1062
|
1 |
(* Title: Nominal2_Eqvt
|
|
2 |
Authors: Brian Huffman, Christian Urban
|
|
3 |
|
|
4 |
Equivariance, Supp and Fresh Lemmas for Operators.
|
|
5 |
*)
|
|
6 |
theory Nominal2_Eqvt
|
|
7 |
imports Nominal2_Base
|
|
8 |
uses ("nominal_thmdecls.ML")
|
|
9 |
("nominal_permeq.ML")
|
|
10 |
begin
|
|
11 |
|
|
12 |
section {* Logical Operators *}
|
|
13 |
|
|
14 |
|
|
15 |
lemma eq_eqvt:
|
|
16 |
shows "p \<bullet> (x = y) \<longleftrightarrow> (p \<bullet> x) = (p \<bullet> y)"
|
|
17 |
unfolding permute_eq_iff permute_bool_def ..
|
|
18 |
|
|
19 |
lemma if_eqvt:
|
|
20 |
shows "p \<bullet> (if b then x else y) = (if p \<bullet> b then p \<bullet> x else p \<bullet> y)"
|
|
21 |
by (simp add: permute_fun_def permute_bool_def)
|
|
22 |
|
|
23 |
lemma True_eqvt:
|
|
24 |
shows "p \<bullet> True = True"
|
|
25 |
unfolding permute_bool_def ..
|
|
26 |
|
|
27 |
lemma False_eqvt:
|
|
28 |
shows "p \<bullet> False = False"
|
|
29 |
unfolding permute_bool_def ..
|
|
30 |
|
|
31 |
lemma imp_eqvt:
|
|
32 |
shows "p \<bullet> (A \<longrightarrow> B) = ((p \<bullet> A) \<longrightarrow> (p \<bullet> B))"
|
|
33 |
by (simp add: permute_bool_def)
|
|
34 |
|
|
35 |
lemma conj_eqvt:
|
|
36 |
shows "p \<bullet> (A \<and> B) = ((p \<bullet> A) \<and> (p \<bullet> B))"
|
|
37 |
by (simp add: permute_bool_def)
|
|
38 |
|
|
39 |
lemma disj_eqvt:
|
|
40 |
shows "p \<bullet> (A \<or> B) = ((p \<bullet> A) \<or> (p \<bullet> B))"
|
|
41 |
by (simp add: permute_bool_def)
|
|
42 |
|
|
43 |
lemma Not_eqvt:
|
|
44 |
shows "p \<bullet> (\<not> A) = (\<not> (p \<bullet> A))"
|
|
45 |
by (simp add: permute_bool_def)
|
|
46 |
|
|
47 |
lemma all_eqvt:
|
|
48 |
shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. (p \<bullet> P) x)"
|
|
49 |
unfolding permute_fun_def permute_bool_def
|
|
50 |
by (auto, drule_tac x="p \<bullet> x" in spec, simp)
|
|
51 |
|
|
52 |
lemma all_eqvt2:
|
|
53 |
shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. p \<bullet> P (- p \<bullet> x))"
|
|
54 |
unfolding permute_fun_def permute_bool_def
|
|
55 |
by (auto, drule_tac x="p \<bullet> x" in spec, simp)
|
|
56 |
|
|
57 |
lemma ex_eqvt:
|
|
58 |
shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. (p \<bullet> P) x)"
|
|
59 |
unfolding permute_fun_def permute_bool_def
|
|
60 |
by (auto, rule_tac x="p \<bullet> x" in exI, simp)
|
|
61 |
|
|
62 |
lemma ex_eqvt2:
|
|
63 |
shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. p \<bullet> P (- p \<bullet> x))"
|
|
64 |
unfolding permute_fun_def permute_bool_def
|
|
65 |
by (auto, rule_tac x="p \<bullet> x" in exI, simp)
|
|
66 |
|
|
67 |
lemma ex1_eqvt:
|
|
68 |
shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. (p \<bullet> P) x)"
|
|
69 |
unfolding Ex1_def
|
|
70 |
