author | Cezary Kaliszyk <kaliszyk@in.tum.de> |
Tue, 30 Mar 2010 13:36:02 +0200 | |
changeset 1713 | a3f923d88215 |
parent 1712 | 40f13b52b107 |
child 1714 | 8c59c8a0721c |
permissions | -rw-r--r-- |
754
b85875d65b10
added a paper for possible notes
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
1 |
(*<*) |
b85875d65b10
added a paper for possible notes
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
2 |
theory Paper |
1506
7c607df46a0a
slightly more in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1493
diff
changeset
|
3 |
imports "../Nominal/Test" "LaTeXsugar" |
754
b85875d65b10
added a paper for possible notes
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
4 |
begin |
1493
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
5 |
|
1657 | 6 |
consts |
7 |
fv :: "'a \<Rightarrow> 'b" |
|
8 |
abs_set :: "'a \<Rightarrow> 'b \<Rightarrow> 'c" |
|
9 |
||
10 |
definition |
|
11 |
"equal \<equiv> (op =)" |
|
12 |
||
1493
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
13 |
notation (latex output) |
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
14 |
swap ("'(_ _')" [1000, 1000] 1000) and |
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
15 |
fresh ("_ # _" [51, 51] 50) and |
1694
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
16 |
fresh_star ("_ #\<^sup>* _" [51, 51] 50) and |
1493
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
17 |
supp ("supp _" [78] 73) and |
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
18 |
uminus ("-_" [78] 73) and |
1657 | 19 |
If ("if _ then _ else _" 10) and |
1662 | 20 |
alpha_gen ("_ \<approx>\<^raw:\raisebox{-1pt}{\makebox[0mm][l]{$\,_{\textit{set}}$}}>\<^bsup>_,_,_\<^esup> _") and |
21 |
alpha_lst ("_ \<approx>\<^raw:\raisebox{-1pt}{\makebox[0mm][l]{$\,_{\textit{list}}$}}>\<^bsup>_,_,_\<^esup> _") and |
|
22 |
alpha_res ("_ \<approx>\<^raw:\raisebox{-1pt}{\makebox[0mm][l]{$\,_{\textit{res}}$}}>\<^bsup>_,_,_\<^esup> _") and |
|
1657 | 23 |
abs_set ("_ \<approx>\<^raw:{$\,_{\textit{abs\_set}}$}> _") and |
24 |
fv ("fv'(_')" [100] 100) and |
|
25 |
equal ("=") and |
|
26 |
alpha_abs ("_ \<approx>\<^raw:{$\,_{\textit{abs\_set}}$}> _") and |
|
1703 | 27 |
Abs ("[_]\<^raw:$\!$>\<^bsub>set\<^esub>._" [20, 101] 999) and |
1657 | 28 |
Abs_lst ("[_]\<^raw:$\!$>\<^bsub>list\<^esub>._") and |
1690 | 29 |
Abs_res ("[_]\<^raw:$\!$>\<^bsub>res\<^esub>._") and |
1703 | 30 |
Cons ("_::_" [78,77] 73) and |
31 |
supp_gen ("aux _" [1000] 100) |
|
754
b85875d65b10
added a paper for possible notes
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
32 |
(*>*) |
b85875d65b10
added a paper for possible notes
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
33 |
|
1657 | 34 |
|
754
b85875d65b10
added a paper for possible notes
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
35 |
section {* Introduction *} |
b85875d65b10
added a paper for possible notes
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
36 |
|
b85875d65b10
added a paper for possible notes
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
37 |
text {* |
1524 | 38 |
So far, Nominal Isabelle provides a mechanism for constructing |
1607 | 39 |
alpha-equated terms, for example |
1485
c004e7448dca
temporarily disabled tests in Nominal/ROOT
Christian Urban <urbanc@in.tum.de>
parents:
1484
diff
changeset
|
40 |
|
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
41 |
\begin{center} |
1657 | 42 |
@{text "t ::= x | t t | \<lambda>x. t"} |
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
43 |
\end{center} |
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
44 |
|
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
45 |
\noindent |
1687 | 46 |
where free and bound variables have names. For such alpha-equated terms, Nominal Isabelle |
1657 | 47 |
derives automatically a reasoning infrastructure that has been used |
1550 | 48 |
successfully in formalisations of an equivalence checking algorithm for LF |
49 |
\cite{UrbanCheneyBerghofer08}, Typed |
|
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
50 |
Scheme~\cite{TobinHochstadtFelleisen08}, several calculi for concurrency |
1694
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
51 |
\cite{BengtsonParow09} and a strong normalisation result |
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
52 |
for cut-elimination in classical logic \cite{UrbanZhu08}. It has also been |
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
53 |
used by Pollack for formalisations in the locally-nameless approach to |
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
54 |
binding \cite{SatoPollack10}. |
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
55 |
|
1535
a37c65fe10de
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1528
diff
changeset
|
56 |
However, Nominal Isabelle has fared less well in a formalisation of |
1690 | 57 |
the algorithm W \cite{UrbanNipkow09}, where types and type-schemes are, |
58 |
respectively, of the form |
|
1570 | 59 |
% |
60 |
\begin{equation}\label{tysch} |
|
61 |
\begin{array}{l} |
|
1657 | 62 |
@{text "T ::= x | T \<rightarrow> T"}\hspace{5mm} |
63 |
@{text "S ::= \<forall>{x\<^isub>1,\<dots>, x\<^isub>n}. T"} |
|
1570 | 64 |
\end{array} |
65 |
\end{equation} |
|
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
66 |
|
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
67 |
\noindent |
1566 | 68 |
and the quantification $\forall$ binds a finite (possibly empty) set of |
1550 | 69 |
type-variables. While it is possible to implement this kind of more general |
70 |
binders by iterating single binders, this leads to a rather clumsy |
|
71 |
formalisation of W. The need of iterating single binders is also one reason |
|
72 |
why Nominal Isabelle and similar theorem provers that only provide |
|
73 |
mechanisms for binding single variables have not fared extremely well with the |
|
74 |
more advanced tasks in the POPLmark challenge \cite{challenge05}, because |
|
75 |
also there one would like to bind multiple variables at once. |
|
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
76 |
|
1577 | 77 |
Binding multiple variables has interesting properties that cannot be captured |
1587 | 78 |
easily by iterating single binders. For example in case of type-schemes we do not |
79 |
want to make a distinction about the order of the bound variables. Therefore |
|
1550 | 80 |
we would like to regard the following two type-schemes as alpha-equivalent |
1572 | 81 |
% |
82 |
\begin{equation}\label{ex1} |
|
1667 | 83 |
@{text "\<forall>{x, y}. x \<rightarrow> y \<approx>\<^isub>\<alpha> \<forall>{y, x}. y \<rightarrow> x"} |
1572 | 84 |
\end{equation} |
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
85 |
|
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
86 |
\noindent |
1657 | 87 |
but assuming that @{text x}, @{text y} and @{text z} are distinct variables, |
1587 | 88 |
the following two should \emph{not} be alpha-equivalent |
1572 | 89 |
% |
90 |
\begin{equation}\label{ex2} |
|
1667 | 91 |
@{text "\<forall>{x, y}. x \<rightarrow> y \<notapprox>\<^isub>\<alpha> \<forall>{z}. z \<rightarrow> z"} |
1572 | 92 |
\end{equation} |
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
93 |
|
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
94 |
\noindent |
1657 | 95 |
Moreover, we like to regard type-schemes as alpha-equivalent, if they differ |
96 |
only on \emph{vacuous} binders, such as |
|
1572 | 97 |
% |
98 |
\begin{equation}\label{ex3} |
|
1667 | 99 |
@{text "\<forall>{x}. x \<rightarrow> y \<approx>\<^isub>\<alpha> \<forall>{x, z}. x \<rightarrow> y"} |
1572 | 100 |
\end{equation} |
1485
c004e7448dca
temporarily disabled tests in Nominal/ROOT
Christian Urban <urbanc@in.tum.de>
parents:
1484
diff
changeset
|
101 |
|
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
102 |
\noindent |
1657 | 103 |
