supp-proofs work except for CoreHaskell and Modules (induct is probably not finding the correct instance)
(* Title: nominal_dt_alpha.ML
Author: Christian Urban
Author: Cezary Kaliszyk
Deriving support propoerties for the quotient types.
*)
signature NOMINAL_DT_SUPP =
sig
val prove_supports: Proof.context -> thm list -> term list -> thm list
val prove_fsupp: Proof.context -> typ list -> thm -> thm list -> thm list
val fs_instance: typ list -> string list -> (string * sort) list -> thm list ->
local_theory -> local_theory
val prove_fv_supp: typ list -> term list -> term list -> term list -> thm list -> thm list ->
thm list -> thm list -> thm list -> thm list -> bclause list list -> Proof.context -> thm list
end
structure Nominal_Dt_Supp: NOMINAL_DT_SUPP =
struct
fun lookup xs x = the (AList.lookup (op=) xs x)
(* supports lemmas for constructors *)
fun mk_supports_goal ctxt qtrm =
let
val vs = fresh_args ctxt qtrm
val rhs = list_comb (qtrm, vs)
val lhs = fold (curry HOLogic.mk_prod) vs @{term "()"}
|> mk_supp
in
mk_supports lhs rhs
|> HOLogic.mk_Trueprop
end
fun supports_tac ctxt perm_simps =
let
val ss1 = HOL_basic_ss addsimps @{thms supports_def fresh_def[symmetric]}
val ss2 = HOL_ss addsimps @{thms swap_fresh_fresh fresh_Pair}
in
EVERY' [ simp_tac ss1,
Nominal_Permeq.eqvt_strict_tac ctxt perm_simps [],
simp_tac ss2 ]
end
fun prove_supports_single ctxt perm_simps qtrm =
let
val goal = mk_supports_goal ctxt qtrm
val ctxt' = Variable.auto_fixes goal ctxt
in
Goal.prove ctxt' [] [] goal
(K (HEADGOAL (supports_tac ctxt perm_simps)))
|> singleton (ProofContext.export ctxt' ctxt)
end
fun prove_supports ctxt perm_simps qtrms =
map (prove_supports_single ctxt perm_simps) qtrms
(* finite supp lemmas for qtypes *)
fun prove_fsupp ctxt qtys qinduct qsupports_thms =
let
val (vs, ctxt') = Variable.variant_fixes (replicate (length qtys) "x") ctxt
val goals = vs ~~ qtys
|> map Free
|> map (mk_finite o mk_supp)
|> foldr1 (HOLogic.mk_conj)
|> HOLogic.mk_Trueprop
val tac =
EVERY' [ rtac @{thm supports_finite},
resolve_tac qsupports_thms,
asm_simp_tac (HOL_ss addsimps @{thms finite_supp supp_Pair finite_Un}) ]
in
Goal.prove ctxt' [] [] goals
(K (HEADGOAL (rtac qinduct THEN_ALL_NEW tac)))
|> singleton (ProofContext.export ctxt' ctxt)
|> Datatype_Aux.split_conj_thm
|> map zero_var_indexes
end
(* finite supp instances *)
fun fs_instance qtys qfull_ty_names tvs qfsupp_thms lthy =
let
val lthy1 =
lthy
|> Local_Theory.exit_global
|> Class.instantiation (qfull_ty_names, tvs, @{sort fs})
fun tac _ =
Class.intro_classes_tac [] THEN
(ALLGOALS (resolve_tac qfsupp_thms))
in
lthy1
|> Class.prove_instantiation_exit tac
|> Named_Target.theory_init
end
(* proves that fv and fv_bn equals supp *)
fun mk_fvs_goals ty_arg_map fv =
let
val arg = fastype_of fv
|> domain_type
|> lookup ty_arg_map
in
(fv $ arg, mk_supp arg)
|> HOLogic.mk_eq
|> HOLogic.mk_Trueprop
end
fun mk_fv_bns_goals ty_arg_map fv_bn alpha_bn =
let
val arg = fastype_of fv_bn
|> domain_type
|> lookup ty_arg_map
in
(fv_bn $ arg, mk_supp_rel alpha_bn arg)
|> HOLogic.mk_eq
|> HOLogic.mk_Trueprop
end
fun add_ss thms =
HOL_basic_ss addsimps thms
fun symmetric thms =
map (fn thm => thm RS @{thm sym}) thms
val supp_abs_set = @{thms supp_abs(1)[symmetric]}
val supp_abs_res = @{thms supp_abs(2)[symmetric]}
val supp_abs_lst = @{thms supp_abs(3)[symmetric]}
fun mk_supp_abs ctxt (BC (Set, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_abs_set
