--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Manual/LamEx2.thy Tue Mar 23 08:20:13 2010 +0100
@@ -0,0 +1,563 @@
+theory LamEx
+imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs"
+begin
+
+atom_decl name
+
+datatype rlam =
+ rVar "name"
+| rApp "rlam" "rlam"
+| rLam "name" "rlam"
+
+fun
+ rfv :: "rlam \<Rightarrow> atom set"
+where
+ rfv_var: "rfv (rVar a) = {atom a}"
+| rfv_app: "rfv (rApp t1 t2) = (rfv t1) \<union> (rfv t2)"
+| rfv_lam: "rfv (rLam a t) = (rfv t) - {atom a}"
+
+instantiation rlam :: pt
+begin
+
+primrec
+ permute_rlam
+where
+ "permute_rlam pi (rVar a) = rVar (pi \<bullet> a)"
+| "permute_rlam pi (rApp t1 t2) = rApp (permute_rlam pi t1) (permute_rlam pi t2)"
+| "permute_rlam pi (rLam a t) = rLam (pi \<bullet> a) (permute_rlam pi t)"
+
+instance
+apply default
+apply(induct_tac [!] x)
+apply(simp_all)
+done
+
+end
+
+instantiation rlam :: fs
+begin
+
+lemma neg_conj:
+ "\<not>(P \<and> Q) \<longleftrightarrow> (\<not>P) \<or> (\<not>Q)"
+ by simp
+
+instance
+apply default
+apply(induct_tac x)
+(* var case *)
+apply(simp add: supp_def)
+apply(fold supp_def)[1]
+apply(simp add: supp_at_base)
+(* app case *)
+apply(simp only: supp_def)
+apply(simp only: permute_rlam.simps)
+apply(simp only: rlam.inject)
+apply(simp only: neg_conj)
+apply(simp only: Collect_disj_eq)
+apply(simp only: infinite_Un)
+apply(simp only: Collect_disj_eq)
+apply(simp)
+(* lam case *)
+apply(simp only: supp_def)
+apply(simp only: permute_rlam.simps)
+apply(simp only: rlam.inject)
+apply(simp only: neg_conj)
+apply(simp only: Collect_disj_eq)
+apply(simp only: infinite_Un)
+apply(simp only: Collect_disj_eq)
+apply(simp)
+apply(fold supp_def)[1]
+apply(simp add: supp_at_base)
+done
+
+end
+
+
+(* for the eqvt proof of the alpha-equivalence *)
+declare permute_rlam.simps[eqvt]
+
+lemma rfv_eqvt[eqvt]:
+ shows "(pi\<bullet>rfv t) = rfv (pi\<bullet>t)"
+apply(induct t)
+apply(simp_all)
+apply(simp add: permute_set_eq atom_eqvt)
+apply(simp add: union_eqvt)
+apply(simp add: Diff_eqvt)
+apply(simp add: permute_set_eq atom_eqvt)
+done
+
+inductive
+ alpha :: "rlam \<Rightarrow> rlam \<Rightarrow> bool" ("_ \<approx> _" [100, 100] 100)
+where
+ a1: "a = b \<Longrightarrow> (rVar a) \<approx> (rVar b)"
+| a2: "\<lbrakk>t1 \<approx> t2; s1 \<approx> s2\<rbrakk> \<Longrightarrow> rApp t1 s1 \<approx> rApp t2 s2"
+| a3: "\<exists>pi. (({atom a}, t) \<approx>gen alpha rfv pi ({atom b}, s)) \<Longrightarrow> rLam a t \<approx> rLam b s"
+print_theorems
+thm alpha.induct
+
+lemma a3_inverse:
+ assumes "rLam a t \<approx> rLam b s"
