (pi \<bullet> t) = s)"
-using assms
-apply(lifting a3_inverse)
-done
-
-lemma alpha_cases: 
-  "\<lbrakk>a1 = a2; \<And>a b. \<lbrakk>a1 = Var a; a2 = Var b; a = b\<rbrakk> \<Longrightarrow> P;
-    \<And>x xa xb xc. \<lbrakk>a1 = App x xb; a2 = App xa xc; x = xa; xb = xc\<rbrakk> \<Longrightarrow> P;
-    \<And>t a s b. \<lbrakk>a1 = Lam a t; a2 = Lam b s; 
-         \<exists>pi. fv t - {atom a} = fv s - {atom b} \<and> (fv t - {atom a}) \<sharp>* pi \<and> (pi \<bullet> t) = s\<rbrakk> 
-   \<Longrightarrow> P\<rbrakk>
-    \<Longrightarrow> P"
-  by (lifting alpha.cases)
-
-(* not sure whether needed *)
-lemma alpha_induct: 
-  "\<lbrakk>qx = qxa; \<And>a b. a = b \<Longrightarrow> qxb (Var a) (Var b);
-    \<And>x xa xb xc. \<lbrakk>x = xa; qxb x xa; xb = xc; qxb xb xc\<rbrakk> \<Longrightarrow> qxb (App x xb) (App xa xc);
-     \<And>t a s b.
-        \<lbrakk>\<exists>pi. fv t - {atom a} = fv s - {atom b} \<and>
-         (fv t - {atom a}) \<sharp>* pi \<and> ((pi \<bullet> t) = s \<and> qxb (pi \<bullet> t) s)\<rbrakk> 
-     \<Longrightarrow> qxb (Lam a t) (Lam b s)\<rbrakk>
-    \<Longrightarrow> qxb qx qxa"
-  by (lifting alpha.induct)
-
-(* should they lift automatically *)
-lemma lam_inject [simp]: 
-  shows "(Var a = Var b) = (a = b)"
-  and   "(App t1 t2 = App s1 s2) = (t1 = s1 \<and> t2 = s2)"
-apply(lifting rlam.inject(1) rlam.inject(2))
-apply(regularize)
-prefer 2
-apply(regularize)
-prefer 2
-apply(auto)
-apply(drule alpha.cases)
-apply(simp_all)
-apply(simp add: alpha.a1)
-apply(drule alpha.cases)
-apply(simp_all)
-apply(drule alpha.cases)
-apply(simp_all)
-apply(rule alpha.a2)
-apply(simp_all)
-done
-
-lemma Lam_pseudo_inject:
-  shows "(Lam a t = Lam b s) = 
-      (\<exists>pi. (fv t - {atom a} = fv s - {atom b} \<and> (fv t - {atom a})\<sharp>* pi \<and> (pi \<bullet> t) = s))"
-apply(rule iffI)
-apply(rule a3_inv)
-apply(assumption)
-apply(rule a3)
-apply(assumption)
-done
-
-lemma rlam_distinct:
-  shows "\<not>(rVar nam \<approx> rApp rlam1' rlam2')"
-  and   "\<not>(rApp rlam1' rlam2' \<approx> rVar nam)"
-  and   "\<not>(rVar nam \<approx> rLam nam' rlam')"
-  and   "\<not>(rLam nam' rlam' \<approx> rVar nam)"
-  and   "\<not>(rApp rlam1 rlam2 \<approx> rLam nam' rlam')"
-  and   "\<not>(rLam nam' rlam' \<approx> rApp rlam1 rlam2)"
-apply auto
-apply (erule alpha.cases)
-apply (simp_all only: rlam.distinct)
-apply (erule alpha.cases)
-apply (simp_all only: rlam.distinct)
-apply (erule alpha.cases)
-apply (simp_all only: rlam.distinct)
-apply (erule alpha.cases)
-apply (simp_all only: rlam.distinct)
-apply (erule alpha.cases)
-apply (simp_all only: rlam.distinct)
-apply (erule alpha.cases)
-apply (simp_all only: rlam.distinct)
-done
-
-lemma lam_distinct[simp]:
-  shows "Var nam \<noteq> App lam1' lam2'"
-  and   "App lam1' lam2' \<noteq> Var nam"
-  and   "Var nam \<noteq> Lam nam' lam'"
-  and   "Lam nam' lam' \<noteq> Var nam"
-  and   "App lam1 lam2 \<noteq> Lam nam' lam'"
-  and   "Lam nam' lam' \<noteq> App lam1 lam2"
-apply(lifting rlam_distinct(1) rlam_distinct(2) rlam_distinct(3) rlam_distinct(4) rlam_distinct(5) rlam_distinct(6))
-done
-
-lemma var_supp1:
-  shows "(supp (Var a)) = (supp a)"
-  apply (simp add: supp_def)
-  done
-
-lemma var_supp:
-  shows "(supp (Var a)) = {a:::name}"
-  using var_supp1 by (simp add: supp_at_base)
-
-lemma app_supp:
-  shows "supp (App t1 t2) = (supp t1) \<union> (supp t2)"
-apply(simp only: supp_def lam_inject)
-apply(simp add: Collect_imp_eq Collect_neg_eq)
-done
-
-(* supp for lam *)
-lemma lam_supp1:
-  shows "(supp (atom x, t)) supports (Lam x t) "
-apply(simp add: supports_def)
-apply(fold fresh_def)
-apply(simp add: fresh_Pair swap_fresh_fresh)
-apply(clarify)
-apply(subst swap_at_base_simps(3))
-apply(simp_all add: fresh_atom)
-done
-
-lemma lam_fsupp1:
-  assumes a: "finite (supp t)"
-  shows "finite (supp (Lam x t))"
-apply(rule supports_finite)
-apply(rule lam_supp1)
-apply(simp add: a supp_Pair supp_atom)
-done
-
-instance lam :: fs
-apply(default)
-apply(induct_tac x rule: lam_induct)
-apply(simp add: var_supp)
-apply(simp add: app_supp)
-apply(simp add: lam_fsupp1)
-done
-
-lemma supp_fv:
-  shows "supp t = fv t"
-apply(induct t rule: lam_induct)
-apply(simp add: var_supp)
-apply(simp add: app_supp)
-apply(subgoal_tac "supp (Lam name lam) = supp (Abs {atom name} lam)")
-apply(simp add: supp_Abs)
-apply(simp (no_asm) add: supp_def permute_set_eq atom_eqvt)
-apply(simp add: Lam_pseudo_inject)
-apply(simp add: Abs_eq_iff alpha_gen)
-apply(simp add: supp_eqvt[symmetric] fv_eqvt[symmetric])
-done
-
-lemma lam_supp2:
-  shows "supp (Lam x t) = supp (Abs {atom x} t)"
-apply(simp add: supp_def permute_set_eq atom_eqvt)
-apply(simp add: Lam_pseudo_inject)
-apply(simp add: Abs_eq_iff supp_fv alpha_gen)
-done
-
-lemma lam_supp:
-  shows "supp (Lam x t) = ((supp t) - {atom x})"
-apply(simp add: lam_supp2)
-apply(simp add: supp_Abs)
-done
-
-lemma fresh_lam:
-  "(atom a \<sharp> Lam b t) \<longleftrightarrow> (a = b) \<or> (a \<noteq> b \<and> atom a \<sharp> t)"
-apply(simp add: fresh_def)
-apply(simp add: lam_supp)
-apply(auto)
-done
-
-lemma lam_induct_strong:
-  fixes a::"'a::fs"
-  assumes a1: "\<And>name b. P b (Var name)"
-  and     a2: "\<And>lam1 lam2 b. \<lbrakk>\<And>c. P c lam1; \<And>c. P c lam2\<rbrakk> \<Longrightarrow> P b (App lam1 lam2)"
-  and     a3: "\<And>name lam b. \<lbrakk>\<And>c. P c lam; (atom name) \<sharp> b\<rbrakk> \<Longrightarrow> P b (Lam name lam)"
-  shows "P a lam"
-proof -
-  have "\<And>pi a. P a (pi \<bullet> lam)" 
-  proof (induct lam rule: lam_induct)
-    case (1 name pi)
-    show "P a (pi \<bullet> Var name)"
-      apply (simp)
-      apply (rule a1)
-      done
-  next
-    case (2 lam1 lam2 pi)
-    have b1: "\<And>pi a. P a (pi \<bullet> lam1)" by fact
-    have b2: "\<And>pi a. P a (pi \<bullet> lam2)" by fact
-    show "P a (pi \<bullet> App lam1 lam2)"
-      apply (simp)
-      apply (rule a2)
-      apply (rule b1)
-      apply (rule b2)
-      done
-  next
-    case (3 name lam pi a)
-    have b: "\<And>pi a. P a (pi \<bullet> lam)" by fact
-    obtain c::name where fr: "atom c\<sharp>(a, pi\<bullet>name, pi\<bullet>lam)"
-      apply(rule obtain_atom)
-      apply(auto)
-      sorry
-    from b fr have p: "P a (Lam c (((c \<leftrightarrow> (pi \<bullet> name)) + pi)\<bullet>lam))" 
-      apply -
-      apply(rule a3)
-      apply(blast)
-      apply(simp add: fresh_Pair)
-      done
-    have eq: "(atom c \<rightleftharpoons> atom (pi\<bullet>name)) \<bullet> Lam (pi \<bullet> name) (pi \<bullet> lam) = Lam (pi \<bullet> name) (pi \<bullet> lam)"
-      apply(rule swap_fresh_fresh)
-      using fr
-      apply(simp add: fresh_lam fresh_Pair)
-      apply(simp add: fresh_lam fresh_Pair)
-      done
-    show "P a (pi \<bullet> Lam name lam)" 
-      apply (simp)