| mk_supp_abs ctxt (BC (Res, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_abs_res
| mk_supp_abs ctxt (BC (Lst, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_abs_lst
fun mk_supp_abs_tac ctxt [] = []
| mk_supp_abs_tac ctxt (BC (_, [], _)::xs) = mk_supp_abs_tac ctxt xs
| mk_supp_abs_tac ctxt (bc::xs) = (DETERM o mk_supp_abs ctxt bc)::mk_supp_abs_tac ctxt xs
fun mk_bn_supp_abs_tac thm =
(prop_of thm)
|> HOLogic.dest_Trueprop
|> snd o HOLogic.dest_eq
|> fastype_of
|> (fn ty => case ty of
@{typ "atom set"} => simp_tac (add_ss supp_abs_set)
| @{typ "atom list"} => simp_tac (add_ss supp_abs_lst)
| _ => raise TERM ("mk_bn_supp_abs_tac", [prop_of thm]))
val thms1 = @{thms supp_Pair supp_eqvt[symmetric] Un_assoc conj_assoc}
val thms2 = @{thms de_Morgan_conj Collect_disj_eq finite_Un}
val thms3 = @{thms alphas prod_alpha_def prod_fv.simps prod_rel.simps permute_prod_def
prod.recs prod.cases prod.inject not_True_eq_False empty_def[symmetric] Finite_Set.finite.emptyI}
fun ind_tac ctxt qinducts =
let
fun CASES_TAC_TO_TAC cases_tac st = Seq.map snd (cases_tac st)
in
DETERM o (CASES_TAC_TO_TAC o (Induct.induct_tac ctxt false [] [] [] (SOME qinducts) []))
end
fun p_tac msg i =
if false then print_tac ("ptest: " ^ msg) else all_tac
fun q_tac msg i =
if true then print_tac ("qtest: " ^ msg) else all_tac
fun prove_fv_supp qtys fvs fv_bns alpha_bns bn_simps fv_simps eq_iffs perm_simps
fv_bn_eqvts qinducts bclausess ctxt =
let
val (arg_names, ctxt') =
Variable.variant_fixes (replicate (length qtys) "x") ctxt
val args = map2 (curry Free) arg_names qtys
val ty_arg_map = qtys ~~ args
val ind_args = map SOME arg_names
val goals1 = map (mk_fvs_goals ty_arg_map) fvs
val goals2 = map2 (mk_fv_bns_goals ty_arg_map) fv_bns alpha_bns
fun fv_tac ctxt bclauses =
SOLVED' (EVERY' [
(fn i => print_tac ("FV Goal: " ^ string_of_int i ^ " with " ^ (@{make_string} bclauses))),
TRY o asm_full_simp_tac (add_ss (@{thm supp_Pair[symmetric]}::fv_simps)),
p_tac "A",
TRY o EVERY' (mk_supp_abs_tac ctxt bclauses),
p_tac "B",
TRY o simp_tac (add_ss @{thms supp_def supp_rel_def}),
p_tac "C",
TRY o Nominal_Permeq.eqvt_tac ctxt (perm_simps @ fv_bn_eqvts) [],
p_tac "D",
TRY o simp_tac (add_ss (@{thms Abs_eq_iff} @ eq_iffs)),
p_tac "E",
TRY o asm_full_simp_tac (add_ss thms3),
p_tac "F",
TRY o simp_tac (add_ss thms2),
p_tac "G",
TRY o asm_full_simp_tac (add_ss (thms1 @ (symmetric fv_bn_eqvts))),
p_tac "H",
(fn i => print_tac ("finished with FV Goal: " ^ string_of_int i))
])
fun bn_tac ctxt bn_simp =
SOLVED' (EVERY' [
(fn i => print_tac ("BN Goal: " ^ string_of_int i)),
TRY o asm_full_simp_tac (add_ss (@{thm supp_Pair[symmetric]}::fv_simps)),
q_tac "A",
TRY o mk_bn_supp_abs_tac bn_simp,
q_tac "B",
TRY o simp_tac (add_ss @{thms supp_def supp_rel_def}),
q_tac "C",
TRY o Nominal_Permeq.eqvt_tac ctxt (perm_simps @ fv_bn_eqvts) [],
q_tac "D",
TRY o simp_tac (add_ss (@{thms Abs_eq_iff} @ eq_iffs)),
q_tac "E",
TRY o asm_full_simp_tac (add_ss thms3),
q_tac "F",
TRY o simp_tac (add_ss thms2),
q_tac "G",
TRY o asm_full_simp_tac (add_ss (thms1 @ (symmetric fv_bn_eqvts))),
(fn i => print_tac ("finished with BN Goal: " ^ string_of_int i))
])
fun fv_tacs ctxt = map (fv_tac ctxt) bclausess
fun bn_tacs ctxt = map (bn_tac ctxt) bn_simps
in
Goal.prove_multi ctxt' [] [] (goals1 @ goals2)
(fn {context as ctxt, ...} => HEADGOAL
(ind_tac ctxt qinducts THEN' RANGE (fv_tacs ctxt @ bn_tacs ctxt)))
|> ProofContext.export ctxt' ctxt
end
end (* structure *)