+ shows "\<exists>pi. (({atom a}, t) \<approx>gen alpha rfv pi ({atom b}, s))"
+using assms
+apply(erule_tac alpha.cases)
+apply(auto)
+done
+
+text {* should be automatic with new version of eqvt-machinery *}
+lemma alpha_eqvt:
+ shows "t \<approx> s \<Longrightarrow> (pi \<bullet> t) \<approx> (pi \<bullet> s)"
+apply(induct rule: alpha.induct)
+apply(simp add: a1)
+apply(simp add: a2)
+apply(simp)
+apply(rule a3)
+apply(rule alpha_gen_atom_eqvt)
+apply(rule rfv_eqvt)
+apply assumption
+done
+
+lemma alpha_refl:
+ shows "t \<approx> t"
+apply(induct t rule: rlam.induct)
+apply(simp add: a1)
+apply(simp add: a2)
+apply(rule a3)
+apply(rule_tac x="0" in exI)
+apply(rule alpha_gen_refl)
+apply(assumption)
+done
+
+lemma alpha_sym:
+ shows "t \<approx> s \<Longrightarrow> s \<approx> t"
+ apply(induct rule: alpha.induct)
+ apply(simp add: a1)
+ apply(simp add: a2)
+ apply(rule a3)
+ apply(erule alpha_gen_compose_sym)
+ apply(erule alpha_eqvt)
+ done
+
+lemma alpha_trans:
+ shows "t1 \<approx> t2 \<Longrightarrow> t2 \<approx> t3 \<Longrightarrow> t1 \<approx> t3"
+apply(induct arbitrary: t3 rule: alpha.induct)
+apply(simp add: a1)
+apply(rotate_tac 4)
+apply(erule alpha.cases)
+apply(simp_all add: a2)
+apply(erule alpha.cases)
+apply(simp_all)
+apply(rule a3)
+apply(erule alpha_gen_compose_trans)
+apply(assumption)
+apply(erule alpha_eqvt)
+done
+
+lemma alpha_equivp:
+ shows "equivp alpha"
+ apply(rule equivpI)
+ unfolding reflp_def symp_def transp_def
+ apply(auto intro: alpha_refl alpha_sym alpha_trans)
+ done
+
+lemma alpha_rfv:
+ shows "t \<approx> s \<Longrightarrow> rfv t = rfv s"
+ apply(induct rule: alpha.induct)
+ apply(simp_all add: alpha_gen.simps)
+ done
+
+quotient_type lam = rlam / alpha
+ by (rule alpha_equivp)
+
+quotient_definition
+ "Var :: name \<Rightarrow> lam"
+is
+ "rVar"
+
+quotient_definition
+ "App :: lam \<Rightarrow> lam \<Rightarrow> lam"
+is
+ "rApp"
+
+quotient_definition
+ "Lam :: name \<Rightarrow> lam \<Rightarrow> lam"
+is
+ "rLam"
+
+quotient_definition
+ "fv :: lam \<Rightarrow> atom set"
+is
+ "rfv"
+
+lemma perm_rsp[quot_respect]:
+ "(op = ===> alpha ===> alpha) permute permute"
+ apply(auto)
+ apply(rule alpha_eqvt)
+ apply(simp)
+ done
+
+lemma rVar_rsp[quot_respect]:
+ "(op = ===> alpha) rVar rVar"
+ by (auto intro: a1)
+
+lemma rApp_rsp[quot_respect]:
+ "(alpha ===> alpha ===> alpha) rApp rApp"
+ by (auto intro: a2)
+
+lemma rLam_rsp[quot_respect]:
+ "(op = ===> alpha ===> alpha) rLam rLam"
+ apply(auto)
+ apply(rule a3)
+ apply(rule_tac x="0" in exI)
+ unfolding fresh_star_def
+ apply(simp add: fresh_star_def fresh_zero_perm alpha_gen.simps)