-      apply(subst eq[symmetric])
-      using p
-      apply(simp only: permute_lam)
-      apply(simp add: flip_def)
-      done
-  qed
-  then have "P a (0 \<bullet> lam)" by blast
-  then show "P a lam" by simp 
-qed
-
-
-lemma var_fresh:
-  fixes a::"name"
-  shows "(atom a \<sharp> (Var b)) = (atom a \<sharp> b)"
-  apply(simp add: fresh_def)
-  apply(simp add: var_supp1)
-  done
-
-
-
-end
-
--- a/Nominal/LamEx2.thy	Tue Mar 23 08:19:33 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,563 +0,0 @@
-theory LamEx
-imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs"
-begin
-
-atom_decl name
-
-datatype rlam =
-  rVar "name"
-| rApp "rlam" "rlam"
-| rLam "name" "rlam"
-
-fun
-  rfv :: "rlam \<Rightarrow> atom set"
-where
-  rfv_var: "rfv (rVar a) = {atom a}"
-| rfv_app: "rfv (rApp t1 t2) = (rfv t1) \<union> (rfv t2)"
-| rfv_lam: "rfv (rLam a t) = (rfv t) - {atom a}"
-
-instantiation rlam :: pt
-begin
-
-primrec
-  permute_rlam
-where
-  "permute_rlam pi (rVar a) = rVar (pi \<bullet> a)"
-| "permute_rlam pi (rApp t1 t2) = rApp (permute_rlam pi t1) (permute_rlam pi t2)"
-| "permute_rlam pi (rLam a t) = rLam (pi \<bullet> a) (permute_rlam pi t)"
-
-instance
-apply default
-apply(induct_tac [!] x)
-apply(simp_all)
-done
-
-end
-
-instantiation rlam :: fs
-begin
-
-lemma neg_conj:
-  "\<not>(P \<and> Q) \<longleftrightarrow> (\<not>P) \<or> (\<not>Q)"
-  by simp
-
-instance
-apply default
-apply(induct_tac x)
-(* var case *)
-apply(simp add: supp_def)
-apply(fold supp_def)[1]
-apply(simp add: supp_at_base)
-(* app case *)
-apply(simp only: supp_def)
-apply(simp only: permute_rlam.simps) 
-apply(simp only: rlam.inject) 
-apply(simp only: neg_conj)
-apply(simp only: Collect_disj_eq)
-apply(simp only: infinite_Un)
-apply(simp only: Collect_disj_eq)
-apply(simp)
-(* lam case *)
-apply(simp only: supp_def)
-apply(simp only: permute_rlam.simps) 
-apply(simp only: rlam.inject) 
-apply(simp only: neg_conj)
-apply(simp only: Collect_disj_eq)
-apply(simp only: infinite_Un)
-apply(simp only: Collect_disj_eq)
-apply(simp)
-apply(fold supp_def)[1]
-apply(simp add: supp_at_base)
-done
-
-end
-
-
-(* for the eqvt proof of the alpha-equivalence *)
-declare permute_rlam.simps[eqvt]
-
-lemma rfv_eqvt[eqvt]:
-  shows "(pi\<bullet>rfv t) = rfv (pi\<bullet>t)"
-apply(induct t)
-apply(simp_all)
-apply(simp add: permute_set_eq atom_eqvt)
-apply(simp add: union_eqvt)
-apply(simp add: Diff_eqvt)
-apply(simp add: permute_set_eq atom_eqvt)
-done
-
-inductive
-    alpha :: "rlam \<Rightarrow> rlam \<Rightarrow> bool" ("_ \<approx> _" [100, 100] 100)
-where
-  a1: "a = b \<Longrightarrow> (rVar a) \<approx> (rVar b)"
-| a2: "\<lbrakk>t1 \<approx> t2; s1 \<approx> s2\<rbrakk> \<Longrightarrow> rApp t1 s1 \<approx> rApp t2 s2"
-| a3: "\<exists>pi. (({atom a}, t) \<approx>gen alpha rfv pi ({atom b}, s)) \<Longrightarrow> rLam a t \<approx> rLam b s"
-print_theorems
-thm alpha.induct
-
-lemma a3_inverse:
-  assumes "rLam a t \<approx> rLam b s"
-  shows "\<exists>pi. (({atom a}, t) \<approx>gen alpha rfv pi ({atom b}, s))"
-using assms
-apply(erule_tac alpha.cases)
-apply(auto)
-done
-
-text {* should be automatic with new version of eqvt-machinery *}
-lemma alpha_eqvt:
-  shows "t \<approx> s \<Longrightarrow> (pi \<bullet> t) \<approx> (pi \<bullet> s)"
-apply(induct rule: alpha.induct)
-apply(simp add: a1)
-apply(simp add: a2)
-apply(simp)
-apply(rule a3)
-apply(rule alpha_gen_atom_eqvt)
-apply(rule rfv_eqvt)
-apply assumption
-done
-
-lemma alpha_refl:
-  shows "t \<approx> t"
-apply(induct t rule: rlam.induct)
-apply(simp add: a1)
-apply(simp add: a2)
-apply(rule a3)
-apply(rule_tac x="0" in exI)
-apply(rule alpha_gen_refl)
-apply(assumption)
-done
-
-lemma alpha_sym:
-  shows "t \<approx> s \<Longrightarrow> s \<approx> t"
-  apply(induct rule: alpha.induct)
-  apply(simp add: a1)
-  apply(simp add: a2)
-  apply(rule a3)
-  apply(erule alpha_gen_compose_sym)
-  apply(erule alpha_eqvt)
-  done
-
-lemma alpha_trans:
-  shows "t1 \<approx> t2 \<Longrightarrow> t2 \<approx> t3 \<Longrightarrow> t1 \<approx> t3"
-apply(induct arbitrary: t3 rule: alpha.induct)
-apply(simp add: a1)
-apply(rotate_tac 4)
-apply(erule alpha.cases)
-apply(simp_all add: a2)
-apply(erule alpha.cases)
-apply(simp_all)
-apply(rule a3)
-apply(erule alpha_gen_compose_trans)
-apply(assumption)
-apply(erule alpha_eqvt)
-done
-
-lemma alpha_equivp:
-  shows "equivp alpha"
-  apply(rule equivpI)
-  unfolding reflp_def symp_def transp_def
-  apply(auto intro: alpha_refl alpha_sym alpha_trans)
-  done
-
-lemma alpha_rfv:
-  shows "t \<approx> s \<Longrightarrow> rfv t = rfv s"
-  apply(induct rule: alpha.induct)
-  apply(simp_all add: alpha_gen.simps)
-  done
-
-quotient_type lam = rlam / alpha
-  by (rule alpha_equivp)
-
-quotient_definition
-  "Var :: name \<Rightarrow> lam"
-is
-  "rVar"
-
-quotient_definition
-   "App :: lam \<Rightarrow> lam \<Rightarrow> lam"
-is
-  "rApp"
-
-quotient_definition
-  "Lam :: name \<Rightarrow> lam \<Rightarrow> lam"
-is
-  "rLam"
-
-quotient_definition
-  "fv :: lam \<Rightarrow> atom set"
-is
-  "rfv"
-
-lemma perm_rsp[quot_respect]:
-  "(op = ===> alpha ===> alpha) permute permute"
-  apply(auto)
-  apply(rule alpha_eqvt)
-  apply(simp)
-  done
-
-lemma rVar_rsp[quot_respect]:
-  "(op = ===> alpha) rVar rVar"
-  by (auto intro: a1)
-
-lemma rApp_rsp[quot_respect]: 
-  "(alpha ===> alpha ===> alpha) rApp rApp"
-  by (auto intro: a2)
-
-lemma rLam_rsp[quot_respect]: 
-  "(op = ===> alpha ===> alpha) rLam rLam"
-  apply(auto)
-  apply(rule a3)
-  apply(rule_tac x="0" in exI)
-  unfolding fresh_star_def 
-  apply(simp add: fresh_star_def fresh_zero_perm alpha_gen.simps)
-  apply(simp add: alpha_rfv)
-  done
-
-lemma rfv_rsp[quot_respect]: 
-  "(alpha ===> op =) rfv rfv"
-apply(simp add: alpha_rfv)
-done
-
-
-section {* lifted theorems *}
-
-lemma lam_induct:
-  "\<lbrakk>\<And>name. P (Var name);
-    \<And>lam1 lam2. \<lbrakk>P lam1; P lam2\<rbrakk> \<Longrightarrow> P (App lam1 lam2);
-    \<And>name lam. P lam \<Longrightarrow> P (Lam name lam)\<rbrakk> 
-    \<Longrightarrow> P lam"
-  apply (lifting rlam.induct)
-  done
-
-instantiation lam :: pt
-begin
-
-quotient_definition
-  "permute_lam :: perm \<Rightarrow> lam \<Rightarrow> lam"
-is
-  "permute :: perm \<Rightarrow> rlam \<Rightarrow> rlam"
-
-lemma permute_lam [simp]:
-  shows "pi \<bullet> Var a = Var (pi \<bullet> a)"
-  and   "pi \<bullet> App t1 t2 = App (pi \<bullet> t1) (pi \<bullet> t2)"
-  and   "pi \<bullet> Lam a t = Lam (pi \<bullet> a) (pi \<bullet> t)"
-apply(lifting permute_rlam.simps)
-done
-
-instance
-apply default
-apply(induct_tac [!] x rule: lam_induct)
-apply(simp_all)
-done
-
-end
-
-lemma fv_lam [simp]: 
-  shows "fv (Var a) = {atom a}"
-  and   "fv (App t1 t2) = fv t1 \<union> fv t2"
-  and   "fv (Lam a t) = fv t - {atom a}"