where @{text z} does not occur freely in the type. In this paper we will |
104 |
give a general binding mechanism and associated notion of alpha-equivalence |
|
105 |
that can be used to faithfully represent this kind of binding in Nominal |
|
106 |
Isabelle. The difficulty of finding the right notion for alpha-equivalence |
|
107 |
can be appreciated in this case by considering that the definition given by |
|
108 |
Leroy in \cite{Leroy92} is incorrect (it omits a side-condition). |
|
1524 | 109 |
|
1657 | 110 |
However, the notion of alpha-equivalence that is preserved by vacuous |
111 |
binders is not always wanted. For example in terms like |
|
1587 | 112 |
% |
1535
a37c65fe10de
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1528
diff
changeset
|
113 |
\begin{equation}\label{one} |
1657 | 114 |
@{text "\<LET> x = 3 \<AND> y = 2 \<IN> x - y \<END>"} |
1535
a37c65fe10de
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1528
diff
changeset
|
115 |
\end{equation} |
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
116 |
|
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
117 |
\noindent |
1524 | 118 |
we might not care in which order the assignments $x = 3$ and $y = 2$ are |
1535
a37c65fe10de
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1528
diff
changeset
|
119 |
given, but it would be unusual to regard \eqref{one} as alpha-equivalent |
1524 | 120 |
with |
1587 | 121 |
% |
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
122 |
\begin{center} |
1657 | 123 |
@{text "\<LET> x = 3 \<AND> y = 2 \<AND> z = loop \<IN> x - y \<END>"} |
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
124 |
\end{center} |
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
125 |
|
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
126 |
\noindent |
1550 | 127 |
Therefore we will also provide a separate binding mechanism for cases in |
128 |
which the order of binders does not matter, but the ``cardinality'' of the |
|
1535
a37c65fe10de
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1528
diff
changeset
|
129 |
binders has to agree. |
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
130 |
|
1550 | 131 |
However, we found that this is still not sufficient for dealing with |
132 |
language constructs frequently occurring in programming language |
|
1690 | 133 |
research. For example in @{text "\<LET>"}s containing patterns like |
1587 | 134 |
% |
1535
a37c65fe10de
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1528
diff
changeset
|
135 |
\begin{equation}\label{two} |
1657 | 136 |
@{text "\<LET> (x, y) = (3, 2) \<IN> x - y \<END>"} |
1535
a37c65fe10de
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1528
diff
changeset
|
137 |
\end{equation} |
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
138 |
|
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
139 |
\noindent |
1535
a37c65fe10de
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1528
diff
changeset
|
140 |
we want to bind all variables from the pattern inside the body of the |
a37c65fe10de
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1528
diff
changeset
|
141 |
$\mathtt{let}$, but we also care about the order of these variables, since |
1566 | 142 |
we do not want to regard \eqref{two} as alpha-equivalent with |
1587 | 143 |
% |
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
144 |
\begin{center} |
1657 | 145 |
@{text "\<LET> (y, x) = (3, 2) \<IN> x - y \<END>"} |
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
146 |
\end{center} |
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
147 |
|
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
148 |
\noindent |
1657 | 149 |
As a result, we provide three general binding mechanisms each of which binds |
150 |
multiple variables at once, and let the user chose which one is intended |
|
1711 | 151 |
when formalising a term-calculus. |
1485
c004e7448dca
temporarily disabled tests in Nominal/ROOT
Christian Urban <urbanc@in.tum.de>
parents:
1484
diff
changeset
|
152 |
|
1657 | 153 |
By providing these general binding mechanisms, however, we have to work |
154 |
around a problem that has been pointed out by Pottier \cite{Pottier06} and |
|
155 |
Cheney \cite{Cheney05}: in @{text "\<LET>"}-constructs of the form |
|
1587 | 156 |
% |
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
157 |
\begin{center} |
1657 | 158 |
@{text "\<LET> x\<^isub>1 = t\<^isub>1 \<AND> \<dots> \<AND> x\<^isub>n = t\<^isub>n \<IN> s \<END>"} |
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
159 |
\end{center} |
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
160 |
|
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
161 |
\noindent |
1657 | 162 |
which bind all the @{text "x\<^isub>i"} in @{text s}, we might not care |
163 |
about the order in which the @{text "x\<^isub>i = t\<^isub>i"} are given, |
|
164 |
but we do care about the information that there are as many @{text |
|
165 |
"x\<^isub>i"} as there are @{text "t\<^isub>i"}. We lose this information if |
|
166 |
we represent the @{text "\<LET>"}-constructor by something like |
|
1587 | 167 |
% |
1523
eb95360d6ac6
another little bit for the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1520
diff
changeset
|
168 |
\begin{center} |
1657 | 169 |
@{text "\<LET> [x\<^isub>1,\<dots>,x\<^isub>n].s [t\<^isub>1,\<dots>,t\<^isub>n]"} |
1523
eb95360d6ac6
another little bit for the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1520
diff
changeset
|
170 |
\end{center} |
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
171 |
|
1523
eb95360d6ac6
another little bit for the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1520
diff
changeset
|
172 |
\noindent |
1703 | 173 |
where the notation @{text "[_]._"} indicates that the list of @{text "x\<^isub>i"} |
174 |
becomes bound in @{text s}. In this representation the term |
|
1690 | 175 |
\mbox{@{text "\<LET> [x].s [t\<^isub>1, t\<^isub>2]"}} is a perfectly legal |
1687 | 176 |
instance, but the lengths of two lists do not agree. To exclude such terms, |
177 |
additional predicates about well-formed |
|
1657 | 178 |
terms are needed in order to ensure that the two lists are of equal |
179 |
length. This can result into very messy reasoning (see for |
|
180 |
example~\cite{BengtsonParow09}). To avoid this, we will allow type |
|
181 |
specifications for $\mathtt{let}$s as follows |
|
1587 | 182 |
% |
1528
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
183 |
\begin{center} |
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
184 |
\begin{tabular}{r@ {\hspace{2mm}}r@ {\hspace{2mm}}l} |
1657 | 185 |
@{text trm} & @{text "::="} & @{text "\<dots>"}\\ |
186 |
& @{text "|"} & @{text "\<LET> a::assn s::trm"}\hspace{4mm} |
|
187 |
\isacommand{bind} @{text "bn(a)"} \isacommand{in} @{text "s"}\\[1mm] |
|
188 |
@{text assn} & @{text "::="} & @{text "\<ANIL>"}\\ |
|
189 |
& @{text "|"} & @{text "\<ACONS> name trm assn"} |
|
1528
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
190 |
\end{tabular} |
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
191 |
\end{center} |
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
192 |
|
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
193 |
\noindent |
1657 | 194 |
where @{text assn} is an auxiliary type representing a list of assignments |
195 |
and @{text bn} an auxiliary function identifying the variables to be bound |
|
1687 | 196 |
by the @{text "\<LET>"}. This function can be defined by recursion over @{text |
1657 | 197 |
assn} as follows |
1528
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
198 |
|
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
199 |
\begin{center} |
1657 | 200 |
@{text "bn(\<ANIL>) ="} @{term "{}"} \hspace{5mm} |
201 |
@{text "bn(\<ACONS> x t as) = {x} \<union> bn(as)"} |
|
1528
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
202 |
\end{center} |
1523
eb95360d6ac6