+ apply(simp add: alpha_rfv)
+ done
+
+lemma rfv_rsp[quot_respect]:
+ "(alpha ===> op =) rfv rfv"
+apply(simp add: alpha_rfv)
+done
+
+
+section {* lifted theorems *}
+
+lemma lam_induct:
+ "\<lbrakk>\<And>name. P (Var name);
+ \<And>lam1 lam2. \<lbrakk>P lam1; P lam2\<rbrakk> \<Longrightarrow> P (App lam1 lam2);
+ \<And>name lam. P lam \<Longrightarrow> P (Lam name lam)\<rbrakk>
+ \<Longrightarrow> P lam"
+ apply (lifting rlam.induct)
+ done
+
+instantiation lam :: pt
+begin
+
+quotient_definition
+ "permute_lam :: perm \<Rightarrow> lam \<Rightarrow> lam"
+is
+ "permute :: perm \<Rightarrow> rlam \<Rightarrow> rlam"
+
+lemma permute_lam [simp]:
+ shows "pi \<bullet> Var a = Var (pi \<bullet> a)"
+ and "pi \<bullet> App t1 t2 = App (pi \<bullet> t1) (pi \<bullet> t2)"
+ and "pi \<bullet> Lam a t = Lam (pi \<bullet> a) (pi \<bullet> t)"
+apply(lifting permute_rlam.simps)
+done
+
+instance
+apply default
+apply(induct_tac [!] x rule: lam_induct)
+apply(simp_all)
+done
+
+end
+
+lemma fv_lam [simp]:
+ shows "fv (Var a) = {atom a}"
+ and "fv (App t1 t2) = fv t1 \<union> fv t2"
+ and "fv (Lam a t) = fv t - {atom a}"
+apply(lifting rfv_var rfv_app rfv_lam)
+done
+
+lemma fv_eqvt:
+ shows "(p \<bullet> fv t) = fv (p \<bullet> t)"
+apply(lifting rfv_eqvt)
+done
+
+lemma a1:
+ "a = b \<Longrightarrow> Var a = Var b"
+ by (lifting a1)
+
+lemma a2:
+ "\<lbrakk>x = xa; xb = xc\<rbrakk> \<Longrightarrow> App x xb = App xa xc"
+ by (lifting a2)
+
+lemma alpha_gen_rsp_pre:
+ assumes a5: "\<And>t s. R t s \<Longrightarrow> R (pi \<bullet> t) (pi \<bullet> s)"
+ and a1: "R s1 t1"
+ and a2: "R s2 t2"
+ and a3: "\<And>a b c d. R a b \<Longrightarrow> R c d \<Longrightarrow> R1 a c = R2 b d"
+ and a4: "\<And>x y. R x y \<Longrightarrow> fv1 x = fv2 y"
+ shows "(a, s1) \<approx>gen R1 fv1 pi (b, s2) = (a, t1) \<approx>gen R2 fv2 pi (b, t2)"
+apply (simp add: alpha_gen.simps)
+apply (simp only: a4[symmetric, OF a1] a4[symmetric, OF a2])
+apply auto
+apply (subst a3[symmetric])
+apply (rule a5)
+apply (rule a1)
+apply (rule a2)
+apply (assumption)
+apply (subst a3)
+apply (rule a5)
+apply (rule a1)
+apply (rule a2)
+apply (assumption)
+done
+
+lemma [quot_respect]: "(prod_rel op = alpha ===>
+ (alpha ===> alpha ===> op =) ===> (alpha ===> op =) ===> op = ===> prod_rel op = alpha ===> op =)
+ alpha_gen alpha_gen"
+apply simp
+apply clarify
+apply (rule alpha_gen_rsp_pre[of "alpha",OF alpha_eqvt])
+apply auto
+done
+
+(* pi_abs would be also sufficient to prove the next lemma *)
+lemma replam_eqvt: "pi \<bullet> (rep_lam x) = rep_lam (pi \<bullet> x)"
+apply (unfold rep_lam_def)