-apply(lifting rfv_var rfv_app rfv_lam)
-done
-
-lemma fv_eqvt:
-  shows "(p \<bullet> fv t) = fv (p \<bullet> t)"
-apply(lifting rfv_eqvt)
-done
-
-lemma a1: 
-  "a = b \<Longrightarrow> Var a = Var b"
-  by  (lifting a1)
-
-lemma a2: 
-  "\<lbrakk>x = xa; xb = xc\<rbrakk> \<Longrightarrow> App x xb = App xa xc"
-  by  (lifting a2)
-
-lemma alpha_gen_rsp_pre:
-  assumes a5: "\<And>t s. R t s \<Longrightarrow> R (pi \<bullet> t) (pi \<bullet> s)"
-  and     a1: "R s1 t1"
-  and     a2: "R s2 t2"
-  and     a3: "\<And>a b c d. R a b \<Longrightarrow> R c d \<Longrightarrow> R1 a c = R2 b d"
-  and     a4: "\<And>x y. R x y \<Longrightarrow> fv1 x = fv2 y"
-  shows   "(a, s1) \<approx>gen R1 fv1 pi (b, s2) = (a, t1) \<approx>gen R2 fv2 pi (b, t2)"
-apply (simp add: alpha_gen.simps)
-apply (simp only: a4[symmetric, OF a1] a4[symmetric, OF a2])
-apply auto
-apply (subst a3[symmetric])
-apply (rule a5)
-apply (rule a1)
-apply (rule a2)
-apply (assumption)
-apply (subst a3)
-apply (rule a5)
-apply (rule a1)
-apply (rule a2)
-apply (assumption)
-done
-
-lemma [quot_respect]: "(prod_rel op = alpha ===>
-           (alpha ===> alpha ===> op =) ===> (alpha ===> op =) ===> op = ===> prod_rel op = alpha ===> op =)
-           alpha_gen alpha_gen"
-apply simp
-apply clarify
-apply (rule alpha_gen_rsp_pre[of "alpha",OF alpha_eqvt])
-apply auto
-done
-
-(* pi_abs would be also sufficient to prove the next lemma *)
-lemma replam_eqvt: "pi \<bullet> (rep_lam x) = rep_lam (pi \<bullet> x)"
-apply (unfold rep_lam_def)
-sorry
-
-lemma [quot_preserve]: "(prod_fun id rep_lam --->
-           (abs_lam ---> abs_lam ---> id) ---> (abs_lam ---> id) ---> id ---> (prod_fun id rep_lam) ---> id)
-           alpha_gen = alpha_gen"
-apply (simp add: expand_fun_eq alpha_gen.simps Quotient_abs_rep[OF Quotient_lam])
-apply (simp add: replam_eqvt)
-apply (simp only: Quotient_abs_rep[OF Quotient_lam])
-apply auto
-done
-
-
-lemma alpha_prs [quot_preserve]: "(rep_lam ---> rep_lam ---> id) alpha = (op =)"
-apply (simp add: expand_fun_eq)
-apply (simp add: Quotient_rel_rep[OF Quotient_lam])
-done
-
-lemma a3:
-  "\<exists>pi. ({atom a}, t) \<approx>gen (op =) fv pi ({atom b}, s) \<Longrightarrow> Lam a t = Lam b s"
-  apply (unfold alpha_gen)
-  apply (lifting a3[unfolded alpha_gen])
-  done
-
-
-lemma a3_inv:
-  "Lam a t = Lam b s \<Longrightarrow> \<exists>pi. ({atom a}, t) \<approx>gen (op =) fv pi ({atom b}, s)"
-  apply (unfold alpha_gen)
-  apply (lifting a3_inverse[unfolded alpha_gen])
-  done
-
-lemma alpha_cases: 
-  "\<lbrakk>a1 = a2; \<And>a b. \<lbrakk>a1 = Var a; a2 = Var b; a = b\<rbrakk> \<Longrightarrow> P;
-    \<And>t1 t2 s1 s2. \<lbrakk>a1 = App t1 s1; a2 = App t2 s2; t1 = t2; s1 = s2\<rbrakk> \<Longrightarrow> P;
-    \<And>a t b s. \<lbrakk>a1 = Lam a t; a2 = Lam b s; \<exists>pi. ({atom a}, t) \<approx>gen (op =) fv pi ({atom b}, s)\<rbrakk>
-   \<Longrightarrow> P\<rbrakk>
-    \<Longrightarrow> P"
-unfolding alpha_gen
-apply (lifting alpha.cases[unfolded alpha_gen])
-done
-
-(* not sure whether needed *)
-lemma alpha_induct: 
-  "\<lbrakk>qx = qxa; \<And>a b. a = b \<Longrightarrow> qxb (Var a) (Var b);
-    \<And>x xa xb xc. \<lbrakk>x = xa; qxb x xa; xb = xc; qxb xb xc\<rbrakk> \<Longrightarrow> qxb (App x xb) (App xa xc);
- \<And>a t b s. \<exists>pi. ({atom a}, t) \<approx>gen (\<lambda>x1 x2. x1 = x2 \<and> qxb x1 x2) fv pi ({atom b}, s) \<Longrightarrow> qxb (Lam a t) (Lam b s)\<rbrakk>
-    \<Longrightarrow> qxb qx qxa"
-unfolding alpha_gen by (lifting alpha.induct[unfolded alpha_gen])
-
-(* should they lift automatically *)
-lemma lam_inject [simp]: 
-  shows "(Var a = Var b) = (a = b)"
-  and   "(App t1 t2 = App s1 s2) = (t1 = s1 \<and> t2 = s2)"
-apply(lifting rlam.inject(1) rlam.inject(2))
-apply(regularize)
-prefer 2
-apply(regularize)
-prefer 2
-apply(auto)
-apply(drule alpha.cases)
-apply(simp_all)
-apply(simp add: alpha.a1)
-apply(drule alpha.cases)
-apply(simp_all)
-apply(drule alpha.cases)
-apply(simp_all)
-apply(rule alpha.a2)
-apply(simp_all)
-done
-
-thm a3_inv
-lemma Lam_pseudo_inject:
-  shows "(Lam a t = Lam b s) = (\<exists>pi. ({atom a}, t) \<approx>gen (op =) fv pi ({atom b}, s))"
-apply(rule iffI)
-apply(rule a3_inv)
-apply(assumption)
-apply(rule a3)
-apply(assumption)
-done
-
-lemma rlam_distinct:
-  shows "\<not>(rVar nam \<approx> rApp rlam1' rlam2')"
-  and   "\<not>(rApp rlam1' rlam2' \<approx> rVar nam)"
-  and   "\<not>(rVar nam \<approx> rLam nam' rlam')"
-  and   "\<not>(rLam nam' rlam' \<approx> rVar nam)"
-  and   "\<not>(rApp rlam1 rlam2 \<approx> rLam nam' rlam')"
-  and   "\<not>(rLam nam' rlam' \<approx> rApp rlam1 rlam2)"
-apply auto
-apply (erule alpha.cases)
-apply (simp_all only: rlam.distinct)
-apply (erule alpha.cases)
-apply (simp_all only: rlam.distinct)
-apply (erule alpha.cases)
-apply (simp_all only: rlam.distinct)
-apply (erule alpha.cases)
-apply (simp_all only: rlam.distinct)
-apply (erule alpha.cases)
-apply (simp_all only: rlam.distinct)
-apply (erule alpha.cases)
-apply (simp_all only: rlam.distinct)
-done
-
-lemma lam_distinct[simp]:
-  shows "Var nam \<noteq> App lam1' lam2'"
-  and   "App lam1' lam2' \<noteq> Var nam"
-  and   "Var nam \<noteq> Lam nam' lam'"
-  and   "Lam nam' lam' \<noteq> Var nam"
-  and   "App lam1 lam2 \<noteq> Lam nam' lam'"
-  and   "Lam nam' lam' \<noteq> App lam1 lam2"
-apply(lifting rlam_distinct(1) rlam_distinct(2) rlam_distinct(3) rlam_distinct(4) rlam_distinct(5) rlam_distinct(6))
-done
-
-lemma var_supp1:
-  shows "(supp (Var a)) = (supp a)"
-  apply (simp add: supp_def)
-  done
-
-lemma var_supp:
-  shows "(supp (Var a)) = {a:::name}"
-  using var_supp1 by (simp add: supp_at_base)
-
-lemma app_supp:
-  shows "supp (App t1 t2) = (supp t1) \<union> (supp t2)"
-apply(simp only: supp_def lam_inject)
-apply(simp add: Collect_imp_eq Collect_neg_eq)
-done
-
-(* supp for lam *)
-lemma lam_supp1:
-  shows "(supp (atom x, t)) supports (Lam x t) "
-apply(simp add: supports_def)
-apply(fold fresh_def)
-apply(simp add: fresh_Pair swap_fresh_fresh)
-apply(clarify)
-apply(subst swap_at_base_simps(3))
-apply(simp_all add: fresh_atom)
-done
-
-lemma lam_fsupp1:
-  assumes a: "finite (supp t)"
-  shows "finite (supp (Lam x t))"
-apply(rule supports_finite)
-apply(rule lam_supp1)
-apply(simp add: a supp_Pair supp_atom)
-done
-
-instance lam :: fs
-apply(default)
-apply(induct_tac x rule: lam_induct)
-apply(simp add: var_supp)
-apply(simp add: app_supp)
-apply(simp add: lam_fsupp1)
-done
-
-lemma supp_fv:
-  shows "supp t = fv t"
-apply(induct t rule: lam_induct)
-apply(simp add: var_supp)
-apply(simp add: app_supp)
-apply(subgoal_tac "supp (Lam name lam) = supp (Abs {atom name} lam)")
-apply(simp add: supp_Abs)
-apply(simp (no_asm) add: supp_def permute_set_eq atom_eqvt)
-apply(simp add: Lam_pseudo_inject)
-apply(simp add: Abs_eq_iff)