another little bit for the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1520
diff
changeset
|
203 |
|
1528
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
204 |
\noindent |
1550 | 205 |
The scope of the binding is indicated by labels given to the types, for |
1657 | 206 |
example @{text "s::trm"}, and a binding clause, in this case |
207 |
\isacommand{bind} @{text "bn(a)"} \isacommand{in} @{text "s"}, that states |
|
208 |
to bind in @{text s} all the names the function call @{text "bn(a)"} returns. |
|
209 |
This style of specifying terms and bindings is heavily inspired by the |
|
210 |
syntax of the Ott-tool \cite{ott-jfp}. |
|
211 |
||
1528
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
212 |
|
1545 | 213 |
However, we will not be able to deal with all specifications that are |
1617
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
214 |
allowed by Ott. One reason is that Ott lets the user to specify ``empty'' |
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
215 |
types like |
1570 | 216 |
|
217 |
\begin{center} |
|
1657 | 218 |
@{text "t ::= t t | \<lambda>x. t"} |
1570 | 219 |
\end{center} |
220 |
||
221 |
\noindent |
|
1617
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
222 |
where no clause for variables is given. Arguably, such specifications make |
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
223 |
some sense in the context of Coq's type theory (which Ott supports), but not |
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
224 |
at all in a HOL-based environment where every datatype must have a non-empty |
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
225 |
set-theoretic model. |
1570 | 226 |
|
227 |
Another reason is that we establish the reasoning infrastructure |
|
228 |
for alpha-\emph{equated} terms. In contrast, Ott produces a reasoning |
|
229 |
infrastructure in Isabelle/HOL for |
|
1545 | 230 |
\emph{non}-alpha-equated, or ``raw'', terms. While our alpha-equated terms |
1556 | 231 |
and the raw terms produced by Ott use names for bound variables, |
1690 | 232 |
there is a key difference: working with alpha-equated terms means, for example, |
1693 | 233 |
that the two type-schemes |
1528
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
234 |
|
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
235 |
\begin{center} |
1667 | 236 |
@{text "\<forall>{x}. x \<rightarrow> y = \<forall>{x, z}. x \<rightarrow> y"} |
1528
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
237 |
\end{center} |
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
238 |
|
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
239 |
\noindent |
1703 | 240 |
are not just alpha-equal, but actually \emph{equal}! As a result, we can |
1657 | 241 |
only support specifications that make sense on the level of alpha-equated |
242 |
terms (offending specifications, which for example bind a variable according |
|
243 |
to a variable bound somewhere else, are not excluded by Ott, but we have |
|
1687 | 244 |
to). |
245 |
||
246 |
Our insistence on reasoning with alpha-equated terms comes from the |
|
1657 | 247 |
wealth of experience we gained with the older version of Nominal Isabelle: |
248 |
for non-trivial properties, reasoning about alpha-equated terms is much |
|
249 |
easier than reasoning with raw terms. The fundamental reason for this is |
|
250 |
that the HOL-logic underlying Nominal Isabelle allows us to replace |
|
251 |
``equals-by-equals''. In contrast, replacing |
|
252 |
``alpha-equals-by-alpha-equals'' in a representation based on raw terms |
|
253 |
requires a lot of extra reasoning work. |
|
1535
a37c65fe10de
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1528
diff
changeset
|
254 |
|
1657 | 255 |
Although in informal settings a reasoning infrastructure for alpha-equated |
256 |
terms is nearly always taken for granted, establishing it automatically in |
|
257 |
the Isabelle/HOL theorem prover is a rather non-trivial task. For every |
|
258 |
specification we will need to construct a type containing as elements the |
|
259 |
alpha-equated terms. To do so, we use the standard HOL-technique of defining |
|
260 |
a new type by identifying a non-empty subset of an existing type. The |
|
1667 | 261 |
construction we perform in Isabelle/HOL can be illustrated by the following picture: |
1657 | 262 |
|
1528
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
263 |
\begin{center} |
1552 | 264 |
\begin{tikzpicture} |
265 |
%\draw[step=2mm] (-4,-1) grid (4,1); |
|
266 |
||
267 |
\draw[very thick] (0.7,0.4) circle (4.25mm); |
|
268 |
\draw[rounded corners=1mm, very thick] ( 0.0,-0.8) rectangle ( 1.8, 0.9); |
|
269 |
\draw[rounded corners=1mm, very thick] (-1.95,0.85) rectangle (-2.85,-0.05); |
|
270 |
||
271 |
\draw (-2.0, 0.845) -- (0.7,0.845); |
|
272 |
\draw (-2.0,-0.045) -- (0.7,-0.045); |
|
273 |
||
274 |
\draw ( 0.7, 0.4) node {\begin{tabular}{@ {}c@ {}}$\alpha$-\\[-1mm]clas.\end{tabular}}; |
|
275 |
\draw (-2.4, 0.4) node {\begin{tabular}{@ {}c@ {}}$\alpha$-eq.\\[-1mm]terms\end{tabular}}; |
|
276 |
\draw (1.8, 0.48) node[right=-0.1mm] |
|
277 |
{\begin{tabular}{@ {}l@ {}}existing\\[-1mm] type\\ (sets of raw terms)\end{tabular}}; |
|
278 |
\draw (0.9, -0.35) node {\begin{tabular}{@ {}l@ {}}non-empty\\[-1mm]subset\end{tabular}}; |
|
279 |
\draw (-3.25, 0.55) node {\begin{tabular}{@ {}l@ {}}new\\[-1mm]type\end{tabular}}; |
|
280 |
||
281 |
\draw[<->, very thick] (-1.8, 0.3) -- (-0.1,0.3); |
|
282 |
\draw (-0.95, 0.3) node[above=0mm] {isomorphism}; |
|
283 |
||
284 |
\end{tikzpicture} |
|
1528
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
285 |
\end{center} |
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
286 |
|
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
287 |
\noindent |
1657 | 288 |
We take as the starting point a definition of raw terms (defined as a |
289 |
datatype in Isabelle/HOL); identify then the alpha-equivalence classes in |
|
290 |
the type of sets of raw terms according to our alpha-equivalence relation |
|
291 |
and finally define the new type as these alpha-equivalence classes |
|
292 |
(non-emptiness is satisfied whenever the raw terms are definable as datatype |
|
1690 | 293 |
in Isabelle/HOL and the property that our relation for alpha-equivalence is |
1657 | 294 |
indeed an equivalence relation). |
1556 | 295 |
|
1657 | 296 |
The fact that we obtain an isomorphism between the new type and the |
297 |
non-empty subset shows that the new type is a faithful representation of |
|
298 |
alpha-equated terms. That is not the case for example for terms using the |
|
299 |
locally nameless representation of binders \cite{McKinnaPollack99}: in this |
|
300 |
representation there are ``junk'' terms that need to be excluded by |
|
301 |
reasoning about a well-formedness predicate. |
|
1556 | 302 |
|
1657 | 303 |
The problem with introducing a new type in Isabelle/HOL is that in order to |
304 |
be useful, a reasoning infrastructure needs to be ``lifted'' from the |
|
305 |
underlying subset to the new type. This is usually a tricky and arduous |
|
306 |
task. To ease it, we re-implemented in Isabelle/HOL the quotient package |
|
307 |
described by Homeier \cite{Homeier05} for the HOL4 system. This package |
|
308 |
allows us to lift definitions and theorems involving raw terms to |
|
309 |
definitions and theorems involving alpha-equated terms. For example if we |
|
310 |
define the free-variable function over raw lambda-terms |
|
1577 | 311 |
|
312 |
\begin{center} |
|
1657 | 313 |
@{text "fv(x) = {x}"}\hspace{10mm} |
314 |
@{text "fv(t\<^isub>1 t\<^isub>2) = fv(t\<^isub>1) \<union> fv(t\<^isub>2)"}\\[1mm] |
|
315 |
@{text "fv(\<lambda>x.t) = fv(t) - {x}"} |
|
1577 | 316 |
\end{center} |
317 |
||
318 |
\noindent |
|
1690 | 319 |
then with the help of the quotient package we obtain a function @{text "fv\<^sup>\<alpha>"} |