by (simp add: ex_eqvt permute_fun_def conj_eqvt all_eqvt imp_eqvt eq_eqvt)
|
|
71 |
|
|
72 |
lemma ex1_eqvt2:
|
|
73 |
shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. p \<bullet> P (- p \<bullet> x))"
|
|
74 |
unfolding Ex1_def ex_eqvt2 conj_eqvt all_eqvt2 imp_eqvt eq_eqvt
|
|
75 |
by simp
|
|
76 |
|
|
77 |
lemma the_eqvt:
|
|
78 |
assumes unique: "\<exists>!x. P x"
|
|
79 |
shows "p \<bullet> (THE x. P x) = (THE x. p \<bullet> P (- p \<bullet> x))"
|
|
80 |
apply(rule the1_equality [symmetric])
|
|
81 |
apply(simp add: ex1_eqvt2[symmetric])
|
|
82 |
apply(simp add: permute_bool_def unique)
|
|
83 |
apply(simp add: permute_bool_def)
|
|
84 |
apply(rule theI'[OF unique])
|
|
85 |
done
|
|
86 |
|
|
87 |
section {* Set Operations *}
|
|
88 |
|
|
89 |
lemma mem_eqvt:
|
|
90 |
shows "p \<bullet> (x \<in> A) \<longleftrightarrow> (p \<bullet> x) \<in> (p \<bullet> A)"
|
|
91 |
unfolding mem_def permute_fun_def by simp
|
|
92 |
|
|
93 |
lemma not_mem_eqvt:
|
|
94 |
shows "p \<bullet> (x \<notin> A) \<longleftrightarrow> (p \<bullet> x) \<notin> (p \<bullet> A)"
|
|
95 |
unfolding mem_def permute_fun_def by (simp add: Not_eqvt)
|
|
96 |
|
|
97 |
lemma Collect_eqvt:
|
|
98 |
shows "p \<bullet> {x. P x} = {x. (p \<bullet> P) x}"
|
|
99 |
unfolding Collect_def permute_fun_def ..
|
|
100 |
|
|
101 |
lemma Collect_eqvt2:
|
|
102 |
shows "p \<bullet> {x. P x} = {x. p \<bullet> (P (-p \<bullet> x))}"
|
|
103 |
unfolding Collect_def permute_fun_def ..
|
|
104 |
|
|
105 |
lemma empty_eqvt:
|
|
106 |
shows "p \<bullet> {} = {}"
|
|
107 |
unfolding empty_def Collect_eqvt2 False_eqvt ..
|
|
108 |
|
|
109 |
lemma supp_set_empty:
|
|
110 |
shows "supp {} = {}"
|
|
111 |
by (simp add: supp_def empty_eqvt)
|
|
112 |
|
|
113 |
lemma fresh_set_empty:
|
|
114 |
shows "a \<sharp> {}"
|
|
115 |
by (simp add: fresh_def supp_set_empty)
|
|
116 |
|
|
117 |
lemma UNIV_eqvt:
|
|
118 |
shows "p \<bullet> UNIV = UNIV"
|
|
119 |
unfolding UNIV_def Collect_eqvt2 True_eqvt ..
|
|
120 |
|
|
121 |
lemma union_eqvt:
|
|
122 |
shows "p \<bullet> (A \<union> B) = (p \<bullet> A) \<union> (p \<bullet> B)"
|
|
123 |
unfolding Un_def Collect_eqvt2 disj_eqvt mem_eqvt by simp
|
|
124 |
|
|
125 |
lemma inter_eqvt:
|
|
126 |
shows "p \<bullet> (A \<inter> B) = (p \<bullet> A) \<inter> (p \<bullet> B)"
|
|
127 |
unfolding Int_def Collect_eqvt2 conj_eqvt mem_eqvt by simp
|
|
128 |
|
|
129 |
lemma Diff_eqvt:
|
|
130 |
fixes A B :: "'a::pt set"
|
|
131 |
shows "p \<bullet> (A - B) = p \<bullet> A - p \<bullet> B"
|
|
132 |
unfolding set_diff_eq Collect_eqvt2 conj_eqvt Not_eqvt mem_eqvt by simp
|
|
133 |
|
|
134 |
lemma Compl_eqvt:
|
|
135 |
fixes A :: "'a::pt set"
|
|
136 |
shows "p \<bullet> (- A) = - (p \<bullet> A)"
|
|
137 |
unfolding Compl_eq_Diff_UNIV Diff_eqvt UNIV_eqvt ..