-apply(simp add: alpha_gen.simps)
-apply(simp add: supp_eqvt[symmetric] fv_eqvt[symmetric])
-done
-
-lemma lam_supp2:
-  shows "supp (Lam x t) = supp (Abs {atom x} t)"
-apply(simp add: supp_def permute_set_eq atom_eqvt)
-apply(simp add: Lam_pseudo_inject)
-apply(simp add: Abs_eq_iff)
-apply(simp add: alpha_gen  supp_fv)
-done
-
-lemma lam_supp:
-  shows "supp (Lam x t) = ((supp t) - {atom x})"
-apply(simp add: lam_supp2)
-apply(simp add: supp_Abs)
-done
-
-lemma fresh_lam:
-  "(atom a \<sharp> Lam b t) \<longleftrightarrow> (a = b) \<or> (a \<noteq> b \<and> atom a \<sharp> t)"
-apply(simp add: fresh_def)
-apply(simp add: lam_supp)
-apply(auto)
-done
-
-lemma lam_induct_strong:
-  fixes a::"'a::fs"
-  assumes a1: "\<And>name b. P b (Var name)"
-  and     a2: "\<And>lam1 lam2 b. \<lbrakk>\<And>c. P c lam1; \<And>c. P c lam2\<rbrakk> \<Longrightarrow> P b (App lam1 lam2)"
-  and     a3: "\<And>name lam b. \<lbrakk>\<And>c. P c lam; (atom name) \<sharp> b\<rbrakk> \<Longrightarrow> P b (Lam name lam)"
-  shows "P a lam"
-proof -
-  have "\<And>pi a. P a (pi \<bullet> lam)" 
-  proof (induct lam rule: lam_induct)
-    case (1 name pi)
-    show "P a (pi \<bullet> Var name)"
-      apply (simp)
-      apply (rule a1)
-      done
-  next
-    case (2 lam1 lam2 pi)
-    have b1: "\<And>pi a. P a (pi \<bullet> lam1)" by fact
-    have b2: "\<And>pi a. P a (pi \<bullet> lam2)" by fact
-    show "P a (pi \<bullet> App lam1 lam2)"
-      apply (simp)
-      apply (rule a2)
-      apply (rule b1)
-      apply (rule b2)
-      done
-  next
-    case (3 name lam pi a)
-    have b: "\<And>pi a. P a (pi \<bullet> lam)" by fact
-    obtain c::name where fr: "atom c\<sharp>(a, pi\<bullet>name, pi\<bullet>lam)"
-      apply(rule obtain_atom)
-      apply(auto)
-      sorry
-    from b fr have p: "P a (Lam c (((c \<leftrightarrow> (pi \<bullet> name)) + pi)\<bullet>lam))" 
-      apply -
-      apply(rule a3)
-      apply(blast)
-      apply(simp add: fresh_Pair)
-      done
-    have eq: "(atom c \<rightleftharpoons> atom (pi\<bullet>name)) \<bullet> Lam (pi \<bullet> name) (pi \<bullet> lam) = Lam (pi \<bullet> name) (pi \<bullet> lam)"
-      apply(rule swap_fresh_fresh)
-      using fr
-      apply(simp add: fresh_lam fresh_Pair)
-      apply(simp add: fresh_lam fresh_Pair)
-      done
-    show "P a (pi \<bullet> Lam name lam)" 
-      apply (simp)
-      apply(subst eq[symmetric])
-      using p
-      apply(simp only: permute_lam)
-      apply(simp add: flip_def)
-      done
-  qed
-  then have "P a (0 \<bullet> lam)" by blast
-  then show "P a lam" by simp 
-qed
-
-
-lemma var_fresh:
-  fixes a::"name"
-  shows "(atom a \<sharp> (Var b)) = (atom a \<sharp> b)"
-  apply(simp add: fresh_def)
-  apply(simp add: var_supp1)
-  done
-
-
-
-end
-
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Manual/LamEx.thy	Tue Mar 23 08:20:13 2010 +0100
@@ -0,0 +1,620 @@
+theory LamEx
+imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs"
+begin
+
+atom_decl name
+
+datatype rlam =
+  rVar "name"
+| rApp "rlam" "rlam"
+| rLam "name" "rlam"
+
+fun
+  rfv :: "rlam \<Rightarrow> atom set"
+where
+  rfv_var: "rfv (rVar a) = {atom a}"
+| rfv_app: "rfv (rApp t1 t2) = (rfv t1) \<union> (rfv t2)"
+| rfv_lam: "rfv (rLam a t) = (rfv t) - {atom a}"
+
+instantiation rlam :: pt
+begin
+
+primrec
+  permute_rlam
+where
+  "permute_rlam pi (rVar a) = rVar (pi \<bullet> a)"
+| "permute_rlam pi (rApp t1 t2) = rApp (permute_rlam pi t1) (permute_rlam pi t2)"
+| "permute_rlam pi (rLam a t) = rLam (pi \<bullet> a) (permute_rlam pi t)"
+
+instance
+apply default
+apply(induct_tac [!] x)
+apply(simp_all)
+done
+
+end
+
+instantiation rlam :: fs
+begin
+
+lemma neg_conj:
+  "\<not>(P \<and> Q) \<longleftrightarrow> (\<not>P) \<or> (\<not>Q)"
+  by simp
+
+instance
+apply default
+apply(induct_tac x)
+(* var case *)
+apply(simp add: supp_def)
+apply(fold supp_def)[1]
+apply(simp add: supp_at_base)
+(* app case *)
+apply(simp only: supp_def)
+apply(simp only: permute_rlam.simps) 
+apply(simp only: rlam.inject) 
+apply(simp only: neg_conj)
+apply(simp only: Collect_disj_eq)
+apply(simp only: infinite_Un)
+apply(simp only: Collect_disj_eq)
+apply(simp)
+(* lam case *)
+apply(simp only: supp_def)
+apply(simp only: permute_rlam.simps) 
+apply(simp only: rlam.inject) 
+apply(simp only: neg_conj)
+apply(simp only: Collect_disj_eq)
+apply(simp only: infinite_Un)
+apply(simp only: Collect_disj_eq)
+apply(simp)
+apply(fold supp_def)[1]
+apply(simp add: supp_at_base)
+done
+
+end
+
+
+(* for the eqvt proof of the alpha-equivalence *)
+declare permute_rlam.simps[eqvt]
+
+lemma rfv_eqvt[eqvt]:
+  shows "(pi\<bullet>rfv t) = rfv (pi\<bullet>t)"
+apply(induct t)
+apply(simp_all)
+apply(simp add: permute_set_eq atom_eqvt)
+apply(simp add: union_eqvt)
+apply(simp add: Diff_eqvt)
+apply(simp add: permute_set_eq atom_eqvt)
+done
+
+inductive
+    alpha :: "rlam \<Rightarrow> rlam \<Rightarrow> bool" ("_ \<approx> _" [100, 100] 100)
+where
+  a1: "a = b \<Longrightarrow> (rVar a) \<approx> (rVar b)"
+| a2: "\<lbrakk>t1 \<approx> t2; s1 \<approx> s2\<rbrakk> \<Longrightarrow> rApp t1 s1 \<approx> rApp t2 s2"
+| a3: "\<exists>pi. (rfv t - {atom a} = rfv s - {atom b} \<and> (rfv t - {atom a})\<sharp>* pi \<and> (pi \<bullet> t) \<approx> s)
+       \<Longrightarrow> rLam a t \<approx> rLam b s"
+
+lemma a3_inverse:
+  assumes "rLam a t \<approx> rLam b s"
+  shows "\<exists>pi. (rfv t - {atom a} = rfv s - {atom b} \<and> (rfv t - {atom a})\<sharp>* pi \<and> (pi \<bullet> t) \<approx> s)"
+using assms
+apply(erule_tac alpha.cases)
+apply(auto)
+done
+
+text {* should be automatic with new version of eqvt-machinery *}
+lemma alpha_eqvt:
+  shows "t \<approx> s \<Longrightarrow> (pi \<bullet> t) \<approx> (pi \<bullet> s)"
+apply(induct rule: alpha.induct)
+apply(simp add: a1)
+apply(simp add: a2)
+apply(simp)
+apply(rule a3)
+apply(erule conjE)
+apply(erule exE)
+apply(erule conjE)
+apply(rule_tac x="pi \<bullet> pia" in exI)
+apply(rule conjI)
+apply(rule_tac ?p1="- pi" in permute_eq_iff[THEN iffD1])
+apply(simp only: Diff_eqvt rfv_eqvt insert_eqvt atom_eqvt empty_eqvt)
+apply(simp)
+apply(rule conjI)
+apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1])
+apply(simp add: Diff_eqvt rfv_eqvt atom_eqvt insert_eqvt empty_eqvt)
+apply(subst permute_eqvt[symmetric])
+apply(simp)
+done
+
+lemma alpha_refl:
+  shows "t \<approx> t"
+apply(induct t rule: rlam.induct)
+apply(simp add: a1)
+apply(simp add: a2)
+apply(rule a3)
+apply(rule_tac x="0" in exI)
+apply(simp_all add: fresh_star_def fresh_zero_perm)
+done
+
+lemma alpha_sym:
+  shows "t \<approx> s \<Longrightarrow> s \<approx> t"
+apply(induct rule: alpha.induct)
+apply(simp add: a1)
+apply(simp add: a2)
+apply(rule a3)
+apply(erule exE)
+apply(rule_tac x="- pi" in exI)
+apply(simp)
+apply(simp add: fresh_star_def fresh_minus_perm)