1617
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
320 |
operating on quotients, or alpha-equivalence classes of lambda-terms. This |
1628 | 321 |
lifted function is characterised by the equations |
1577 | 322 |
|
323 |
\begin{center} |
|
1657 | 324 |
@{text "fv\<^sup>\<alpha>(x) = {x}"}\hspace{10mm} |
325 |
@{text "fv\<^sup>\<alpha>(t\<^isub>1 t\<^isub>2) = fv\<^sup>\<alpha>(t\<^isub>1) \<union> fv\<^sup>\<alpha>(t\<^isub>2)"}\\[1mm] |
|
326 |
@{text "fv\<^sup>\<alpha>(\<lambda>x.t) = fv\<^sup>\<alpha>(t) - {x}"} |
|
1577 | 327 |
\end{center} |
328 |
||
329 |
\noindent |
|
330 |
(Note that this means also the term-constructors for variables, applications |
|
331 |
and lambda are lifted to the quotient level.) This construction, of course, |
|
1694
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
332 |
only works if alpha-equivalence is indeed an equivalence relation, and the |
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
333 |
lifted definitions and theorems are respectful w.r.t.~alpha-equivalence. |
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
334 |
For example, we will not be able to lift a bound-variable function. Although |
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
335 |
this function can be defined for raw terms, it does not respect |
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
336 |
alpha-equivalence and therefore cannot be lifted. To sum up, every lifting |
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
337 |
of theorems to the quotient level needs proofs of some respectfulness |
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
338 |
properties (see \cite{Homeier05}). In the paper we show that we are able to |
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
339 |
automate these proofs and therefore can establish a reasoning infrastructure |
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
340 |
for alpha-equated terms. |
1667 | 341 |
|
342 |
The examples we have in mind where our reasoning infrastructure will be |
|
1694
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
343 |
helpful includes the term language of System @{text "F\<^isub>C"}, also |
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
344 |
known as Core-Haskell (see Figure~\ref{corehas}). This term language |
1711 | 345 |
involves patterns that have lists of type-, coercion- and term-variables, |
1703 | 346 |
all of which are bound in @{text "\<CASE>"}-expressions. One |
1694
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
347 |
difficulty is that each of these variables come with a kind or type |
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
348 |
annotation. Representing such binders with single binders and reasoning |
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
349 |
about them in a theorem prover would be a major pain. \medskip |
1506
7c607df46a0a
slightly more in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1493
diff
changeset
|
350 |
|
1528
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
351 |
\noindent |
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
352 |
{\bf Contributions:} We provide new definitions for when terms |
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
353 |
involving multiple binders are alpha-equivalent. These definitions are |
1607 | 354 |
inspired by earlier work of Pitts \cite{Pitts04}. By means of automatic |
1528
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
355 |
proofs, we establish a reasoning infrastructure for alpha-equated |
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
356 |
terms, including properties about support, freshness and equality |
1607 | 357 |
conditions for alpha-equated terms. We are also able to derive, at the moment |
358 |
only manually, strong induction principles that |
|
359 |
have the variable convention already built in. |
|
1667 | 360 |
|
361 |
\begin{figure} |
|
1687 | 362 |
\begin{boxedminipage}{\linewidth} |
363 |
\begin{center} |
|
1699
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
364 |
\begin{tabular}{r@ {\hspace{1mm}}r@ {\hspace{2mm}}l} |
1690 | 365 |
\multicolumn{3}{@ {}l}{Type Kinds}\\ |
1699
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
366 |
@{text "\<kappa>"} & @{text "::="} & @{text "\<star> | \<kappa>\<^isub>1 \<rightarrow> \<kappa>\<^isub>2"}\smallskip\\ |
1690 | 367 |
\multicolumn{3}{@ {}l}{Coercion Kinds}\\ |
1699
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
368 |
@{text "\<iota>"} & @{text "::="} & @{text "\<sigma>\<^isub>1 \<sim> \<sigma>\<^isub>2"}\smallskip\\ |
1690 | 369 |
\multicolumn{3}{@ {}l}{Types}\\ |
1694
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
370 |
@{text "\<sigma>"} & @{text "::="} & @{text "a | T | \<sigma>\<^isub>1 \<sigma>\<^isub>2 | S\<^isub>n"}$\;\overline{@{text "\<sigma>"}}$@{text "\<^sup>n"} |
1699
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
371 |
@{text "| \<forall>a:\<kappa>. \<sigma> | \<iota> \<Rightarrow> \<sigma>"}\smallskip\\ |
1690 | 372 |
\multicolumn{3}{@ {}l}{Coercion Types}\\ |
1694
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
373 |
@{text "\<gamma>"} & @{text "::="} & @{text "c | C | \<gamma>\<^isub>1 \<gamma>\<^isub>2 | S\<^isub>n"}$\;\overline{@{text "\<gamma>"}}$@{text "\<^sup>n"} |
1699
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
374 |
@{text "| \<forall>c:\<iota>. \<gamma> | \<iota> \<Rightarrow> \<gamma> "}\\ |
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
375 |
& @{text "|"} & @{text "refl \<sigma> | sym \<gamma> | \<gamma>\<^isub>1 \<circ> \<gamma>\<^isub>2 | \<gamma> @ \<sigma> | left \<gamma> | right \<gamma>"}\\ |
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
376 |
& @{text "|"} & @{text "\<gamma>\<^isub>1 \<sim> \<gamma>\<^isub>2 | rightc \<gamma> | leftc \<gamma> | \<gamma>\<^isub>1 \<triangleright> \<gamma>\<^isub>2"}\smallskip\\ |
1690 | 377 |
\multicolumn{3}{@ {}l}{Terms}\\ |
1699
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
378 |
@{text "e"} & @{text "::="} & @{text "x | K | \<Lambda>a:\<kappa>. e | \<Lambda>c:\<iota>. e | e \<sigma> | e \<gamma>"}\\ |
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
379 |
& @{text "|"} & @{text "\<lambda>x:\<sigma>. e | e\<^isub>1 e\<^isub>2 | \<LET> x:\<sigma> = e\<^isub>1 \<IN> e\<^isub>2"}\\ |
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
380 |
& @{text "|"} & @{text "\<CASE> e\<^isub>1 \<OF>"}$\;\overline{@{text "p \<rightarrow> e\<^isub>2"}}$ @{text "| e \<triangleright> \<gamma>"}\smallskip\\ |
1690 | 381 |
\multicolumn{3}{@ {}l}{Patterns}\\ |
1699
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
382 |
@{text "p"} & @{text "::="} & @{text "K"}$\;\overline{@{text "a:\<kappa>"}}\;\overline{@{text "c:\<iota>"}}\;\overline{@{text "x:\<sigma>"}}$\smallskip\\ |
1690 | 383 |
\multicolumn{3}{@ {}l}{Constants}\\ |
1699
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
384 |
& @{text C} & coercion constants\\ |
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
385 |
& @{text T} & value type constructors\\ |
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
386 |
& @{text "S\<^isub>n"} & n-ary type functions (which need to be fully applied)\\ |
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
387 |
& @{text K} & data constructors\smallskip\\ |
1690 | 388 |
\multicolumn{3}{@ {}l}{Variables}\\ |
1699
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
389 |
& @{text a} & type variables\\ |
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
390 |
& @{text c} & coercion variables\\ |
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
391 |
& @{text x} & term variables\\ |
1687 | 392 |
\end{tabular} |
393 |
\end{center} |
|
394 |
\end{boxedminipage} |
|
1699
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
395 |
\caption{The term-language of System @{text "F\<^isub>C"} |