+sorry
+
+lemma [quot_preserve]: "(prod_fun id rep_lam --->
+ (abs_lam ---> abs_lam ---> id) ---> (abs_lam ---> id) ---> id ---> (prod_fun id rep_lam) ---> id)
+ alpha_gen = alpha_gen"
+apply (simp add: expand_fun_eq alpha_gen.simps Quotient_abs_rep[OF Quotient_lam])
+apply (simp add: replam_eqvt)
+apply (simp only: Quotient_abs_rep[OF Quotient_lam])
+apply auto
+done
+
+
+lemma alpha_prs [quot_preserve]: "(rep_lam ---> rep_lam ---> id) alpha = (op =)"
+apply (simp add: expand_fun_eq)
+apply (simp add: Quotient_rel_rep[OF Quotient_lam])
+done
+
+lemma a3:
+ "\<exists>pi. ({atom a}, t) \<approx>gen (op =) fv pi ({atom b}, s) \<Longrightarrow> Lam a t = Lam b s"
+ apply (unfold alpha_gen)
+ apply (lifting a3[unfolded alpha_gen])
+ done
+
+
+lemma a3_inv:
+ "Lam a t = Lam b s \<Longrightarrow> \<exists>pi. ({atom a}, t) \<approx>gen (op =) fv pi ({atom b}, s)"
+ apply (unfold alpha_gen)
+ apply (lifting a3_inverse[unfolded alpha_gen])
+ done
+
+lemma alpha_cases:
+ "\<lbrakk>a1 = a2; \<And>a b. \<lbrakk>a1 = Var a; a2 = Var b; a = b\<rbrakk> \<Longrightarrow> P;
+ \<And>t1 t2 s1 s2. \<lbrakk>a1 = App t1 s1; a2 = App t2 s2; t1 = t2; s1 = s2\<rbrakk> \<Longrightarrow> P;
+ \<And>a t b s. \<lbrakk>a1 = Lam a t; a2 = Lam b s; \<exists>pi. ({atom a}, t) \<approx>gen (op =) fv pi ({atom b}, s)\<rbrakk>
+ \<Longrightarrow> P\<rbrakk>
+ \<Longrightarrow> P"
+unfolding alpha_gen
+apply (lifting alpha.cases[unfolded alpha_gen])
+done
+
+(* not sure whether needed *)
+lemma alpha_induct:
+ "\<lbrakk>qx = qxa; \<And>a b. a = b \<Longrightarrow> qxb (Var a) (Var b);
+ \<And>x xa xb xc. \<lbrakk>x = xa; qxb x xa; xb = xc; qxb xb xc\<rbrakk> \<Longrightarrow> qxb (App x xb) (App xa xc);
+ \<And>a t b s. \<exists>pi. ({atom a}, t) \<approx>gen (\<lambda>x1 x2. x1 = x2 \<and> qxb x1 x2) fv pi ({atom b}, s) \<Longrightarrow> qxb (Lam a t) (Lam b s)\<rbrakk>
+ \<Longrightarrow> qxb qx qxa"
+unfolding alpha_gen by (lifting alpha.induct[unfolded alpha_gen])
+
+(* should they lift automatically *)
+lemma lam_inject [simp]:
+ shows "(Var a = Var b) = (a = b)"
+ and "(App t1 t2 = App s1 s2) = (t1 = s1 \<and> t2 = s2)"
+apply(lifting rlam.inject(1) rlam.inject(2))
+apply(regularize)
+prefer 2
+apply(regularize)
+prefer 2
+apply(auto)
+apply(drule alpha.cases)
+apply(simp_all)
+apply(simp add: alpha.a1)
+apply(drule alpha.cases)
+apply(simp_all)
+apply(drule alpha.cases)
+apply(simp_all)
+apply(rule alpha.a2)
+apply(simp_all)
+done
+
+thm a3_inv
+lemma Lam_pseudo_inject:
+ shows "(Lam a t = Lam b s) = (\<exists>pi. ({atom a}, t) \<approx>gen (op =) fv pi ({atom b}, s))"
