--- a/Paper/Paper.thy Wed Oct 06 21:32:44 2010 +0100
+++ b/Paper/Paper.thy Thu Oct 07 14:23:32 2010 +0900
@@ -1952,7 +1952,7 @@
\end{array}}
\end{equation}
%
- These cases lemmas have a premise for auch term-constructor.
+ These cases lemmas have a premise for each term-constructor.
The idea behind them is that we can conclude with a property @{text "P\<^bsub>trm\<^esub>"},
provided we can show that this property holds if we substitute for @{text "t"} all
possible term-constructors.
@@ -2006,7 +2006,7 @@
@{text "(set (bn (q \<bullet>\<^bsub>bn\<^esub> p)) \<FRESH>\<^sup>* c"} holds and such that @{text "[q \<bullet>\<^bsub>bn\<^esub> p]\<^bsub>list\<^esub>.(q \<bullet> t)"}
is equal to @{text "[p]\<^bsub>list\<^esub>. t"}. We can also show that @{text "(q \<bullet>\<^bsub>bn\<^esub> p) \<approx>\<^bsub>bn\<^esub> p"}. But
these facts establish that @{text "Let (q \<bullet>\<^bsub>bn\<^esub> p) (p \<bullet> t) = Let p t"}, as we need. This
- completes the interesting cases in \eqref{letpat} for stregthening the induction
+ completes the interesting cases in \eqref{letpat} for strengthening the induction
principles.