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
396 |
\cite{CoreHaskell}, also often referred to as \emph{Core-Haskell}. In this |
2dca07aca287
small changes in the core-haskell spec
Christian Urban <urbanc@in.tum.de>
parents:
1694
diff
changeset
|
397 |
version of the term-language we made a modification by separating the |
1711 | 398 |
grammars for type kinds and coercion kinds, as well as for types and coercion |
1702 | 399 |
types. For this paper the interesting term-constructor is @{text "\<CASE>"}, |
400 |
which binds multiple type-, coercion- and term-variables.\label{corehas}} |
|
1667 | 401 |
\end{figure} |
1485
c004e7448dca
temporarily disabled tests in Nominal/ROOT
Christian Urban <urbanc@in.tum.de>
parents:
1484
diff
changeset
|
402 |
*} |
c004e7448dca
temporarily disabled tests in Nominal/ROOT
Christian Urban <urbanc@in.tum.de>
parents:
1484
diff
changeset
|
403 |
|
1493
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
404 |
section {* A Short Review of the Nominal Logic Work *} |
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
405 |
|
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
406 |
text {* |
1556 | 407 |
At its core, Nominal Isabelle is an adaption of the nominal logic work by |
408 |
Pitts \cite{Pitts03}. This adaptation for Isabelle/HOL is described in |
|
1694
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
409 |
\cite{HuffmanUrban10} (including proofs). We shall briefly review this work |
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
410 |
to aid the description of what follows. |
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
411 |
|
1711 | 412 |
Two central notions in the nominal logic work are sorted atoms and |
413 |
sort-respecting permutations of atoms. We will use the variables @{text "a, |
|
414 |
b, c, \<dots>"} to stand for atoms and @{text "p, q, \<dots>"} to stand for |
|
415 |
permutations. The sorts of atoms can be used to represent different kinds of |
|
416 |
variables, such as the term-, coercion- and type-variables in Core-Haskell, |
|
417 |
and it is assumed that there is an infinite supply of atoms for each |
|
418 |
sort. However, in order to simplify the description, we shall assume in what |
|
419 |
follows that there is only one sort of atoms. |
|
1493
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
420 |
|
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
421 |
Permutations are bijective functions from atoms to atoms that are |
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
422 |
the identity everywhere except on a finite number of atoms. There is a |
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
423 |
two-place permutation operation written |
1617
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
424 |
% |
1703 | 425 |
\begin{center} |
426 |
@{text "_ \<bullet> _ :: perm \<Rightarrow> \<beta> \<Rightarrow> \<beta>"} |
|
427 |
\end{center} |
|
1493
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
428 |
|
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
429 |
\noindent |
1628 | 430 |
in which the generic type @{text "\<beta>"} stands for the type of the object |
1694
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
431 |
over which the permutation |
1617
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
432 |
acts. In Nominal Isabelle, the identity permutation is written as @{term "0::perm"}, |
1690 | 433 |
the composition of two permutations @{term p} and @{term q} as \mbox{@{term "p + q"}}, |
1570 | 434 |
and the inverse permutation of @{term p} as @{text "- p"}. The permutation |
1703 | 435 |
operation is defined by induction over the type-hierarchy (see \cite{HuffmanUrban10}); |
436 |
for example as follows for products, lists, sets, functions and booleans: |
|
1702 | 437 |
% |
1703 | 438 |
\begin{equation}\label{permute} |
1694
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
439 |
\mbox{\begin{tabular}{@ {}cc@ {}} |
1690 | 440 |
\begin{tabular}{@ {}l@ {}} |
441 |
@{thm permute_prod.simps[no_vars, THEN eq_reflection]}\\[2mm] |
|
442 |
@{thm permute_list.simps(1)[no_vars, THEN eq_reflection]}\\ |
|
443 |
@{thm permute_list.simps(2)[no_vars, THEN eq_reflection]}\\ |
|
444 |
\end{tabular} & |
|
445 |
\begin{tabular}{@ {}l@ {}} |
|
446 |
@{thm permute_set_eq[no_vars, THEN eq_reflection]}\\ |
|
1694
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
447 |
@{text "p \<bullet> f \<equiv> \<lambda>x. p \<bullet> (f (- p \<bullet> x))"}\\ |
1690 | 448 |
@{thm permute_bool_def[no_vars, THEN eq_reflection]}\\ |
449 |
\end{tabular} |
|
1694
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
450 |
\end{tabular}} |
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
451 |
\end{equation} |
1690 | 452 |
|
453 |
\noindent |
|
1703 | 454 |
Concrete permutations are built up from swappings, written as \mbox{@{text "(a |
455 |
b)"}}, which are permutations that behave as follows: |
|
1617
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
456 |
% |
1703 | 457 |
\begin{center} |
458 |
@{text "(a b) = \<lambda>c. if a = c then b else if b = c then a else c"} |
|
459 |
\end{center} |
|
460 |
||
1570 | 461 |
The most original aspect of the nominal logic work of Pitts is a general |
1703 | 462 |
definition for the notion of the ``set of free variables of an object @{text |
1570 | 463 |
"x"}''. This notion, written @{term "supp x"}, is general in the sense that |
1628 | 464 |
it applies not only to lambda-terms (alpha-equated or not), but also to lists, |
1570 | 465 |
products, sets and even functions. The definition depends only on the |
466 |
permutation operation and on the notion of equality defined for the type of |
|
467 |
@{text x}, namely: |
|
1617
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
468 |
% |
1703 | 469 |
\begin{equation}\label{suppdef} |
470 |
@{thm supp_def[no_vars, THEN eq_reflection]} |
|
471 |
\end{equation} |
|
1493
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
472 |
|
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
473 |
\noindent |
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
474 |
There is also the derived notion for when an atom @{text a} is \emph{fresh} |
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
475 |
for an @{text x}, defined as |
1617
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
476 |
% |
1703 | 477 |
\begin{center} |
478 |
@{thm fresh_def[no_vars]} |
|
479 |
\end{center} |
|
1493
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
480 |
|
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
481 |
\noindent |
1517
62d6f7acc110
corrected the strong induction principle in the lambda-calculus case; gave a second (oartial) version that is more elegant
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
482 |
We also use for sets of atoms the abbreviation |
1703 | 483 |
@{thm (lhs) fresh_star_def[no_vars]}, defined as |
1517
62d6f7acc110
corrected the strong induction principle in the lambda-calculus case; gave a second (oartial) version that is more elegant
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
484 |
@{thm (rhs) fresh_star_def[no_vars]}. |
1493
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
485 |
A striking consequence of these definitions is that we can prove |
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
486 |
without knowing anything about the structure of @{term x} that |
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
487 |
swapping two fresh atoms, say @{text a} and @{text b}, leave |
1506
7c607df46a0a
slightly more in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1493
diff
changeset
|
488 |
@{text x} unchanged. |
7c607df46a0a
slightly more in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1493
diff
changeset
|
489 |
|
1711 | 490 |
\begin{property}\label{swapfreshfresh} |
1506
7c607df46a0a
