author | Christian Urban <urbanc@in.tum.de> |
Fri, 05 Feb 2010 09:06:27 +0100 | |
changeset 1066 | 96651cddeba9 |
parent 1062 | dfea9e739231 |
child 1079 | c70e7545b738 |
permissions | -rw-r--r-- |
1062 | 1 |
(* Title: Nominal2_Eqvt |
2 |
Authors: Brian Huffman, Christian Urban |
|
3 |
||
4 |
Equivariance, Supp and Fresh Lemmas for Operators. |
|
5 |
*) |
|
6 |
theory Nominal2_Eqvt |
|
7 |
imports Nominal2_Base |
|
8 |
uses ("nominal_thmdecls.ML") |
|
9 |
("nominal_permeq.ML") |
|
10 |
begin |
|
11 |
||
12 |
section {* Logical Operators *} |
|
13 |
||
14 |
||
15 |
lemma eq_eqvt: |
|
16 |
shows "p \<bullet> (x = y) \<longleftrightarrow> (p \<bullet> x) = (p \<bullet> y)" |
|
17 |
unfolding permute_eq_iff permute_bool_def .. |
|
18 |
||
19 |
lemma if_eqvt: |
|
20 |
shows "p \<bullet> (if b then x else y) = (if p \<bullet> b then p \<bullet> x else p \<bullet> y)" |
|
21 |
by (simp add: permute_fun_def permute_bool_def) |
|
22 |
||
23 |
lemma True_eqvt: |
|
24 |
shows "p \<bullet> True = True" |
|
25 |
unfolding permute_bool_def .. |
|
26 |
||
27 |
lemma False_eqvt: |
|
28 |
shows "p \<bullet> False = False" |
|
29 |
unfolding permute_bool_def .. |
|
30 |
||
31 |
lemma imp_eqvt: |
|
32 |
shows "p \<bullet> (A \<longrightarrow> B) = ((p \<bullet> A) \<longrightarrow> (p \<bullet> B))" |
|
33 |
by (simp add: permute_bool_def) |
|
34 |
||
35 |
lemma conj_eqvt: |
|
36 |
shows "p \<bullet> (A \<and> B) = ((p \<bullet> A) \<and> (p \<bullet> B))" |
|
37 |
by (simp add: permute_bool_def) |
|
38 |
||
39 |
lemma disj_eqvt: |
|
40 |
shows "p \<bullet> (A \<or> B) = ((p \<bullet> A) \<or> (p \<bullet> B))" |
|
41 |
by (simp add: permute_bool_def) |
|
42 |
||
43 |
lemma Not_eqvt: |
|
44 |
shows "p \<bullet> (\<not> A) = (\<not> (p \<bullet> A))" |
|
45 |
by (simp add: permute_bool_def) |
|
46 |
||
47 |
lemma all_eqvt: |
|
48 |
shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. (p \<bullet> P) x)" |
|
49 |
unfolding permute_fun_def permute_bool_def |
|
50 |
by (auto, drule_tac x="p \<bullet> x" in spec, simp) |
|
51 |
||
52 |
lemma all_eqvt2: |
|
53 |
shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. p \<bullet> P (- p \<bullet> x))" |
|
54 |
unfolding permute_fun_def permute_bool_def |
|
55 |
by (auto, drule_tac x="p \<bullet> x" in spec, simp) |
|
56 |
||
57 |
lemma ex_eqvt: |
|
58 |
shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. (p \<bullet> P) x)" |
|
59 |
unfolding permute_fun_def permute_bool_def |
|
60 |
by (auto, rule_tac x="p \<bullet> x" in exI, simp) |
|
61 |
||
62 |
lemma ex_eqvt2: |
|
63 |
shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. p \<bullet> P (- p \<bullet> x))" |
|
64 |
unfolding permute_fun_def permute_bool_def |
|
65 |
by (auto, rule_tac x="p \<bullet> x" in exI, simp) |
|
66 |
||
67 |
lemma ex1_eqvt: |
|
68 |
shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. (p \<bullet> P) x)" |
|
69 |
unfolding Ex1_def |
|
70 |
by (simp add: ex_eqvt permute_fun_def conj_eqvt all_eqvt imp_eqvt eq_eqvt) |
|
71 |
||
72 |
lemma ex1_eqvt2: |
|
73 |
shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. p \<bullet> P (- p \<bullet> x))" |