+apply(erule conjE)+
+apply(rotate_tac 3)
+apply(drule_tac pi="- pi" in alpha_eqvt)
+apply(simp)
+done
+
+lemma alpha_trans:
+  shows "t1 \<approx> t2 \<Longrightarrow> t2 \<approx> t3 \<Longrightarrow> t1 \<approx> t3"
+apply(induct arbitrary: t3 rule: alpha.induct)
+apply(erule alpha.cases)
+apply(simp_all)
+apply(simp add: a1)
+apply(rotate_tac 4)
+apply(erule alpha.cases)
+apply(simp_all)
+apply(simp add: a2)
+apply(rotate_tac 1)
+apply(erule alpha.cases)
+apply(simp_all)
+apply(erule conjE)+
+apply(erule exE)+
+apply(erule conjE)+
+apply(rule a3)
+apply(rule_tac x="pia + pi" in exI)
+apply(simp add: fresh_star_plus)
+apply(drule_tac x="- pia \<bullet> sa" in spec)
+apply(drule mp)
+apply(rotate_tac 7)
+apply(drule_tac pi="- pia" in alpha_eqvt)
+apply(simp)
+apply(rotate_tac 9)
+apply(drule_tac pi="pia" in alpha_eqvt)
+apply(simp)
+done
+
+lemma alpha_equivp:
+  shows "equivp alpha"
+  apply(rule equivpI)
+  unfolding reflp_def symp_def transp_def
+  apply(auto intro: alpha_refl alpha_sym alpha_trans)
+  done
+
+lemma alpha_rfv:
+  shows "t \<approx> s \<Longrightarrow> rfv t = rfv s"
+  apply(induct rule: alpha.induct)
+  apply(simp_all)
+  done
+
+inductive
+    alpha2 :: "rlam \<Rightarrow> rlam \<Rightarrow> bool" ("_ \<approx>2 _" [100, 100] 100)
+where
+  a21: "a = b \<Longrightarrow> (rVar a) \<approx>2 (rVar b)"
+| a22: "\<lbrakk>t1 \<approx>2 t2; s1 \<approx>2 s2\<rbrakk> \<Longrightarrow> rApp t1 s1 \<approx>2 rApp t2 s2"
+| a23: "(a = b \<and> t \<approx>2 s) \<or> (a \<noteq> b \<and> ((a \<leftrightarrow> b) \<bullet> t) \<approx>2 s \<and> atom b \<notin> rfv t)\<Longrightarrow> rLam a t \<approx>2 rLam b s"
+
+lemma fv_vars:
+  fixes a::name
+  assumes a1: "\<forall>x \<in> rfv t - {atom a}. pi \<bullet> x = x"
+  shows "(pi \<bullet> t) \<approx>2 ((a \<leftrightarrow> (pi \<bullet> a)) \<bullet> t)"
+using a1
+apply(induct t)
+apply(auto)
+apply(rule a21)
+apply(case_tac "name = a")
+apply(simp)
+apply(simp)
+defer
+apply(rule a22)
+apply(simp)
+apply(simp)
+apply(rule a23)
+apply(case_tac "a = name")
+apply(simp)
+oops
+
+
+lemma 
+  assumes a1: "t \<approx>2 s"
+  shows "t \<approx> s"
+using a1
+apply(induct)
+apply(rule alpha.intros)
+apply(simp)
+apply(rule alpha.intros)
+apply(simp)
+apply(simp)
+apply(rule alpha.intros)
+apply(erule disjE)
+apply(rule_tac x="0" in exI)
+apply(simp add: fresh_star_def fresh_zero_perm)
+apply(erule conjE)+
+apply(drule alpha_rfv)
+apply(simp)
+apply(rule_tac x="(a \<leftrightarrow> b)" in exI)
+apply(simp)
+apply(erule conjE)+
+apply(rule conjI)
+apply(drule alpha_rfv)
+apply(drule sym)
+apply(simp)
+apply(simp add: rfv_eqvt[symmetric])
+defer
+apply(subgoal_tac "atom a \<sharp> (rfv t - {atom a})")
+apply(subgoal_tac "atom b \<sharp> (rfv t - {atom a})")
+
+defer
+sorry
+
+lemma 
+  assumes a1: "t \<approx> s"
+  shows "t \<approx>2 s"
+using a1
+apply(induct)
+apply(rule alpha2.intros)
+apply(simp)
+apply(rule alpha2.intros)
+apply(simp)
+apply(simp)
+apply(clarify)
+apply(rule alpha2.intros)
+apply(frule alpha_rfv)
+apply(rotate_tac 4)
+apply(drule sym)
+apply(simp)
+apply(drule sym)
+apply(simp)
+oops
+
+quotient_type lam = rlam / alpha
+  by (rule alpha_equivp)
+
+quotient_definition
+  "Var :: name \<Rightarrow> lam"
+is
+  "rVar"
+
+quotient_definition
+   "App :: lam \<Rightarrow> lam \<Rightarrow> lam"
+is
+  "rApp"
+
+quotient_definition
+  "Lam :: name \<Rightarrow> lam \<Rightarrow> lam"
+is
+  "rLam"
+
+quotient_definition
+  "fv :: lam \<Rightarrow> atom set"
+is
+  "rfv"
+
+lemma perm_rsp[quot_respect]:
+  "(op = ===> alpha ===> alpha) permute permute"
+  apply(auto)
+  apply(rule alpha_eqvt)
+  apply(simp)
+  done
+
+lemma rVar_rsp[quot_respect]:
+  "(op = ===> alpha) rVar rVar"
+  by (auto intro: a1)
+
+lemma rApp_rsp[quot_respect]: 
+  "(alpha ===> alpha ===> alpha) rApp rApp"
+  by (auto intro: a2)
+
+lemma rLam_rsp[quot_respect]: 
+  "(op = ===> alpha ===> alpha) rLam rLam"
+  apply(auto)
+  apply(rule a3)
+  apply(rule_tac x="0" in exI)
+  unfolding fresh_star_def 
+  apply(simp add: fresh_star_def fresh_zero_perm)
+  apply(simp add: alpha_rfv)
+  done
+
+lemma rfv_rsp[quot_respect]: 
+  "(alpha ===> op =) rfv rfv"
+apply(simp add: alpha_rfv)
+done
+
+
+section {* lifted theorems *}
+
+lemma lam_induct:
+  "\<lbrakk>\<And>name. P (Var name);
+    \<And>lam1 lam2. \<lbrakk>P lam1; P lam2\<rbrakk> \<Longrightarrow> P (App lam1 lam2);
+    \<And>name lam. P lam \<Longrightarrow> P (Lam name lam)\<rbrakk> 
+    \<Longrightarrow> P lam"
+  apply (lifting rlam.induct)
+  done
+
+instantiation lam :: pt
+begin
+
+quotient_definition
+  "permute_lam :: perm \<Rightarrow> lam \<Rightarrow> lam"
+is
+  "permute :: perm \<Rightarrow> rlam \<Rightarrow> rlam"
+
+lemma permute_lam [simp]:
+  shows "pi \<bullet> Var a = Var (pi \<bullet> a)"
+  and   "pi \<bullet> App t1 t2 = App (pi \<bullet> t1) (pi \<bullet> t2)"
+  and   "pi \<bullet> Lam a t = Lam (pi \<bullet> a) (pi \<bullet> t)"
+apply(lifting permute_rlam.simps)
+done
+
+instance
+apply default
+apply(induct_tac [!] x rule: lam_induct)
+apply(simp_all)
+done
+
+end
+
+lemma fv_lam [simp]: 
+  shows "fv (Var a) = {atom a}"
+  and   "fv (App t1 t2) = fv t1 \<union> fv t2"
+  and   "fv (Lam a t) = fv t - {atom a}"
+apply(lifting rfv_var rfv_app rfv_lam)
+done
+
+lemma fv_eqvt:
+  shows "(p \<bullet> fv t) = fv (p \<bullet> t)"
+apply(lifting rfv_eqvt)
+done
+
+lemma a1: 
+  "a = b \<Longrightarrow> Var a = Var b"
+  by  (lifting a1)
+
+lemma a2: 
+  "\<lbrakk>x = xa; xb = xc\<rbrakk> \<Longrightarrow> App x xb = App xa xc"
+  by  (lifting a2)
+
+lemma a3: 
+  "\<lbrakk>\<exists>pi. (fv t - {atom a} = fv s - {atom b} \<and> (fv t - {atom a})\<sharp>* pi \<and> (pi \<bullet> t) = s)\<rbrakk> 
+   \<Longrightarrow> Lam a t = Lam b s"
+  apply  (lifting a3)
+  done
+
+lemma a3_inv:
+  assumes "Lam a t = Lam b s"
+  shows "\<exists>pi. (fv t - {atom a} = fv s - {atom b} \<and> (fv t - {atom a})\<sharp>* pi \<and> (pi \<bullet> t) = s)"
+using assms
+apply(lifting a3_inverse)
+done
+
+lemma alpha_cases: 
+  "\<lbrakk>a1 = a2; \<And>a b. \<lbrakk>a1 = Var a; a2 = Var b; a = b\<rbrakk> \<Longrightarrow> P;
+    \<And>x xa xb xc. \<lbrakk>a1 = App x xb; a2 = App xa xc; x = xa; xb = xc\<rbrakk> \<Longrightarrow> P;
+    \<And>t a s b. \<lbrakk>a1 = Lam a t; a2 = Lam b s; 
+         \<exists>pi. fv t - {atom a} = fv s - {atom b} \<and> (fv t - {atom a}) \<sharp>* pi \<and> (pi \<bullet> t) = s\<rbrakk> 
+   \<Longrightarrow> P\<rbrakk>
+    \<Longrightarrow> P"
+  by (lifting alpha.cases)
+
+(* not sure whether needed *)
+lemma alpha_induct: 
+  "\<lbrakk>qx = qxa; \<And>a b. a = b \<Longrightarrow> qxb (Var a) (Var b);
+    \<And>x xa xb xc. \<lbrakk>x = xa; qxb x xa; xb = xc; qxb xb xc\<rbrakk> \<Longrightarrow> qxb (App x xb) (App xa xc);
+     \<And>t a s b.