slightly more in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1493
diff
changeset
|
491 |
@{thm[mode=IfThen] swap_fresh_fresh[no_vars]} |
1517
62d6f7acc110
corrected the strong induction principle in the lambda-calculus case; gave a second (oartial) version that is more elegant
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
492 |
\end{property} |
1506
7c607df46a0a
slightly more in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1493
diff
changeset
|
493 |
|
1711 | 494 |
While often the support of an object can be relatively easily |
495 |
described, for example\\[-6mm] |
|
1690 | 496 |
% |
497 |
\begin{eqnarray} |
|
1703 | 498 |
@{term "supp a"} & = & @{term "{a}"}\\ |
1690 | 499 |
@{term "supp (x, y)"} & = & @{term "supp x \<union> supp y"}\\ |
500 |
@{term "supp []"} & = & @{term "{}"}\\ |
|
1711 | 501 |
@{term "supp (x#xs)"} & = & @{term "supp x \<union> supp xs"}\\ |
1703 | 502 |
@{text "supp (f x)"} & @{text "\<subseteq>"} & @{term "supp (f, x)"}\label{suppfun}\\ |
503 |
@{term "supp b"} & = & @{term "{}"}\\ |
|
504 |
@{term "supp p"} & = & @{term "{a. p \<bullet> a \<noteq> a}"} |
|
1690 | 505 |
\end{eqnarray} |
506 |
||
507 |
\noindent |
|
1703 | 508 |
in some cases it can be difficult to establish the support precisely, and |
509 |
only give an approximation (see the case for function applications |
|
1711 | 510 |
above). Such approximations can be calculated with the notion |
1703 | 511 |
\emph{supports}, defined as follows |
1693 | 512 |
|
513 |
\begin{defn} |
|
514 |
A set @{text S} \emph{supports} @{text x} if for all atoms @{text a} and @{text b} |
|
515 |
not in @{text S} we have @{term "(a \<rightleftharpoons> b) \<bullet> x = x"}. |
|
516 |
\end{defn} |
|
1690 | 517 |
|
1693 | 518 |
\noindent |
1703 | 519 |
The main point of this definition is that we can show the following two properties. |
1693 | 520 |
|
1703 | 521 |
\begin{property}\label{supportsprop} |
522 |
{\it i)} @{thm[mode=IfThen] supp_is_subset[no_vars]}\\ |
|
1693 | 523 |
{\it ii)} @{thm supp_supports[no_vars]}. |
524 |
\end{property} |
|
525 |
||
526 |
Another important notion in the nominal logic work is \emph{equivariance}. |
|
1703 | 527 |
For a function @{text f}, say of type @{text "\<alpha> \<Rightarrow> \<beta>"}, to be equivariant |
1711 | 528 |
requires that every permutation leaves @{text f} unchanged, that is |
529 |
% |
|
530 |
\begin{equation}\label{equivariancedef} |
|
531 |
@{term "\<forall>p. p \<bullet> f = f"} |
|
532 |
\end{equation} |
|
533 |
||
534 |
\noindent or equivalently that a permutation applied to the application |
|
535 |
@{text "f x"} can be moved to the argument @{text x}. That means we have for |
|
536 |
all permutations @{text p} |
|
1703 | 537 |
% |
538 |
\begin{equation}\label{equivariance} |
|
1711 | 539 |
@{text "p \<bullet> f = f"} \;\;\;\textit{if and only if}\;\;\; |
540 |
@{text "p \<bullet> (f x) = f (p \<bullet> x)"} |
|
1703 | 541 |
\end{equation} |
1694
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
542 |
|
3bf0fddb7d44
clarified core-haskell example
Christian Urban <urbanc@in.tum.de>
parents:
1693
diff
changeset
|
543 |
\noindent |
1711 | 544 |
From equation \eqref{equivariancedef} and the definition of support shown in |
545 |
\eqref{suppdef}, we can be easily deduce that an equivariant function has |
|
546 |
empty support. |
|
547 |
||
548 |
Finally, the nominal logic work provides us with elegant means to rename |
|
549 |
binders. While in the older version of Nominal Isabelle, we used extensively |
|
550 |
Property~\ref{swapfreshfresh} for renaming single binders, this property |
|
551 |
proved unwieldy for dealing with multiple binders. For this the following |
|
552 |
generalisations turned out to be easier to use. |
|
553 |
||
554 |
\begin{property}\label{supppermeq} |
|
555 |
@{thm[mode=IfThen] supp_perm_eq[no_vars]} |
|
556 |
\end{property} |
|
1517
62d6f7acc110
corrected the strong induction principle in the lambda-calculus case; gave a second (oartial) version that is more elegant
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
557 |
|
1711 | 558 |
\begin{property} |
559 |
For a finite set @{text xs} and a finitely supported @{text x} with |
|
560 |
@{term "xs \<sharp>* x"} and also a finitely supported @{text c}, there |
|
561 |
exists a permutation @{text p} such that @{term "(p \<bullet> xs) \<sharp>* c"} and |
|
562 |
@{term "supp x \<sharp>* p"}. |
|
563 |
\end{property} |
|
564 |
||
565 |
\noindent |
|
566 |
The idea behind the second property is that given a finite set @{text xs} |
|
567 |
of binders (being bound in @{text x} which is ensured by the |
|
568 |
assumption @{term "xs \<sharp>* x"}), then there exists a permutation @{text p} such that |
|
569 |
the renamed binders @{term "p \<bullet> xs"} avoid the @{text c} (which can be arbitrarily chosen |
|
570 |
as long as it is finitely supported) and also does not affect anything |
|
571 |
in the support of @{text x} (that is @{term "supp x \<sharp>* p"}). The last |
|
572 |
fact and Property~\ref{supppermeq} allow us to ``rename'' just the binders |
|
573 |
in @{text x}, because @{term "p \<bullet> x = x"}. |
|
574 |
||
575 |
All properties given in this section are formalised in Isabelle/HOL and also |
|
576 |
most of them are described with proofs in \cite{HuffmanUrban10}. In the next section |
|
577 |
we make extensively use of the properties of @{text "supp"} and permutations |
|
578 |
for characterising alpha-equivalence in the presence of multiple binders. |
|
1703 | 579 |
|
1493
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
580 |
*} |
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
581 |
|
1485
c004e7448dca
temporarily disabled tests in Nominal/ROOT
Christian Urban <urbanc@in.tum.de>
parents:
1484
diff
changeset
|
582 |
|
1620 | 583 |
section {* General Binders\label{sec:binders} *} |
1485
c004e7448dca
temporarily disabled tests in Nominal/ROOT
Christian Urban <urbanc@in.tum.de>
parents:
1484
diff
changeset
|
584 |
|
1517
62d6f7acc110
corrected the strong induction principle in the lambda-calculus case; gave a second (oartial) version that is more elegant
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
585 |
text {* |
1587 | 586 |
In Nominal Isabelle, the user is expected to write down a specification of a |
587 |
term-calculus and then a reasoning infrastructure is automatically derived |
|
1617
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
588 |
from this specification (remember that Nominal Isabelle is a definitional |
1587 | 589 |
extension of Isabelle/HOL, which does not introduce any new axioms). |
1579 | 590 |
|
1657 | 591 |
In order to keep our work with deriving the reasoning infrastructure |
592 |
manageable, we will wherever possible state definitions and perform proofs |
|
593 |
on the user-level of Isabelle/HOL, as opposed to write custom ML-code that |
|
594 |
generates them anew for each specification. To that end, we will consider |
|
595 |
first pairs @{text "(as, x)"} of type @{text "(atom set) \<times> \<beta>"}. These pairs |
|
596 |
are intended to represent the abstraction, or binding, of the set @{text |
|
597 |
"as"} in the body @{text "x"}. |
|
1570 | 598 |
|
1657 | 599 |
The first question we have to answer is when the pairs @{text "(as, x)"} and |
600 |
@{text "(bs, y)"} are alpha-equivalent? (At the moment we are interested in |
|
601 |
the notion of alpha-equivalence that is \emph{not} preserved by adding |
|
602 |
vacuous binders.) To answer this, we identify four conditions: {\it i)} |
|
603 |
given a free-variable function @{text "fv"} of type \mbox{@{text "\<beta> \<Rightarrow> atom |
|
604 |
set"}}, then @{text x} and @{text y} need to have the same set of free |
|
605 |
variables; moreover there must be a permutation @{text p} such that {\it |
|
1687 | 606 |