|
74 |
unfolding Ex1_def ex_eqvt2 conj_eqvt all_eqvt2 imp_eqvt eq_eqvt |
|
75 |
by simp |
|
76 |
||
77 |
lemma the_eqvt: |
|
78 |
assumes unique: "\<exists>!x. P x" |
|
79 |
shows "p \<bullet> (THE x. P x) = (THE x. p \<bullet> P (- p \<bullet> x))" |
|
80 |
apply(rule the1_equality [symmetric]) |
|
81 |
apply(simp add: ex1_eqvt2[symmetric]) |
|
82 |
apply(simp add: permute_bool_def unique) |
|
83 |
apply(simp add: permute_bool_def) |
|
84 |
apply(rule theI'[OF unique]) |
|
85 |
done |
|
86 |
||
87 |
section {* Set Operations *} |
|
88 |
||
89 |
lemma mem_eqvt: |
|
90 |
shows "p \<bullet> (x \<in> A) \<longleftrightarrow> (p \<bullet> x) \<in> (p \<bullet> A)" |
|
91 |
unfolding mem_def permute_fun_def by simp |
|
92 |
||
93 |
lemma not_mem_eqvt: |
|
94 |
shows "p \<bullet> (x \<notin> A) \<longleftrightarrow> (p \<bullet> x) \<notin> (p \<bullet> A)" |
|
95 |
unfolding mem_def permute_fun_def by (simp add: Not_eqvt) |
|
96 |
||
97 |
lemma Collect_eqvt: |
|
98 |
shows "p \<bullet> {x. P x} = {x. (p \<bullet> P) x}" |
|
99 |
unfolding Collect_def permute_fun_def .. |
|
100 |
||
101 |
lemma Collect_eqvt2: |
|
102 |
shows "p \<bullet> {x. P x} = {x. p \<bullet> (P (-p \<bullet> x))}" |
|
103 |
unfolding Collect_def permute_fun_def .. |
|
104 |
||
105 |
lemma empty_eqvt: |
|
106 |
shows "p \<bullet> {} = {}" |
|
107 |
unfolding empty_def Collect_eqvt2 False_eqvt .. |
|
108 |
||
109 |
lemma supp_set_empty: |
|
110 |
shows "supp {} = {}" |
|
111 |
by (simp add: supp_def empty_eqvt) |
|
112 |
||
113 |
lemma fresh_set_empty: |
|
114 |
shows "a \<sharp> {}" |
|
115 |
by (simp add: fresh_def supp_set_empty) |
|
116 |
||
117 |
lemma UNIV_eqvt: |
|
118 |
shows "p \<bullet> UNIV = UNIV" |
|
119 |
unfolding UNIV_def Collect_eqvt2 True_eqvt .. |
|
120 |
||
121 |
lemma union_eqvt: |
|
122 |
shows "p \<bullet> (A \<union> B) = (p \<bullet> A) \<union> (p \<bullet> B)" |
|
123 |
unfolding Un_def Collect_eqvt2 disj_eqvt mem_eqvt by simp |
|
124 |
||
125 |
lemma inter_eqvt: |
|
126 |
shows "p \<bullet> (A \<inter> B) = (p \<bullet> A) \<inter> (p \<bullet> B)" |
|
127 |
unfolding Int_def Collect_eqvt2 conj_eqvt mem_eqvt by simp |
|
128 |
||
129 |
lemma Diff_eqvt: |
|
130 |
fixes A B :: "'a::pt set" |
|
131 |
shows "p \<bullet> (A - B) = p \<bullet> A - p \<bullet> B" |
|
132 |
unfolding set_diff_eq Collect_eqvt2 conj_eqvt Not_eqvt mem_eqvt by simp |
|
133 |
||
134 |
lemma Compl_eqvt: |
|
135 |
fixes A :: "'a::pt set" |
|
136 |
shows "p \<bullet> (- A) = - (p \<bullet> A)" |
|
137 |
unfolding Compl_eq_Diff_UNIV Diff_eqvt UNIV_eqvt .. |
|
138 |
||
139 |
lemma insert_eqvt: |
|
140 |
shows "p \<bullet> (insert x A) = insert (p \<bullet> x) (p \<bullet> A)" |
|
141 |
unfolding permute_set_eq_image image_insert .. |
|
142 |
||
143 |
lemma vimage_eqvt: |
|
144 |
shows "p \<bullet> (f -` A) = (p \<bullet> f) -` (p \<bullet> A)" |
|
145 |
unfolding vimage_def permute_fun_def [where f=f] |
|
146 |
unfolding Collect_eqvt2 mem_eqvt .. |
|
147 |
||
148 |
lemma image_eqvt: |
|
149 |
shows "p \<bullet> (f ` A) = (p \<bullet> f) ` (p \<bullet> A)" |