+apply(rule iffI)
+apply(rule a3_inv)
+apply(assumption)
+apply(rule a3)
+apply(assumption)
+done
+
+lemma rlam_distinct:
+ shows "\<not>(rVar nam \<approx> rApp rlam1' rlam2')"
+ and "\<not>(rApp rlam1' rlam2' \<approx> rVar nam)"
+ and "\<not>(rVar nam \<approx> rLam nam' rlam')"
+ and "\<not>(rLam nam' rlam' \<approx> rVar nam)"
+ and "\<not>(rApp rlam1 rlam2 \<approx> rLam nam' rlam')"
+ and "\<not>(rLam nam' rlam' \<approx> rApp rlam1 rlam2)"
+apply auto
+apply (erule alpha.cases)
+apply (simp_all only: rlam.distinct)
+apply (erule alpha.cases)
+apply (simp_all only: rlam.distinct)
+apply (erule alpha.cases)
+apply (simp_all only: rlam.distinct)
+apply (erule alpha.cases)
+apply (simp_all only: rlam.distinct)
+apply (erule alpha.cases)
+apply (simp_all only: rlam.distinct)
+apply (erule alpha.cases)
+apply (simp_all only: rlam.distinct)
+done
+
+lemma lam_distinct[simp]:
+ shows "Var nam \<noteq> App lam1' lam2'"
+ and "App lam1' lam2' \<noteq> Var nam"
+ and "Var nam \<noteq> Lam nam' lam'"
+ and "Lam nam' lam' \<noteq> Var nam"
+ and "App lam1 lam2 \<noteq> Lam nam' lam'"
+ and "Lam nam' lam' \<noteq> App lam1 lam2"
+apply(lifting rlam_distinct(1) rlam_distinct(2) rlam_distinct(3) rlam_distinct(4) rlam_distinct(5) rlam_distinct(6))
+done
+
+lemma var_supp1:
+ shows "(supp (Var a)) = (supp a)"
+ apply (simp add: supp_def)
+ done
+
+lemma var_supp:
+ shows "(supp (Var a)) = {a:::name}"
+ using var_supp1 by (simp add: supp_at_base)
+
+lemma app_supp:
+ shows "supp (App t1 t2) = (supp t1) \<union> (supp t2)"
+apply(simp only: supp_def lam_inject)
+apply(simp add: Collect_imp_eq Collect_neg_eq)
+done
+
+(* supp for lam *)
+lemma lam_supp1:
+ shows "(supp (atom x, t)) supports (Lam x t) "
+apply(simp add: supports_def)
+apply(fold fresh_def)
+apply(simp add: fresh_Pair swap_fresh_fresh)
+apply(clarify)
+apply(subst swap_at_base_simps(3))
+apply(simp_all add: fresh_atom)
+done
+
+lemma lam_fsupp1:
+ assumes a: "finite (supp t)"
+ shows "finite (supp (Lam x t))"
+apply(rule supports_finite)
+apply(rule lam_supp1)
+apply(simp add: a supp_Pair supp_atom)
+done
+
+instance lam :: fs
+apply(default)
+apply(induct_tac x rule: lam_induct)
+apply(simp add: var_supp)
+apply(simp add: app_supp)
+apply(simp add: lam_fsupp1)
+done
+
+lemma supp_fv:
+ shows "supp t = fv t"
+apply(induct t rule: lam_induct)
+apply(simp add: var_supp)
+apply(simp add: app_supp)
+apply(subgoal_tac "supp (Lam name lam) = supp (Abs {atom name} lam)")
+apply(simp add: supp_Abs)
+apply(simp (no_asm) add: supp_def permute_set_eq atom_eqvt)
+apply(simp add: Lam_pseudo_inject)