+        \<lbrakk>\<exists>pi. fv t - {atom a} = fv s - {atom b} \<and>
+         (fv t - {atom a}) \<sharp>* pi \<and> ((pi \<bullet> t) = s \<and> qxb (pi \<bullet> t) s)\<rbrakk> 
+     \<Longrightarrow> qxb (Lam a t) (Lam b s)\<rbrakk>
+    \<Longrightarrow> qxb qx qxa"
+  by (lifting alpha.induct)
+
+(* should they lift automatically *)
+lemma lam_inject [simp]: 
+  shows "(Var a = Var b) = (a = b)"
+  and   "(App t1 t2 = App s1 s2) = (t1 = s1 \<and> t2 = s2)"
+apply(lifting rlam.inject(1) rlam.inject(2))
+apply(regularize)
+prefer 2
+apply(regularize)
+prefer 2
+apply(auto)
+apply(drule alpha.cases)
+apply(simp_all)
+apply(simp add: alpha.a1)
+apply(drule alpha.cases)
+apply(simp_all)
+apply(drule alpha.cases)
+apply(simp_all)
+apply(rule alpha.a2)
+apply(simp_all)
+done
+
+lemma Lam_pseudo_inject:
+  shows "(Lam a t = Lam b s) = 
+      (\<exists>pi. (fv t - {atom a} = fv s - {atom b} \<and> (fv t - {atom a})\<sharp>* pi \<and> (pi \<bullet> t) = s))"
+apply(rule iffI)
+apply(rule a3_inv)
+apply(assumption)
+apply(rule a3)
+apply(assumption)
+done
+
+lemma rlam_distinct:
+  shows "\<not>(rVar nam \<approx> rApp rlam1' rlam2')"
+  and   "\<not>(rApp rlam1' rlam2' \<approx> rVar nam)"
+  and   "\<not>(rVar nam \<approx> rLam nam' rlam')"
+  and   "\<not>(rLam nam' rlam' \<approx> rVar nam)"
+  and   "\<not>(rApp rlam1 rlam2 \<approx> rLam nam' rlam')"
+  and   "\<not>(rLam nam' rlam' \<approx> rApp rlam1 rlam2)"
+apply auto
+apply (erule alpha.cases)
+apply (simp_all only: rlam.distinct)
+apply (erule alpha.cases)
+apply (simp_all only: rlam.distinct)
+apply (erule alpha.cases)
+apply (simp_all only: rlam.distinct)
+apply (erule alpha.cases)
+apply (simp_all only: rlam.distinct)
+apply (erule alpha.cases)
+apply (simp_all only: rlam.distinct)
+apply (erule alpha.cases)
+apply (simp_all only: rlam.distinct)
+done
+
+lemma lam_distinct[simp]:
+  shows "Var nam \<noteq> App lam1' lam2'"
+  and   "App lam1' lam2' \<noteq> Var nam"
+  and   "Var nam \<noteq> Lam nam' lam'"
+  and   "Lam nam' lam' \<noteq> Var nam"
+  and   "App lam1 lam2 \<noteq> Lam nam' lam'"
+  and   "Lam nam' lam' \<noteq> App lam1 lam2"
+apply(lifting rlam_distinct(1) rlam_distinct(2) rlam_distinct(3) rlam_distinct(4) rlam_distinct(5) rlam_distinct(6))
+done
+
+lemma var_supp1:
+  shows "(supp (Var a)) = (supp a)"
+  apply (simp add: supp_def)
+  done
+
+lemma var_supp:
+  shows "(supp (Var a)) = {a:::name}"
+  using var_supp1 by (simp add: supp_at_base)
+
+lemma app_supp:
+  shows "supp (App t1 t2) = (supp t1) \<union> (supp t2)"
+apply(simp only: supp_def lam_inject)
+apply(simp add: Collect_imp_eq Collect_neg_eq)
+done
+
+(* supp for lam *)
+lemma lam_supp1:
+  shows "(supp (atom x, t)) supports (Lam x t) "
+apply(simp add: supports_def)
+apply(fold fresh_def)
+apply(simp add: fresh_Pair swap_fresh_fresh)
+apply(clarify)
+apply(subst swap_at_base_simps(3))
+apply(simp_all add: fresh_atom)
+done
+
+lemma lam_fsupp1:
+  assumes a: "finite (supp t)"
+  shows "finite (supp (Lam x t))"
+apply(rule supports_finite)
+apply(rule lam_supp1)
+apply(simp add: a supp_Pair supp_atom)
+done
+
+instance lam :: fs
+apply(default)
+apply(induct_tac x rule: lam_induct)
+apply(simp add: var_supp)
+apply(simp add: app_supp)
+apply(simp add: lam_fsupp1)
+done
+
+lemma supp_fv:
+  shows "supp t = fv t"
+apply(induct t rule: lam_induct)
+apply(simp add: var_supp)
+apply(simp add: app_supp)
+apply(subgoal_tac "supp (Lam name lam) = supp (Abs {atom name} lam)")
+apply(simp add: supp_Abs)
+apply(simp (no_asm) add: supp_def permute_set_eq atom_eqvt)
+apply(simp add: Lam_pseudo_inject)
+apply(simp add: Abs_eq_iff alpha_gen)
+apply(simp add: supp_eqvt[symmetric] fv_eqvt[symmetric])
+done
+
+lemma lam_supp2:
+  shows "supp (Lam x t) = supp (Abs {atom x} t)"
+apply(simp add: supp_def permute_set_eq atom_eqvt)
+apply(simp add: Lam_pseudo_inject)
+apply(simp add: Abs_eq_iff supp_fv alpha_gen)
+done
+
+lemma lam_supp:
+  shows "supp (Lam x t) = ((supp t) - {atom x})"
+apply(simp add: lam_supp2)
+apply(simp add: supp_Abs)
+done
+
+lemma fresh_lam:
+  "(atom a \<sharp> Lam b t) \<longleftrightarrow> (a = b) \<or> (a \<noteq> b \<and> atom a \<sharp> t)"
+apply(simp add: fresh_def)
+apply(simp add: lam_supp)
+apply(auto)
+done
+
+lemma lam_induct_strong:
+  fixes a::"'a::fs"
+  assumes a1: "\<And>name b. P b (Var name)"
+  and     a2: "\<And>lam1 lam2 b. \<lbrakk>\<And>c. P c lam1; \<And>c. P c lam2\<rbrakk> \<Longrightarrow> P b (App lam1 lam2)"
+  and     a3: "\<And>name lam b. \<lbrakk>\<And>c. P c lam; (atom name) \<sharp> b\<rbrakk> \<Longrightarrow> P b (Lam name lam)"
+  shows "P a lam"
+proof -
+  have "\<And>pi a. P a (pi \<bullet> lam)" 
+  proof (induct lam rule: lam_induct)
+    case (1 name pi)
+    show "P a (pi \<bullet> Var name)"
+      apply (simp)
+      apply (rule a1)
+      done
+  next
+    case (2 lam1 lam2 pi)
+    have b1: "\<And>pi a. P a (pi \<bullet> lam1)" by fact
+    have b2: "\<And>pi a. P a (pi \<bullet> lam2)" by fact
+    show "P a (pi \<bullet> App lam1 lam2)"
+      apply (simp)
+      apply (rule a2)
+      apply (rule b1)
+      apply (rule b2)
+      done
+  next
+    case (3 name lam pi a)
+    have b: "\<And>pi a. P a (pi \<bullet> lam)" by fact
+    obtain c::name where fr: "atom c\<sharp>(a, pi\<bullet>name, pi\<bullet>lam)"
+      apply(rule obtain_atom)
+      apply(auto)
+      sorry
+    from b fr have p: "P a (Lam c (((c \<leftrightarrow> (pi \<bullet> name)) + pi)\<bullet>lam))" 
+      apply -
+      apply(rule a3)
+      apply(blast)
+      apply(simp add: fresh_Pair)
+      done
+    have eq: "(atom c \<rightleftharpoons> atom (pi\<bullet>name)) \<bullet> Lam (pi \<bullet> name) (pi \<bullet> lam) = Lam (pi \<bullet> name) (pi \<bullet> lam)"
+      apply(rule swap_fresh_fresh)
+      using fr
+      apply(simp add: fresh_lam fresh_Pair)
+      apply(simp add: fresh_lam fresh_Pair)
+      done
+    show "P a (pi \<bullet> Lam name lam)" 
+      apply (simp)
+      apply(subst eq[symmetric])
+      using p
+      apply(simp only: permute_lam)
+      apply(simp add: flip_def)
+      done
+  qed
+  then have "P a (0 \<bullet> lam)" by blast
+  then show "P a lam" by simp 
+qed
+
+
+lemma var_fresh:
+  fixes a::"name"
+  shows "(atom a \<sharp> (Var b)) = (atom a \<sharp> b)"
+  apply(simp add: fresh_def)
+  apply(simp add: var_supp1)
+  done
+
+
+
+end
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Manual/LamEx2.thy	Tue Mar 23 08:20:13 2010 +0100
@@ -0,0 +1,563 @@
+theory LamEx
+imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs"
+begin
+
+atom_decl name
+
+datatype rlam =
+  rVar "name"
+| rApp "rlam" "rlam"
+| rLam "name" "rlam"
+
+fun
+  rfv :: "rlam \<Rightarrow> atom set"
+where
+  rfv_var: "rfv (rVar a) = {atom a}"
+| rfv_app: "rfv (rApp t1 t2) = (rfv t1) \<union> (rfv t2)"
+| rfv_lam: "rfv (rLam a t) = (rfv t) - {atom a}"
+
+instantiation rlam :: pt
+begin
+
+primrec
+  permute_rlam
+where
+  "permute_rlam pi (rVar a) = rVar (pi \<bullet> a)"
+| "permute_rlam pi (rApp t1 t2) = rApp (permute_rlam pi t1) (permute_rlam pi t2)"
+| "permute_rlam pi (rLam a t) = rLam (pi \<bullet> a) (permute_rlam pi t)"
+
+instance
+apply default
+apply(induct_tac [!] x)
+apply(simp_all)
+done
+
+end
+
+instantiation rlam :: fs
+begin
+
+lemma neg_conj:
+  "\<not>(P \<and> Q) \<longleftrightarrow> (\<not>P) \<or> (\<not>Q)"
+  by simp
+
+instance
+apply default
+apply(induct_tac x)
+(* var case *)
+apply(simp add: supp_def)
