# HG changeset patch # User Cezary Kaliszyk # Date 1286429012 -32400 # Node ID 06a8f782b2c14026409fee699eddac0bd6c308f0 # Parent 69780ae147f58193aedd8f840b6b3b84fb321ecb minor diff -r 69780ae147f5 -r 06a8f782b2c1 Paper/Paper.thy --- a/Paper/Paper.thy Wed Oct 06 21:32:44 2010 +0100 +++ b/Paper/Paper.thy Thu Oct 07 14:23:32 2010 +0900 @@ -1952,7 +1952,7 @@ \end{array}} \end{equation} % - These cases lemmas have a premise for auch term-constructor. + These cases lemmas have a premise for each term-constructor. The idea behind them is that we can conclude with a property @{text "P\<^bsub>trm\<^esub>"}, provided we can show that this property holds if we substitute for @{text "t"} all possible term-constructors. @@ -2006,7 +2006,7 @@ @{text "(set (bn (q \\<^bsub>bn\<^esub> p)) \\<^sup>* c"} holds and such that @{text "[q \\<^bsub>bn\<^esub> p]\<^bsub>list\<^esub>.(q \ t)"} is equal to @{text "[p]\<^bsub>list\<^esub>. t"}. We can also show that @{text "(q \\<^bsub>bn\<^esub> p) \\<^bsub>bn\<^esub> p"}. But these facts establish that @{text "Let (q \\<^bsub>bn\<^esub> p) (p \ t) = Let p t"}, as we need. This - completes the interesting cases in \eqref{letpat} for stregthening the induction + completes the interesting cases in \eqref{letpat} for strengthening the induction principles.