|
|
138 |
|
|
139 |
lemma insert_eqvt:
|
|
140 |
shows "p \<bullet> (insert x A) = insert (p \<bullet> x) (p \<bullet> A)"
|
|
141 |
unfolding permute_set_eq_image image_insert ..
|
|
142 |
|
|
143 |
lemma vimage_eqvt:
|
|
144 |
shows "p \<bullet> (f -` A) = (p \<bullet> f) -` (p \<bullet> A)"
|
|
145 |
unfolding vimage_def permute_fun_def [where f=f]
|
|
146 |
unfolding Collect_eqvt2 mem_eqvt ..
|
|
147 |
|
|
148 |
lemma image_eqvt:
|
|
149 |
shows "p \<bullet> (f ` A) = (p \<bullet> f) ` (p \<bullet> A)"
|
|
150 |
unfolding permute_set_eq_image
|
|
151 |
unfolding permute_fun_def [where f=f]
|
|
152 |
by (simp add: image_image)
|
|
153 |
|
|
154 |
lemma finite_permute_iff:
|
|
155 |
shows "finite (p \<bullet> A) \<longleftrightarrow> finite A"
|
|
156 |
unfolding permute_set_eq_vimage
|
|
157 |
using bij_permute by (rule finite_vimage_iff)
|
|
158 |
|
|
159 |
lemma finite_eqvt:
|
|
160 |
shows "p \<bullet> finite A = finite (p \<bullet> A)"
|
|
161 |
unfolding finite_permute_iff permute_bool_def ..
|
|
162 |
|
|
163 |
|
|
164 |
section {* List Operations *}
|
|
165 |
|
|
166 |
lemma append_eqvt:
|
|
167 |
shows "p \<bullet> (xs @ ys) = (p \<bullet> xs) @ (p \<bullet> ys)"
|
|
168 |
by (induct xs) auto
|
|
169 |
|
|
170 |
lemma supp_append:
|
|
171 |
shows "supp (xs @ ys) = supp xs \<union> supp ys"
|
|
172 |
by (induct xs) (auto simp add: supp_Nil supp_Cons)
|
|
173 |
|
|
174 |
lemma fresh_append:
|
|
175 |
shows "a \<sharp> (xs @ ys) \<longleftrightarrow> a \<sharp> xs \<and> a \<sharp> ys"
|
|
176 |
by (induct xs) (simp_all add: fresh_Nil fresh_Cons)
|
|
177 |
|
|
178 |
lemma rev_eqvt:
|
|
179 |
shows "p \<bullet> (rev xs) = rev (p \<bullet> xs)"
|
|
180 |
by (induct xs) (simp_all add: append_eqvt)
|
|
181 |
|
|
182 |
lemma supp_rev:
|
|
183 |
shows "supp (rev xs) = supp xs"
|
|
184 |
by (induct xs) (auto simp add: supp_append supp_Cons supp_Nil)
|
|
185 |
|
|
186 |
lemma fresh_rev:
|
|
187 |
shows "a \<sharp> rev xs \<longleftrightarrow> a \<sharp> xs"
|
|
188 |
by (induct xs) (auto simp add: fresh_append fresh_Cons fresh_Nil)
|
|
189 |
|
|
190 |
lemma set_eqvt:
|
|
191 |
shows "p \<bullet> (set xs) = set (p \<bullet> xs)"
|
|
192 |
by (induct xs) (simp_all add: empty_eqvt insert_eqvt)
|
|
193 |
|
|
194 |
(* needs finite support premise
|
|
195 |
lemma supp_set:
|
|
196 |
fixes x :: "'a::pt"
|
|
197 |
shows "supp (set xs) = supp xs"
|
|
198 |
*)
|
|
199 |
|
|
200 |
|
|
201 |
section {* Product Operations *}
|
|
202 |
|
|
203 |
lemma fst_eqvt:
|
|
204 |
"p \<bullet> (fst x) = fst (p \<bullet> x)"
|
|
205 |
by (cases x) simp
|
|
206 |
|
|
207 |
lemma snd_eqvt:
|
|
208 |
"p \<bullet> (snd x) = snd (p \<bullet> x)"
|
|
209 |
by (cases x) simp
|
|
210 |
|
|
211 |
|
|
212 |
section {* Units *}
|
|
213 |
|
|
214 |
lemma supp_unit:
|
|
215 |
shows "supp () = {}"
|
|
216 |
by (simp add: supp_def)