ii)} @{text p} leaves the free variables of @{text x} and @{text y} unchanged, but |
1657 | 607 |
{\it iii)} ``moves'' their bound names so that we obtain modulo a relation, |
1662 | 608 |
say \mbox{@{text "_ R _"}}, two equivalent terms. We also require {\it iv)} that |
609 |
@{text p} makes the sets of abstracted atoms @{text as} and @{text bs} equal. The |
|
1657 | 610 |
requirements {\it i)} to {\it iv)} can be stated formally as follows: |
1556 | 611 |
% |
1572 | 612 |
\begin{equation}\label{alphaset} |
613 |
\begin{array}{@ {\hspace{10mm}}r@ {\hspace{2mm}}l} |
|
1687 | 614 |
\multicolumn{2}{l}{@{term "(as, x) \<approx>gen R fv p (bs, y)"}\hspace{2mm}@{text "\<equiv>"}\hspace{30mm}}\\[1mm] |
1657 | 615 |
& @{term "fv(x) - as = fv(y) - bs"}\\ |
616 |
@{text "\<and>"} & @{term "(fv(x) - as) \<sharp>* p"}\\ |
|
617 |
@{text "\<and>"} & @{text "(p \<bullet> x) R y"}\\ |
|
618 |
@{text "\<and>"} & @{term "(p \<bullet> as) = bs"}\\ |
|
1572 | 619 |
\end{array} |
1556 | 620 |
\end{equation} |
621 |
||
622 |
\noindent |
|
1657 | 623 |
Note that this relation is dependent on the permutation @{text |
624 |
"p"}. Alpha-equivalence between two pairs is then the relation where we |
|
625 |
existentially quantify over this @{text "p"}. Also note that the relation is |
|
626 |
dependent on a free-variable function @{text "fv"} and a relation @{text |
|
627 |
"R"}. The reason for this extra generality is that we will use |
|
628 |
$\approx_{\textit{set}}$ for both ``raw'' terms and alpha-equated terms. In |
|
629 |
the latter case, $R$ will be replaced by equality @{text "="} and for raw terms we |
|
630 |
will prove that @{text "fv"} is equal to the support of @{text |
|
631 |
x} and @{text y}. |
|
1572 | 632 |
|
633 |
The definition in \eqref{alphaset} does not make any distinction between the |
|
1579 | 634 |
order of abstracted variables. If we want this, then we can define alpha-equivalence |
635 |
for pairs of the form \mbox{@{text "(as, x)"}} with type @{text "(atom list) \<times> \<beta>"} |
|
636 |
as follows |
|
1572 | 637 |
% |
638 |
\begin{equation}\label{alphalist} |
|
639 |
\begin{array}{@ {\hspace{10mm}}r@ {\hspace{2mm}}l} |
|
1687 | 640 |
\multicolumn{2}{l}{@{term "(as, x) \<approx>lst R fv p (bs, y)"}\hspace{2mm}@{text "\<equiv>"}\hspace{30mm}}\\[1mm] |
1657 | 641 |
& @{term "fv(x) - (set as) = fv(y) - (set bs)"}\\ |
642 |
\wedge & @{term "(fv(x) - set as) \<sharp>* p"}\\ |
|
1572 | 643 |
\wedge & @{text "(p \<bullet> x) R y"}\\ |
1657 | 644 |
\wedge & @{term "(p \<bullet> as) = bs"}\\ |
1572 | 645 |
\end{array} |
646 |
\end{equation} |
|
647 |
||
648 |
\noindent |
|
1657 | 649 |
where @{term set} is a function that coerces a list of atoms into a set of atoms. |
650 |
Now the last clause ensures that the order of the binders matters. |
|
1556 | 651 |
|
1657 | 652 |
If we do not want to make any difference between the order of binders \emph{and} |
1579 | 653 |
also allow vacuous binders, then we keep sets of binders, but drop the fourth |
654 |
condition in \eqref{alphaset}: |
|
1572 | 655 |
% |
1579 | 656 |
\begin{equation}\label{alphares} |
1572 | 657 |
\begin{array}{@ {\hspace{10mm}}r@ {\hspace{2mm}}l} |
1687 | 658 |
\multicolumn{2}{l}{@{term "(as, x) \<approx>res R fv p (bs, y)"}\hspace{2mm}@{text "\<equiv>"}\hspace{30mm}}\\[1mm] |
1657 | 659 |
& @{term "fv(x) - as = fv(y) - bs"}\\ |
660 |
\wedge & @{term "(fv(x) - as) \<sharp>* p"}\\ |
|
1572 | 661 |
\wedge & @{text "(p \<bullet> x) R y"}\\ |
662 |
\end{array} |
|
663 |
\end{equation} |
|
1556 | 664 |
|
1662 | 665 |
It might be useful to consider some examples for how these definitions of alpha-equivalence |
666 |
pan out in practise. |
|
1579 | 667 |
For this consider the case of abstracting a set of variables over types (as in type-schemes). |
1657 | 668 |
We set @{text R} to be the equality and for @{text "fv(T)"} we define |
1572 | 669 |
|
670 |
\begin{center} |
|
1657 | 671 |
@{text "fv(x) = {x}"} \hspace{5mm} @{text "fv(T\<^isub>1 \<rightarrow> T\<^isub>2) = fv(T\<^isub>1) \<union> fv(T\<^isub>2)"} |
1572 | 672 |
\end{center} |
673 |
||
674 |
\noindent |
|
1657 | 675 |
Now recall the examples shown in \eqref{ex1}, \eqref{ex2} and |
1687 | 676 |
\eqref{ex3}. It can be easily checked that @{text "({x, y}, x \<rightarrow> y)"} and |
677 |
@{text "({y, x}, y \<rightarrow> x)"} are equal according to $\approx_{\textit{set}}$ and |
|
1657 | 678 |
$\approx_{\textit{res}}$ by taking @{text p} to be the swapping @{term "(x \<rightleftharpoons> |
679 |
y)"}. In case of @{text "x \<noteq> y"}, then @{text "([x, y], x \<rightarrow> y)"} |
|
1687 | 680 |
$\not\approx_{\textit{list}}$ @{text "([y, x], x \<rightarrow> y)"} since there is no permutation |
1657 | 681 |
that makes the lists @{text "[x, y]"} and @{text "[y, x]"} equal, and also |
682 |
leaves the type \mbox{@{text "x \<rightarrow> y"}} unchanged. Another example is |
|
1687 | 683 |
@{text "({x}, x)"} $\approx_{\textit{res}}$ @{text "({x, y}, x)"} which holds by |
1657 | 684 |
taking @{text p} to be the |
685 |
identity permutation. However, if @{text "x \<noteq> y"}, then @{text "({x}, x)"} |
|
1687 | 686 |
$\not\approx_{\textit{set}}$ @{text "({x, y}, x)"} since there is no permutation |
1657 | 687 |
that makes the |
1687 | 688 |
sets @{text "{x}"} and @{text "{x, y}"} equal (similarly for $\approx_{\textit{list}}$). |
689 |
It can also relatively easily be shown that all tree notions of alpha-equivalence |
|
690 |
coincide, if we only abstract a single atom. |
|
1579 | 691 |
|
1657 | 692 |
% looks too ugly |
693 |
%\noindent |
|
694 |
%Let $\star$ range over $\{set, res, list\}$. We prove next under which |
|
695 |
%conditions the $\approx\hspace{0.05mm}_\star^{\fv, R, p}$ are equivalence |
|
696 |
%relations and equivariant: |
|
697 |
% |
|
698 |
%\begin{lemma} |
|
699 |
%{\it i)} Given the fact that $x\;R\;x$ holds, then |
|
700 |
%$(as, x) \approx\hspace{0.05mm}^{\fv, R, 0}_\star (as, x)$. {\it ii)} Given |
|
701 |
%that @{text "(p \<bullet> x) R y"} implies @{text "(-p \<bullet> y) R x"}, then |
|
702 |
%$(as, x) \approx\hspace{0.05mm}^{\fv, R, p}_\star (bs, y)$ implies |
|
703 |
%$(bs, y) \approx\hspace{0.05mm}^{\fv, R, - p}_\star (as, x)$. {\it iii)} Given |
|
704 |
%that @{text "(p \<bullet> x) R y"} and @{text "(q \<bullet> y) R z"} implies |
|
705 |
%@{text "((q + p) \<bullet> x) R z"}, then $(as, x) \approx\hspace{0.05mm}^{\fv, R, p}_\star (bs, y)$ |
|
706 |
%and $(bs, y) \approx\hspace{0.05mm}^{\fv, R, q}_\star (cs, z)$ implies |
|
707 |
%$(as, x) \approx\hspace{0.05mm}^{\fv, R, q + p}_\star (cs, z)$. Given |
|
708 |
%@{text "(q \<bullet> x) R y"} implies @{text "(p \<bullet> (q \<bullet> x)) R (p \<bullet> y)"} and |
|
709 |
%@{text "p \<bullet> (fv x) = fv (p \<bullet> x)"} then @{text "p \<bullet> (fv y) = fv (p \<bullet> y)"}, then |
|
710 |
%$(as, x) \approx\hspace{0.05mm}^{\fv, R, q}_\star (bs, y)$ implies |
|
711 |
%$(p \;\isasymbullet\; as, p \;\isasymbullet\; x) \approx\hspace{0.05mm}^{\fv, R, q}_\star |
|
712 |
%(p \;\isasymbullet\; bs, p \;\isasymbullet\; y)$. |
|
713 |
%\end{lemma} |
|
714 |
||
715 |
%\begin{proof} |
|
716 |
%All properties are by unfolding the definitions and simple calculations. |
|
717 |
%\end{proof} |
|
718 |
||
719 |
||
1687 | 720 |
In the rest of this section we are going to introduce a type- and term-constructors |
721 |
for abstraction. For this we define |
|
1657 | 722 |
% |
723 |
\begin{equation} |
|
724 |
@{term "abs_set (as, x) (bs, x) \<equiv> \<exists>p. alpha_gen (as, x) equal supp p (bs, x)"} |
|
725 |
\end{equation} |
|
726 |
||
1579 | 727 |
\noindent |
1687 | 728 |
(similarly for $\approx_{\textit{abs\_list}}$ |
729 |
and $\approx_{\textit{abs\_res}}$). We can show that these relations are equivalence |
|
730 |
relations and equivariant. |
|
1579 | 731 |
|
1687 | 732 |
\begin{lemma}\label{alphaeq} The relations |
733 |
$\approx_{\textit{abs\_set}}$, |