+apply(fold supp_def)[1]
+apply(simp add: supp_at_base)
+(* app case *)
+apply(simp only: supp_def)
+apply(simp only: permute_rlam.simps) 
+apply(simp only: rlam.inject) 
+apply(simp only: neg_conj)
+apply(simp only: Collect_disj_eq)
+apply(simp only: infinite_Un)
+apply(simp only: Collect_disj_eq)
+apply(simp)
+(* lam case *)
+apply(simp only: supp_def)
+apply(simp only: permute_rlam.simps) 
+apply(simp only: rlam.inject) 
+apply(simp only: neg_conj)
+apply(simp only: Collect_disj_eq)
+apply(simp only: infinite_Un)
+apply(simp only: Collect_disj_eq)
+apply(simp)
+apply(fold supp_def)[1]
+apply(simp add: supp_at_base)
+done
+
+end
+
+
+(* for the eqvt proof of the alpha-equivalence *)
+declare permute_rlam.simps[eqvt]
+
+lemma rfv_eqvt[eqvt]:
+  shows "(pi\<bullet>rfv t) = rfv (pi\<bullet>t)"
+apply(induct t)
+apply(simp_all)
+apply(simp add: permute_set_eq atom_eqvt)
+apply(simp add: union_eqvt)
+apply(simp add: Diff_eqvt)
+apply(simp add: permute_set_eq atom_eqvt)
+done
+
+inductive
+    alpha :: "rlam \<Rightarrow> rlam \<Rightarrow> bool" ("_ \<approx> _" [100, 100] 100)
+where
+  a1: "a = b \<Longrightarrow> (rVar a) \<approx> (rVar b)"
+| a2: "\<lbrakk>t1 \<approx> t2; s1 \<approx> s2\<rbrakk> \<Longrightarrow> rApp t1 s1 \<approx> rApp t2 s2"
+| a3: "\<exists>pi. (({atom a}, t) \<approx>gen alpha rfv pi ({atom b}, s)) \<Longrightarrow> rLam a t \<approx> rLam b s"
+print_theorems
+thm alpha.induct
+
+lemma a3_inverse:
+  assumes "rLam a t \<approx> rLam b s"
+  shows "\<exists>pi. (({atom a}, t) \<approx>gen alpha rfv pi ({atom b}, s))"
+using assms
+apply(erule_tac alpha.cases)
+apply(auto)
+done
+
+text {* should be automatic with new version of eqvt-machinery *}
+lemma alpha_eqvt:
+  shows "t \<approx> s \<Longrightarrow> (pi \<bullet> t) \<approx> (pi \<bullet> s)"
+apply(induct rule: alpha.induct)
+apply(simp add: a1)
+apply(simp add: a2)
+apply(simp)
+apply(rule a3)
+apply(rule alpha_gen_atom_eqvt)
+apply(rule rfv_eqvt)
+apply assumption
+done
+
+lemma alpha_refl:
+  shows "t \<approx> t"
+apply(induct t rule: rlam.induct)
+apply(simp add: a1)
+apply(simp add: a2)
+apply(rule a3)
+apply(rule_tac x="0" in exI)
+apply(rule alpha_gen_refl)
+apply(assumption)
+done
+
+lemma alpha_sym:
+  shows "t \<approx> s \<Longrightarrow> s \<approx> t"
+  apply(induct rule: alpha.induct)
+  apply(simp add: a1)
+  apply(simp add: a2)
+  apply(rule a3)
+  apply(erule alpha_gen_compose_sym)
+  apply(erule alpha_eqvt)
+  done
+
+lemma alpha_trans:
+  shows "t1 \<approx> t2 \<Longrightarrow> t2 \<approx> t3 \<Longrightarrow> t1 \<approx> t3"
+apply(induct arbitrary: t3 rule: alpha.induct)
+apply(simp add: a1)
+apply(rotate_tac 4)
+apply(erule alpha.cases)
+apply(simp_all add: a2)
+apply(erule alpha.cases)
+apply(simp_all)
+apply(rule a3)
+apply(erule alpha_gen_compose_trans)
+apply(assumption)
+apply(erule alpha_eqvt)
+done
+
+lemma alpha_equivp:
+  shows "equivp alpha"
+  apply(rule equivpI)
+  unfolding reflp_def symp_def transp_def
+  apply(auto intro: alpha_refl alpha_sym alpha_trans)
+  done
+
+lemma alpha_rfv:
+  shows "t \<approx> s \<Longrightarrow> rfv t = rfv s"
+  apply(induct rule: alpha.induct)
+  apply(simp_all add: alpha_gen.simps)
+  done
+
+quotient_type lam = rlam / alpha
+  by (rule alpha_equivp)
+
+quotient_definition
+  "Var :: name \<Rightarrow> lam"
+is
+  "rVar"
+
+quotient_definition
+   "App :: lam \<Rightarrow> lam \<Rightarrow> lam"
+is
+  "rApp"
+
+quotient_definition
+  "Lam :: name \<Rightarrow> lam \<Rightarrow> lam"
+is
+  "rLam"
+
+quotient_definition
+  "fv :: lam \<Rightarrow> atom set"
+is
+  "rfv"
+
+lemma perm_rsp[quot_respect]:
+  "(op = ===> alpha ===> alpha) permute permute"
+  apply(auto)
+  apply(rule alpha_eqvt)
+  apply(simp)
+  done
+
+lemma rVar_rsp[quot_respect]:
+  "(op = ===> alpha) rVar rVar"
+  by (auto intro: a1)
+
+lemma rApp_rsp[quot_respect]: 
+  "(alpha ===> alpha ===> alpha) rApp rApp"
+  by (auto intro: a2)
+
+lemma rLam_rsp[quot_respect]: 
+  "(op = ===> alpha ===> alpha) rLam rLam"
+  apply(auto)
+  apply(rule a3)
+  apply(rule_tac x="0" in exI)
+  unfolding fresh_star_def 
+  apply(simp add: fresh_star_def fresh_zero_perm alpha_gen.simps)
+  apply(simp add: alpha_rfv)
+  done
+
+lemma rfv_rsp[quot_respect]: 
+  "(alpha ===> op =) rfv rfv"
+apply(simp add: alpha_rfv)
+done
+
+
+section {* lifted theorems *}
+
+lemma lam_induct:
+  "\<lbrakk>\<And>name. P (Var name);
+    \<And>lam1 lam2. \<lbrakk>P lam1; P lam2\<rbrakk> \<Longrightarrow> P (App lam1 lam2);
+    \<And>name lam. P lam \<Longrightarrow> P (Lam name lam)\<rbrakk> 
+    \<Longrightarrow> P lam"
+  apply (lifting rlam.induct)
+  done
+
+instantiation lam :: pt
+begin
+
+quotient_definition
+  "permute_lam :: perm \<Rightarrow> lam \<Rightarrow> lam"
+is
+  "permute :: perm \<Rightarrow> rlam \<Rightarrow> rlam"
+
+lemma permute_lam [simp]:
+  shows "pi \<bullet> Var a = Var (pi \<bullet> a)"
+  and   "pi \<bullet> App t1 t2 = App (pi \<bullet> t1) (pi \<bullet> t2)"
+  and   "pi \<bullet> Lam a t = Lam (pi \<bullet> a) (pi \<bullet> t)"
+apply(lifting permute_rlam.simps)
+done
+
+instance
+apply default
+apply(induct_tac [!] x rule: lam_induct)
+apply(simp_all)
+done
+
+end
+
+lemma fv_lam [simp]: 
+  shows "fv (Var a) = {atom a}"
+  and   "fv (App t1 t2) = fv t1 \<union> fv t2"
+  and   "fv (Lam a t) = fv t - {atom a}"
+apply(lifting rfv_var rfv_app rfv_lam)
+done
+
+lemma fv_eqvt:
+  shows "(p \<bullet> fv t) = fv (p \<bullet> t)"
+apply(lifting rfv_eqvt)
+done
+
+lemma a1: 
+  "a = b \<Longrightarrow> Var a = Var b"
+  by  (lifting a1)
+
+lemma a2: 
+  "\<lbrakk>x = xa; xb = xc\<rbrakk> \<Longrightarrow> App x xb = App xa xc"
+  by  (lifting a2)
+
+lemma alpha_gen_rsp_pre:
+  assumes a5: "\<And>t s. R t s \<Longrightarrow> R (pi \<bullet> t) (pi \<bullet> s)"
+  and     a1: "R s1 t1"
+  and     a2: "R s2 t2"
+  and     a3: "\<And>a b c d. R a b \<Longrightarrow> R c d \<Longrightarrow> R1 a c = R2 b d"
+  and     a4: "\<And>x y. R x y \<Longrightarrow> fv1 x = fv2 y"
+  shows   "(a, s1) \<approx>gen R1 fv1 pi (b, s2) = (a, t1) \<approx>gen R2 fv2 pi (b, t2)"
+apply (simp add: alpha_gen.simps)
+apply (simp only: a4[symmetric, OF a1] a4[symmetric, OF a2])
+apply auto
+apply (subst a3[symmetric])
+apply (rule a5)
+apply (rule a1)
+apply (rule a2)
+apply (assumption)
+apply (subst a3)
+apply (rule a5)
+apply (rule a1)
+apply (rule a2)
+apply (assumption)
+done
+
+lemma [quot_respect]: "(prod_rel op = alpha ===>
+           (alpha ===> alpha ===> op =) ===> (alpha ===> op =) ===> op = ===> prod_rel op = alpha ===> op =)
+           alpha_gen alpha_gen"
+apply simp
+apply clarify
+apply (rule alpha_gen_rsp_pre[of "alpha",OF alpha_eqvt])
+apply auto
+done
+
+(* pi_abs would be also sufficient to prove the next lemma *)
+lemma replam_eqvt: "pi \<bullet> (rep_lam x) = rep_lam (pi \<bullet> x)"
+apply (unfold rep_lam_def)
+sorry
+
+lemma [quot_preserve]: "(prod_fun id rep_lam --->
+           (abs_lam ---> abs_lam ---> id) ---> (abs_lam ---> id) ---> id ---> (prod_fun id rep_lam) ---> id)
+           alpha_gen = alpha_gen"
+apply (simp add: expand_fun_eq alpha_gen.simps Quotient_abs_rep[OF Quotient_lam])
+apply (simp add: replam_eqvt)
+apply (simp only: Quotient_abs_rep[OF Quotient_lam])
+apply auto
+done
+
+
+lemma alpha_prs [quot_preserve]: "(rep_lam ---> rep_lam ---> id) alpha = (op =)"
+apply (simp add: expand_fun_eq)
+apply (simp add: Quotient_rel_rep[OF Quotient_lam])
+done
+
+lemma a3:
+  "\<exists>pi. ({atom a}, t) \<approx>gen (op =) fv pi ({atom b}, s) \<Longrightarrow> Lam a t = Lam b s"
+  apply (unfold alpha_gen)
+  apply (lifting a3[unfolded alpha_gen])
+  done
+
+
+lemma a3_inv:
+  "Lam a t = Lam b s \<Longrightarrow> \<exists>pi. ({atom a}, t) \<approx>gen (op =) fv pi ({atom b}, s)"
+  apply (unfold alpha_gen)
+  apply (lifting a3_inverse[unfolded alpha_gen])
+  done
+
+lemma alpha_cases: 
+  "\<lbrakk>a1 = a2; \<And>a b. \<lbrakk>a1 = Var a; a2 = Var b; a = b\<rbrakk> \<Longrightarrow> P;
+    \<And>t1 t2 s1 s2. \<lbrakk>a1 = App t1 s1; a2 = App t2 s2; t1 = t2; s1 = s2\<rbrakk> \<Longrightarrow> P;
+    \<And>a t b s. \<lbrakk>a1 = Lam a t; a2 = Lam b s; \<exists>pi. ({atom a}, t) \<approx>gen (op =) fv pi ({atom b}, s)\<rbrakk>
+   \<Longrightarrow> P\<rbrakk>
+    \<Longrightarrow> P"
+unfolding alpha_gen
+apply (lifting alpha.cases[unfolded alpha_gen])
+done
+
+(* not sure whether needed *)
+lemma alpha_induct: 
+  "\<lbrakk>qx = qxa; \<And>a b. a = b \<Longrightarrow> qxb (Var a) (Var b);
+    \<And>x xa xb xc. \<lbrakk>x = xa; qxb x xa; xb = xc; qxb xb xc\<rbrakk> \<Longrightarrow> qxb (App x xb) (App xa xc);
+ \<And>a t b s. \<exists>pi. ({atom a}, t) \<approx>gen (\<lambda>x1 x2. x1 = x2 \<and> qxb x1 x2) fv pi ({atom b}, s) \<Longrightarrow> qxb (Lam a t) (Lam b s)\<rbrakk>
+    \<Longrightarrow> qxb qx qxa"
+unfolding alpha_gen by (lifting alpha.induct[unfolded alpha_gen])
+
+(* should they lift automatically *)
+lemma lam_inject [simp]: 
+  shows "(Var a = Var b) = (a = b)"
+  and   "(App t1 t2 = App s1 s2) = (t1 = s1 \<and> t2 = s2)"
+apply(lifting rlam.inject(1) rlam.inject(2))
+apply(regularize)
+prefer 2
+apply(regularize)
+prefer 2
+apply(auto)
+apply(drule alpha.cases)
+apply(simp_all)
+apply(simp add: alpha.a1)
+apply(drule alpha.cases)
+apply(simp_all)
+apply(drule alpha.cases)
+apply(simp_all)
+apply(rule alpha.a2)
+apply(simp_all)
+done
+
+thm a3_inv
+lemma Lam_pseudo_inject:
+  shows "(Lam a t = Lam b s) = (\<exists>pi. ({atom a}, t) \<approx>gen (op =) fv pi ({atom b}, s))"
+apply(rule iffI)
+apply(rule a3_inv)
+apply(assumption)
+apply(rule a3)
+apply(assumption)
+done
+
+lemma rlam_distinct:
+  shows "\<not>(rVar nam \<approx> rApp rlam1' rlam2')"
+  and   "\<not>(rApp rlam1' rlam2' \<approx> rVar nam)"
+  and   "\<not>(rVar nam \<approx> rLam nam' rlam')"
+  and   "\<not>(rLam nam' rlam' \<approx> rVar nam)"
+  and   "\<not>(rApp rlam1 rlam2 \<approx> rLam nam' rlam')"
+  and   "\<not>(rLam nam' rlam' \<approx> rApp rlam1 rlam2)"
+apply auto
+apply (erule alpha.cases)
+apply (simp_all only: rlam.distinct)
+apply (erule alpha.cases)
+apply (simp_all only: rlam.distinct)
+apply (erule alpha.cases)
+apply (simp_all only: rlam.distinct)
+apply (erule alpha.cases)
+apply (simp_all only: rlam.distinct)
+apply (erule alpha.cases)
+apply (simp_all only: rlam.distinct)
+apply (erule alpha.cases)
+apply (simp_all only: rlam.distinct)
+done
+
+lemma lam_distinct[simp]:
+  shows "Var nam \<noteq> App lam1' lam2'"
+  and   "App lam1' lam2' \<noteq> Var nam"
+  and   "Var nam \<noteq> Lam nam' lam'"
+  and   "Lam nam' lam' \<noteq> Var nam"
+  and   "App lam1 lam2 \<noteq> Lam nam' lam'"
+  and   "Lam nam' lam' \<noteq> App lam1 lam2"
+apply(lifting rlam_distinct(1) rlam_distinct(2) rlam_distinct(3) rlam_distinct(4) rlam_distinct(5) rlam_distinct(6))
+done
+
+lemma var_supp1:
+  shows "(supp (Var a)) = (supp a)"
+  apply (simp add: supp_def)
+  done
+
+lemma var_supp:
+  shows "(supp (Var a)) = {a:::name}"
+  using var_supp1 by (simp add: supp_at_base)
+
+lemma app_supp:
+  shows "supp (App t1 t2) = (supp t1) \<union> (supp t2)"
+apply(simp only: supp_def lam_inject)
+apply(simp add: Collect_imp_eq Collect_neg_eq)
+done
+
+(* supp for lam *)
+lemma lam_supp1:
+  shows "(supp (atom x, t)) supports (Lam x t) "
+apply(simp add: supports_def)
+apply(fold fresh_def)
+apply(simp add: fresh_Pair swap_fresh_fresh)
+apply(clarify)
+apply(subst swap_at_base_simps(3))
+apply(simp_all add: fresh_atom)
+done
+
+lemma lam_fsupp1:
+  assumes a: "finite (supp t)"
+  shows "finite (supp (Lam x t))"
+apply(rule supports_finite)
+apply(rule lam_supp1)
+apply(simp add: a supp_Pair supp_atom)
+done
+
+instance lam :: fs
+apply(default)
+apply(induct_tac x rule: lam_induct)
+apply(simp add: var_supp)
+apply(simp add: app_supp)
+apply(simp add: lam_fsupp1)
+done
+
+lemma supp_fv:
+  shows "supp t = fv t"
+apply(induct t rule: lam_induct)
+apply(simp add: var_supp)
+apply(simp add: app_supp)
+apply(subgoal_tac "supp (Lam name lam) = supp (Abs {atom name} lam)")
+apply(simp add: supp_Abs)
+apply(simp (no_asm) add: supp_def permute_set_eq atom_eqvt)
+apply(simp add: Lam_pseudo_inject)
+apply(simp add: Abs_eq_iff)
+apply(simp add: alpha_gen.simps)
+apply(simp add: supp_eqvt[symmetric] fv_eqvt[symmetric])
+done
+
+lemma lam_supp2:
+  shows "supp (Lam x t) = supp (Abs {atom x} t)"
+apply(simp add: supp_def permute_set_eq atom_eqvt)
+apply(simp add: Lam_pseudo_inject)
+apply(simp add: Abs_eq_iff)
+apply(simp add: alpha_gen  supp_fv)
+done
+
+lemma lam_supp:
+  shows "supp (Lam x t) = ((supp t) - {atom x})"
+apply(simp add: lam_supp2)
+apply(simp add: supp_Abs)
+done
+
+lemma fresh_lam:
+  "(atom a \<sharp> Lam b t) \<longleftrightarrow> (a = b) \<or> (a \<noteq> b \<and> atom a \<sharp> t)"
+apply(simp add: fresh_def)
+apply(simp add: lam_supp)
+apply(auto)
+done
+
+lemma lam_induct_strong:
+  fixes a::"'a::fs"
+  assumes a1: "\<And>name b. P b (Var name)"
+  and     a2: "\<And>lam1 lam2 b. \<lbrakk>\<And>c. P c lam1; \<And>c. P c lam2\<rbrakk> \<Longrightarrow> P b (App lam1 lam2)"
+  and     a3: "\<And>name lam b. \<lbrakk>\<And>c. P c lam; (atom name) \<sharp> b\<rbrakk> \<Longrightarrow> P b (Lam name lam)"
+  shows "P a lam"
+proof -
+  have "\<And>pi a. P a (pi \<bullet> lam)" 
+  proof (induct lam rule: lam_induct)
+    case (1 name pi)
+    show "P a (pi \<bullet> Var name)"
+      apply (simp)
+      apply (rule a1)
+      done
+  next
+    case (2 lam1 lam2 pi)
+    have b1: "\<And>pi a. P a (pi \<bullet> lam1)" by fact
+    have b2: "\<And>pi a. P a (pi \<bullet> lam2)" by fact
+    show "P a (pi \<bullet> App lam1 lam2)"
+      apply (simp)
+      apply (rule a2)
+      apply (rule b1)
+      apply (rule b2)
+      done
+  next
+    case (3 name lam pi a)
+    have b: "\<And>pi a. P a (pi \<bullet> lam)" by fact
+    obtain c::name where fr: "atom c\<sharp>(a, pi\<bullet>name, pi\<bullet>lam)"
+      apply(rule obtain_atom)
+      apply(auto)
+      sorry
+    from b fr have p: "P a (Lam c (((c \<leftrightarrow> (pi \<bullet> name)) + pi)\<bullet>lam))" 
+      apply -
+      apply(rule a3)
+      apply(blast)
+      apply(simp add: fresh_Pair)
+      done
+    have eq: "(atom c \<rightleftharpoons> atom (pi\<bullet>name)) \<bullet> Lam (pi \<bullet> name) (pi \<bullet> lam) = Lam (pi \<bullet> name) (pi \<bullet> lam)"
+      apply(rule swap_fresh_fresh)
+      using fr
+      apply(simp add: fresh_lam fresh_Pair)
+      apply(simp add: fresh_lam fresh_Pair)
+      done
+    show "P a (pi \<bullet> Lam name lam)" 
+      apply (simp)
+      apply(subst eq[symmetric])
+      using p
+      apply(simp only: permute_lam)
+      apply(simp add: flip_def)
+      done
+  qed
+  then have "P a (0 \<bullet> lam)" by blast
+  then show "P a lam" by simp 
+qed
+
+
+lemma var_fresh:
+  fixes a::"name"
+  shows "(atom a \<sharp> (Var b)) = (atom a \<sharp> b)"
+  apply(simp add: fresh_def)
+  apply(simp add: var_supp1)
+  done
+
+
+
+end
+