Slides/Slides3.thy
changeset 2355 b38f8d5e0b09
parent 2351 842969a598f2
child 2356 840a857354f2
equal deleted inserted replaced
2354:e2be455093a1 2355:b38f8d5e0b09
     7   set ("_") and
     7   set ("_") and
     8   Cons  ("_::/_" [66,65] 65) 
     8   Cons  ("_::/_" [66,65] 65) 
     9 
     9 
    10 (*>*)
    10 (*>*)
    11 
    11 
    12 
    12 text_raw {*
    13 text_raw {*
    13   \renewcommand{\slidecaption}{UNIF, Edinburgh, 14.~July 2010}
    14   \renewcommand{\slidecaption}{Cambridge, 8.~June 2010}
    14   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
    15   \mode<presentation>{
       
    16   \begin{frame}<1>[c]
       
    17   \frametitle{Quiz}
       
    18   
       
    19   Assuming that \smath{a} and \smath{b} are distinct variables,\\
       
    20   is it possible to find $\lambda$-terms \smath{M_1} to \smath{M_7} 
       
    21   that make the following pairs \alert{$\alpha$-equivalent}?
       
    22 
       
    23   \begin{tabular}{@ {\hspace{14mm}}p{12cm}}
       
    24   \begin{itemize}
       
    25   \item \smath{\lambda a.\lambda b. (M_1\,b)\;} and 
       
    26         \smath{\lambda b.\lambda a. (a\,M_1)\;}
       
    27 
       
    28   \item \smath{\lambda a.\lambda b. (M_2\,b)\;} and 
       
    29         \smath{\lambda b.\lambda a. (a\,M_3)\;}
       
    30 
       
    31   \item \smath{\lambda a.\lambda b. (b\,M_4)\;} and 
       
    32         \smath{\lambda b.\lambda a. (a\,M_5)\;}
       
    33 
       
    34   \item \smath{\lambda a.\lambda b. (b\,M_6)\;} and 
       
    35         \smath{\lambda a.\lambda a. (a\,M_7)\;}
       
    36   \end{itemize}
       
    37   \end{tabular}
       
    38 
       
    39   If there is one solution for a pair, can you describe all its solutions?
       
    40 
       
    41   \end{frame}}
       
    42   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
       
    43 *}
       
    44 
       
    45 text_raw {*
    15   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    46   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    16   \mode<presentation>{
    47   \mode<presentation>{
    17   \begin{frame}<1>[t]
    48   \begin{frame}<1>[t]
    18   \frametitle{%
    49   \frametitle{%
    19   \begin{tabular}{@ {\hspace{-3mm}}c@ {}}
    50   \begin{tabular}{@ {\hspace{-3mm}}c@ {}}
    20   \\
    51   \\
    21   \huge Nominal 2\\[-2mm] 
    52   \huge Nominal Unification\\[-2mm] 
    22   \large Or, How to Reason Conveniently with\\[-5mm]
    53   \Large Hitting a Sweet Spot\\[5mm]
    23   \large General Bindings in Isabelle/HOL\\[5mm]
       
    24   \end{tabular}}
    54   \end{tabular}}
    25   \begin{center}
    55   \begin{center}
    26   Christian Urban
    56   Christian Urban
    27   \end{center}
    57   \end{center}
    28   \begin{center}
    58   \begin{center}
    29   joint work with {\bf Cezary Kaliszyk}\\[0mm] 
    59   \small initial work with Andy Pitts and Jamie Gabbay\\[0mm] 
    30   \end{center}
    60   \end{center}
    31   \end{frame}}
    61   \end{frame}}
    32   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
    62   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
    33 
    63 
    34 *}
    64 *}