|
150 |
unfolding permute_set_eq_image |
|
151 |
unfolding permute_fun_def [where f=f] |
|
152 |
by (simp add: image_image) |
|
153 |
||
154 |
lemma finite_permute_iff: |
|
155 |
shows "finite (p \<bullet> A) \<longleftrightarrow> finite A" |
|
156 |
unfolding permute_set_eq_vimage |
|
157 |
using bij_permute by (rule finite_vimage_iff) |
|
158 |
||
159 |
lemma finite_eqvt: |
|
160 |
shows "p \<bullet> finite A = finite (p \<bullet> A)" |
|
161 |
unfolding finite_permute_iff permute_bool_def .. |
|
162 |
||
163 |
||
164 |
section {* List Operations *} |
|
165 |
||
166 |
lemma append_eqvt: |
|
167 |
shows "p \<bullet> (xs @ ys) = (p \<bullet> xs) @ (p \<bullet> ys)" |
|
168 |
by (induct xs) auto |
|
169 |
||
170 |
lemma supp_append: |
|
171 |
shows "supp (xs @ ys) = supp xs \<union> supp ys" |
|
172 |
by (induct xs) (auto simp add: supp_Nil supp_Cons) |
|
173 |
||
174 |
lemma fresh_append: |
|
175 |
shows "a \<sharp> (xs @ ys) \<longleftrightarrow> a \<sharp> xs \<and> a \<sharp> ys" |
|
176 |
by (induct xs) (simp_all add: fresh_Nil fresh_Cons) |
|
177 |
||
178 |
lemma rev_eqvt: |
|
179 |
shows "p \<bullet> (rev xs) = rev (p \<bullet> xs)" |
|
180 |
by (induct xs) (simp_all add: append_eqvt) |
|
181 |
||
182 |
lemma supp_rev: |
|
183 |
shows "supp (rev xs) = supp xs" |
|
184 |
by (induct xs) (auto simp add: supp_append supp_Cons supp_Nil) |
|
185 |
||
186 |
lemma fresh_rev: |
|
187 |
shows "a \<sharp> rev xs \<longleftrightarrow> a \<sharp> xs" |
|
188 |
by (induct xs) (auto simp add: fresh_append fresh_Cons fresh_Nil) |
|
189 |
||
190 |
lemma set_eqvt: |
|
191 |
shows "p \<bullet> (set xs) = set (p \<bullet> xs)" |
|
192 |
by (induct xs) (simp_all add: empty_eqvt insert_eqvt) |
|
193 |
||
194 |
(* needs finite support premise |
|
195 |
lemma supp_set: |
|
196 |
fixes x :: "'a::pt" |
|
197 |
shows "supp (set xs) = supp xs" |
|
198 |
*) |
|
199 |
||
200 |
||
201 |
section {* Product Operations *} |
|
202 |
||
203 |
lemma fst_eqvt: |
|
204 |
"p \<bullet> (fst x) = fst (p \<bullet> x)" |
|
205 |
by (cases x) simp |
|
206 |
||
207 |
lemma snd_eqvt: |
|
208 |
"p \<bullet> (snd x) = snd (p \<bullet> x)" |
|
209 |
by (cases x) simp |
|
210 |
||
211 |
||
212 |
section {* Units *} |
|
213 |
||
214 |
lemma supp_unit: |
|
215 |
shows "supp () = {}" |
|
216 |
by (simp add: supp_def) |
|
217 |
||
218 |
lemma fresh_unit: |
|
219 |
shows "a \<sharp> ()" |
|
220 |
by (simp add: fresh_def supp_unit) |
|
221 |
||
222 |
section {* Equivariance automation *} |
|
223 |
||
224 |
text {* Setup of the theorem attributes @{text eqvt} and @{text eqvt_force} *} |
|
225 |
||
226 |
use "nominal_thmdecls.ML" |
|
227 |
setup "Nominal_ThmDecls.setup" |
|
228 |
||
1066
96651cddeba9
eqvts and eqvts_raw are separate thm-lists; otherwise permute_eqvt is problematic as it causes looks in eqvts
Christian Urban <urbanc@in.tum.de>
parents:
1062
diff
changeset
|
229 |
|
96651cddeba9
eqvts and eqvts_raw are separate thm-lists; otherwise permute_eqvt is problematic as it causes looks in eqvts
Christian Urban <urbanc@in.tum.de>
parents:
1062
diff
changeset