+apply(simp add: Abs_eq_iff)
+apply(simp add: alpha_gen.simps)
+apply(simp add: supp_eqvt[symmetric] fv_eqvt[symmetric])
+done
+
+lemma lam_supp2:
+ shows "supp (Lam x t) = supp (Abs {atom x} t)"
+apply(simp add: supp_def permute_set_eq atom_eqvt)
+apply(simp add: Lam_pseudo_inject)
+apply(simp add: Abs_eq_iff)
+apply(simp add: alpha_gen supp_fv)
+done
+
+lemma lam_supp:
+ shows "supp (Lam x t) = ((supp t) - {atom x})"
+apply(simp add: lam_supp2)
+apply(simp add: supp_Abs)
+done
+
+lemma fresh_lam:
+ "(atom a \<sharp> Lam b t) \<longleftrightarrow> (a = b) \<or> (a \<noteq> b \<and> atom a \<sharp> t)"
+apply(simp add: fresh_def)
+apply(simp add: lam_supp)
+apply(auto)
+done
+
+lemma lam_induct_strong:
+ fixes a::"'a::fs"
+ assumes a1: "\<And>name b. P b (Var name)"
+ and a2: "\<And>lam1 lam2 b. \<lbrakk>\<And>c. P c lam1; \<And>c. P c lam2\<rbrakk> \<Longrightarrow> P b (App lam1 lam2)"
+ and a3: "\<And>name lam b. \<lbrakk>\<And>c. P c lam; (atom name) \<sharp> b\<rbrakk> \<Longrightarrow> P b (Lam name lam)"
+ shows "P a lam"
+proof -
+ have "\<And>pi a. P a (pi \<bullet> lam)"
+ proof (induct lam rule: lam_induct)
+ case (1 name pi)
+ show "P a (pi \<bullet> Var name)"
+ apply (simp)
+ apply (rule a1)
+ done
+ next
+ case (2 lam1 lam2 pi)
+ have b1: "\<And>pi a. P a (pi \<bullet> lam1)" by fact
+ have b2: "\<And>pi a. P a (pi \<bullet> lam2)" by fact
+ show "P a (pi \<bullet> App lam1 lam2)"
+ apply (simp)
+ apply (rule a2)
+ apply (rule b1)
+ apply (rule b2)
+ done
+ next
+ case (3 name lam pi a)
+ have b: "\<And>pi a. P a (pi \<bullet> lam)" by fact
+ obtain c::name where fr: "atom c\<sharp>(a, pi\<bullet>name, pi\<bullet>lam)"
+ apply(rule obtain_atom)
+ apply(auto)
+ sorry
+ from b fr have p: "P a (Lam c (((c \<leftrightarrow> (pi \<bullet> name)) + pi)\<bullet>lam))"
+ apply -
+ apply(rule a3)
+ apply(blast)
+ apply(simp add: fresh_Pair)
+ done
+ have eq: "(atom c \<rightleftharpoons> atom (pi\<bullet>name)) \<bullet> Lam (pi \<bullet> name) (pi \<bullet> lam) = Lam (pi \<bullet> name) (pi \<bullet> lam)"
+ apply(rule swap_fresh_fresh)
+ using fr
+ apply(simp add: fresh_lam fresh_Pair)
+ apply(simp add: fresh_lam fresh_Pair)
+ done
+ show "P a (pi \<bullet> Lam name lam)"
+ apply (simp)
+ apply(subst eq[symmetric])
+ using p
+ apply(simp only: permute_lam)
+ apply(simp add: flip_def)
+ done
+ qed
+ then have "P a (0 \<bullet> lam)" by blast
+ then show "P a lam" by simp
+qed
+
+
+lemma var_fresh:
+ fixes a::"name"
+ shows "(atom a \<sharp> (Var b)) = (atom a \<sharp> b)"
+ apply(simp add: fresh_def)
+ apply(simp add: var_supp1)
+ done
+
+
+
+end
+