|
|
217 |
|
|
218 |
lemma fresh_unit:
|
|
219 |
shows "a \<sharp> ()"
|
|
220 |
by (simp add: fresh_def supp_unit)
|
|
221 |
|
|
222 |
section {* Equivariance automation *}
|
|
223 |
|
|
224 |
text {* Setup of the theorem attributes @{text eqvt} and @{text eqvt_force} *}
|
|
225 |
|
|
226 |
use "nominal_thmdecls.ML"
|
|
227 |
setup "Nominal_ThmDecls.setup"
|
|
228 |
|
|
229 |
lemmas [eqvt] =
|
|
230 |
(* connectives *)
|
|
231 |
eq_eqvt if_eqvt imp_eqvt disj_eqvt conj_eqvt Not_eqvt
|
|
232 |
True_eqvt False_eqvt ex_eqvt all_eqvt
|
|
233 |
imp_eqvt [folded induct_implies_def]
|
|
234 |
|
|
235 |
(* nominal *)
|
|
236 |
permute_eqvt supp_eqvt fresh_eqvt
|
|
237 |
permute_pure
|
|
238 |
|
|
239 |
(* datatypes *)
|
|
240 |
permute_prod.simps
|
|
241 |
fst_eqvt snd_eqvt
|
|
242 |
|
|
243 |
(* sets *)
|
|
244 |
empty_eqvt UNIV_eqvt union_eqvt inter_eqvt
|
|
245 |
Diff_eqvt Compl_eqvt insert_eqvt
|
|
246 |
|
|
247 |
thm eqvts
|
|
248 |
thm eqvts_raw
|
|
249 |
|
|
250 |
text {* helper lemmas for the eqvt_tac *}
|
|
251 |
|
|
252 |
definition
|
|
253 |
"unpermute p = permute (- p)"
|
|
254 |
|
|
255 |
lemma eqvt_apply:
|
|
256 |
fixes f :: "'a::pt \<Rightarrow> 'b::pt"
|
|
257 |
and x :: "'a::pt"
|
|
258 |
shows "p \<bullet> (f x) \<equiv> (p \<bullet> f) (p \<bullet> x)"
|
|
259 |
unfolding permute_fun_def by simp
|
|
260 |
|
|
261 |
lemma eqvt_lambda:
|
|
262 |
fixes f :: "'a::pt \<Rightarrow> 'b::pt"
|
|
263 |
shows "p \<bullet> (\<lambda>x. f x) \<equiv> (\<lambda>x. p \<bullet> (f (unpermute p x)))"
|
|
264 |
unfolding permute_fun_def unpermute_def by simp
|
|
265 |
|
|
266 |
lemma eqvt_bound:
|
|
267 |
shows "p \<bullet> unpermute p x \<equiv> x"
|
|
268 |
unfolding unpermute_def by simp
|
|
269 |
|
|
270 |
use "nominal_permeq.ML"
|
|
271 |
|
|
272 |
|
|
273 |
lemma "p \<bullet> (A \<longrightarrow> B = C)"
|
|
274 |
apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
|
|
275 |
oops
|
|
276 |
|
|
277 |
lemma "p \<bullet> (\<lambda>(x::'a::pt). A \<longrightarrow> (B::'a \<Rightarrow> bool) x = C) = foo"
|
|
278 |
apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
|
|
279 |
oops
|
|
280 |
|
|
281 |
lemma "p \<bullet> (\<lambda>x y. \<exists>z. x = z \<and> x = y \<longrightarrow> z \<noteq> x) = foo"
|
|
282 |
apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
|
|
283 |
oops
|
|
284 |
|
|
285 |
lemma "p \<bullet> (\<lambda>f x. f (g (f x))) = foo"
|
|
286 |
apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
|
|
287 |
oops
|
|
288 |
|
|
289 |
lemma "p \<bullet> (\<lambda>q. q \<bullet> (r \<bullet> x)) = foo"
|
|
290 |
apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
|
|
291 |
oops
|
|
292 |
|
|
293 |
lemma "p \<bullet> (q \<bullet> r \<bullet> x) = foo"
|
|
294 |
apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
|
|
295 |
oops
|
|
296 |
|
|
297 |
|
|
298 |
end |