|
230 |
|
1062 | 231 |
lemmas [eqvt] = |
232 |
(* connectives *) |
|
233 |
eq_eqvt if_eqvt imp_eqvt disj_eqvt conj_eqvt Not_eqvt |
|
234 |
True_eqvt False_eqvt ex_eqvt all_eqvt |
|
235 |
imp_eqvt [folded induct_implies_def] |
|
236 |
||
237 |
(* nominal *) |
|
1066
96651cddeba9
eqvts and eqvts_raw are separate thm-lists; otherwise permute_eqvt is problematic as it causes looks in eqvts
Christian Urban <urbanc@in.tum.de>
parents:
1062
diff
changeset
|
238 |
supp_eqvt fresh_eqvt permute_pure |
1062 | 239 |
|
240 |
(* datatypes *) |
|
241 |
permute_prod.simps |
|
242 |
fst_eqvt snd_eqvt |
|
243 |
||
244 |
(* sets *) |
|
245 |
empty_eqvt UNIV_eqvt union_eqvt inter_eqvt |
|
246 |
Diff_eqvt Compl_eqvt insert_eqvt |
|
247 |
||
1066
96651cddeba9
eqvts and eqvts_raw are separate thm-lists; otherwise permute_eqvt is problematic as it causes looks in eqvts
Christian Urban <urbanc@in.tum.de>
parents:
1062
diff
changeset
|
248 |
lemmas [eqvt_raw] = permute_eqvt |
96651cddeba9
eqvts and eqvts_raw are separate thm-lists; otherwise permute_eqvt is problematic as it causes looks in eqvts
Christian Urban <urbanc@in.tum.de>
parents:
1062
diff
changeset
|
249 |
|
1062 | 250 |
thm eqvts |
251 |
thm eqvts_raw |
|
252 |
||
253 |
text {* helper lemmas for the eqvt_tac *} |
|
254 |
||
255 |
definition |
|
256 |
"unpermute p = permute (- p)" |
|
257 |
||
258 |
lemma eqvt_apply: |
|
259 |
fixes f :: "'a::pt \<Rightarrow> 'b::pt" |
|
260 |
and x :: "'a::pt" |
|
261 |
shows "p \<bullet> (f x) \<equiv> (p \<bullet> f) (p \<bullet> x)" |
|
262 |
unfolding permute_fun_def by simp |
|
263 |
||
264 |
lemma eqvt_lambda: |
|
265 |
fixes f :: "'a::pt \<Rightarrow> 'b::pt" |
|
266 |
shows "p \<bullet> (\<lambda>x. f x) \<equiv> (\<lambda>x. p \<bullet> (f (unpermute p x)))" |
|
267 |
unfolding permute_fun_def unpermute_def by simp |
|
268 |
||
269 |
lemma eqvt_bound: |
|
270 |
shows "p \<bullet> unpermute p x \<equiv> x" |
|
271 |
unfolding unpermute_def by simp |
|
272 |
||
273 |
use "nominal_permeq.ML" |
|
274 |
||
275 |
||
276 |
lemma "p \<bullet> (A \<longrightarrow> B = C)" |
|
277 |
apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) |
|
278 |
oops |
|
279 |
||
280 |
lemma "p \<bullet> (\<lambda>(x::'a::pt). A \<longrightarrow> (B::'a \<Rightarrow> bool) x = C) = foo" |
|
281 |
apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) |
|
282 |
oops |
|
283 |
||
284 |
lemma "p \<bullet> (\<lambda>x y. \<exists>z. x = z \<and> x = y \<longrightarrow> z \<noteq> x) = foo" |
|
285 |
apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) |
|
286 |
oops |
|
287 |
||
288 |
lemma "p \<bullet> (\<lambda>f x. f (g (f x))) = foo" |
|
289 |
apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) |
|
290 |
oops |
|
291 |
||
292 |
lemma "p \<bullet> (\<lambda>q. q \<bullet> (r \<bullet> x)) = foo" |
|
293 |
apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) |
|
294 |
oops |
|
295 |
||
296 |
lemma "p \<bullet> (q \<bullet> r \<bullet> x) = foo" |
|
297 |
apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) |
|
298 |
oops |
|
299 |
||
300 |
||
301 |
end |