--- a/Slides/Slides3.thy Sun Jul 11 00:58:54 2010 +0100
+++ b/Slides/Slides3.thy Sun Jul 11 21:18:02 2010 +0100
@@ -9,24 +9,54 @@
(*>*)
+text_raw {*
+ \renewcommand{\slidecaption}{UNIF, Edinburgh, 14.~July 2010}
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ \mode<presentation>{
+ \begin{frame}<1>[c]
+ \frametitle{Quiz}
+
+ Assuming that \smath{a} and \smath{b} are distinct variables,\\
+ is it possible to find $\lambda$-terms \smath{M_1} to \smath{M_7}
+ that make the following pairs \alert{$\alpha$-equivalent}?
+
+ \begin{tabular}{@ {\hspace{14mm}}p{12cm}}
+ \begin{itemize}
+ \item \smath{\lambda a.\lambda b. (M_1\,b)\;} and
+ \smath{\lambda b.\lambda a. (a\,M_1)\;}
+
+ \item \smath{\lambda a.\lambda b. (M_2\,b)\;} and
+ \smath{\lambda b.\lambda a. (a\,M_3)\;}
+
+ \item \smath{\lambda a.\lambda b. (b\,M_4)\;} and
+ \smath{\lambda b.\lambda a. (a\,M_5)\;}
+
+ \item \smath{\lambda a.\lambda b. (b\,M_6)\;} and
+ \smath{\lambda a.\lambda a. (a\,M_7)\;}
+ \end{itemize}
+ \end{tabular}
+
+ If there is one solution for a pair, can you describe all its solutions?
+
+ \end{frame}}
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+*}
text_raw {*
- \renewcommand{\slidecaption}{Cambridge, 8.~June 2010}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1>[t]
\frametitle{%
\begin{tabular}{@ {\hspace{-3mm}}c@ {}}
\\
- \huge Nominal 2\\[-2mm]
- \large Or, How to Reason Conveniently with\\[-5mm]
- \large General Bindings in Isabelle/HOL\\[5mm]
+ \huge Nominal Unification\\[-2mm]
+ \Large Hitting a Sweet Spot\\[5mm]
\end{tabular}}
\begin{center}
Christian Urban
\end{center}
\begin{center}
- joint work with {\bf Cezary Kaliszyk}\\[0mm]
+ \small initial work with Andy Pitts and Jamie Gabbay\\[0mm]
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%