|
734 |
$\approx_{\textit{abs\_list}}$ |
|
735 |
and $\approx_{\textit{abs\_res}}$ |
|
736 |
are equivalence |
|
1662 | 737 |
relations, and if @{term "abs_set (as, x) (bs, y)"} then also |
1687 | 738 |
@{term "abs_set (p \<bullet> as, p \<bullet> x) (p \<bullet> bs, p \<bullet> y)"} (similarly for |
739 |
the other two relations). |
|
1657 | 740 |
\end{lemma} |
741 |
||
742 |
\begin{proof} |
|
743 |
Reflexivity is by taking @{text "p"} to be @{text "0"}. For symmetry we have |
|
744 |
a permutation @{text p} and for the proof obligation take @{term "-p"}. In case |
|
1662 | 745 |
of transitivity, we have two permutations @{text p} and @{text q}, and for the |
746 |
proof obligation use @{text "q + p"}. All conditions are then by simple |
|
1657 | 747 |
calculations. |
748 |
\end{proof} |
|
749 |
||
750 |
\noindent |
|
1687 | 751 |
This lemma allows us to use our quotient package and introduce |
1662 | 752 |
new types @{text "\<beta> abs_set"}, @{text "\<beta> abs_res"} and @{text "\<beta> abs_list"} |
1687 | 753 |
representing alpha-equivalence classes of pairs. The elements in these types |
1657 | 754 |
we will, respectively, write as: |
755 |
||
756 |
\begin{center} |
|
757 |
@{term "Abs as x"} \hspace{5mm} |
|
758 |
@{term "Abs_lst as x"} \hspace{5mm} |
|
759 |
@{term "Abs_res as x"} |
|
760 |
\end{center} |
|
761 |
||
1662 | 762 |
\noindent |
1687 | 763 |
indicating that a set or list is abstracted in @{text x}. We will call the types |
764 |
\emph{abstraction types} and their elements \emph{abstractions}. The important |
|
765 |
property we need is a characterisation for the support of abstractions, namely |
|
1662 | 766 |
|
1687 | 767 |
\begin{thm}[Support of Abstractions]\label{suppabs} |
1703 | 768 |
Assuming @{text x} has finite support, then\\[-6mm] |
1662 | 769 |
\begin{center} |
1687 | 770 |
\begin{tabular}{l@ {\hspace{2mm}}c@ {\hspace{2mm}}l} |
771 |
@{thm (lhs) supp_abs(1)[no_vars]} & $=$ & @{thm (rhs) supp_abs(1)[no_vars]}\\ |
|
772 |
@{thm (lhs) supp_abs(2)[no_vars]} & $=$ & @{thm (rhs) supp_abs(2)[no_vars]}\\ |
|
773 |
@{thm (lhs) supp_abs(3)[no_vars]} & $=$ & @{thm (rhs) supp_abs(3)[no_vars]} |
|
774 |
\end{tabular} |
|
1662 | 775 |
\end{center} |
1687 | 776 |
\end{thm} |
1662 | 777 |
|
778 |
\noindent |
|
1703 | 779 |
We will only show the first equation as the others |
1687 | 780 |
follow similar arguments. By definition of the abstraction type @{text "abs_set"} |
781 |
we have |
|
782 |
% |
|
783 |
\begin{equation}\label{abseqiff} |
|
1703 | 784 |
@{thm (lhs) abs_eq_iff(1)[where bs="as" and cs="bs", no_vars]} \;\;\text{if and only if}\;\; |
1687 | 785 |
@{thm (rhs) abs_eq_iff(1)[where bs="as" and cs="bs", no_vars]} |
786 |
\end{equation} |
|
787 |
||
788 |
\noindent |
|
1703 | 789 |
and also |
790 |
% |
|
791 |
\begin{equation} |
|
792 |
@{thm permute_Abs[no_vars]} |
|
793 |
\end{equation} |
|
1662 | 794 |
|
1703 | 795 |
\noindent |
796 |
The last fact derives from the definition of permutations acting on pairs |
|
797 |
(see \eqref{permute}) and alpha-equivalence being equivariant (see Lemma~\ref{alphaeq}). |
|
798 |
||
799 |
With these two facts at our disposal, we can show the following lemma |
|
800 |
about swapping two atoms. |
|
801 |
||
1662 | 802 |
\begin{lemma} |
803 |
@{thm[mode=IfThen] abs_swap1(1)[no_vars]} |
|
804 |
\end{lemma} |
|
805 |
||
806 |
\begin{proof} |
|
1687 | 807 |
By using \eqref{abseqiff}, this lemma is straightforward when observing that |
808 |
the assumptions give us |
|
1662 | 809 |
@{term "(a \<rightleftharpoons> b) \<bullet> (supp x - bs) = (supp x - bs)"} and that @{text supp} |
1687 | 810 |
and set difference are equivariant. |
1662 | 811 |
\end{proof} |
1587 | 812 |
|
1687 | 813 |
\noindent |
814 |
This lemma gives us |
|
815 |
% |
|
816 |
\begin{equation}\label{halfone} |
|
817 |
@{thm abs_supports(1)[no_vars]} |
|
818 |
\end{equation} |
|
819 |
||
820 |
\noindent |
|
1703 | 821 |
which with Property~\ref{supportsprop} gives us one half of |
822 |
Thm~\ref{suppabs}. The other half is a bit more involved. For this we use a |
|
823 |
trick from \cite{Pitts04} and first define an auxiliary function |
|
1687 | 824 |
% |
825 |
\begin{center} |
|
1703 | 826 |
@{thm supp_gen.simps[THEN eq_reflection, no_vars]} |
1687 | 827 |
\end{center} |
828 |
||
1703 | 829 |
\noindent |
830 |
Using the second equation in \eqref{equivariance}, we can show that |
|
831 |
@{term "supp_gen"} is equivariant and therefore has empty support. This |
|
832 |
in turn means |
|
833 |
% |
|
834 |
\begin{center} |
|
835 |
@{thm (prem 1) aux_fresh(1)[where bs="as", no_vars]} |
|
836 |
\;\;implies\;\; |
|
837 |
@{thm (concl) aux_fresh(1)[where bs="as", no_vars]} |
|
838 |
\end{center} |
|
1687 | 839 |
|
840 |
\noindent |
|
1703 | 841 |
using \eqref{suppfun}. Since @{term "supp x"} is by definition equal |
842 |
to @{term "{a. \<not> a \<sharp> x}"} we can establish that |
|
843 |
% |
|
844 |
\begin{equation}\label{halftwo} |
|
845 |
@{thm (concl) supp_abs_subset1(1)[no_vars]} |
|
846 |
\end{equation} |
|
847 |
||
848 |
\noindent |
|
849 |
provided @{text x} has finite support (the precondition we need in order to show |
|
850 |
that for a finite set of atoms, we have @{thm (concl) supp_finite_atom_set[where S="bs", no_vars]}). |
|
851 |
||
852 |
Finally taking \eqref{halfone} and \eqref{halftwo} provides us with a proof |
|
853 |
of Theorem~\ref{suppabs}. The point of these general lemmas about abstractions is that we |
|
854 |
can define and prove properties about them conveniently on the Isabelle/HOL level, |
|
855 |
and in addition can use them in what |
|
856 |
follows next when we have to deal with binding in specifications of term-calculi. |
|
1517
62d6f7acc110
corrected the strong induction principle in the lambda-calculus case; gave a second (oartial) version that is more elegant
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
857 |
*} |
62d6f7acc110
corrected the strong induction principle in the lambda-calculus case; gave a second (oartial) version that is more elegant
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
858 |
|
1491
f970ca9b5bec
paper uses now a heap file - does not compile so long anymore
Christian Urban <urbanc@in.tum.de>
parents:
1485
diff
changeset
|
859 |
section {* Alpha-Equivalence and Free Variables *} |
f970ca9b5bec
paper uses now a heap file - does not compile so long anymore
Christian Urban <urbanc@in.tum.de>
parents:
1485
diff
changeset
|
860 |
|
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
861 |
text {* |
1703 | 862 |
Our choice of syntax for specifications of term-calculi is influenced by the existing |
1637 | 863 |
datatype package of Isabelle/HOL and by the syntax of the Ott-tool |
864 |
\cite{ott-jfp}. A specification is a collection of (possibly mutual |
|
865 |
recursive) type declarations, say @{text "ty"}$^\alpha_1$, \ldots, |
|
866 |
@{text ty}$^\alpha_n$, and an associated collection |
|
867 |
of binding functions, say @{text bn}$^\alpha_1$, \ldots, @{text |
|
868 |
bn}$^\alpha_m$. The syntax in Nominal Isabelle for such specifications is |
|
1693 | 869 |
roughly as follows: |
1628 | 870 |
% |
1619 | 871 |
\begin{equation}\label{scheme} |
1636 | 872 |
\mbox{\begin{tabular}{@ {\hspace{-5mm}}p{1.8cm}l} |
1617
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
873 |
type \mbox{declaration part} & |
1611 | 874 |
$\begin{cases} |
875 |
\mbox{\begin{tabular}{l} |
|
1637 | 876 |
\isacommand{nominal\_datatype} @{text ty}$^\alpha_1 = \ldots$\\ |
877 |
\isacommand{and} @{text ty}$^\alpha_2 = \ldots$\\ |
|
1587 | 878 |
$\ldots$\\ |
1637 | 879 |
\isacommand{and} @{text ty}$^\alpha_n = \ldots$\\ |
1611 | 880 |
\end{tabular}} |
881 |
\end{cases}$\\ |
|
1617
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
882 |
binding \mbox{function part} & |
1611 | 883 |
$\begin{cases} |
884 |
\mbox{\begin{tabular}{l} |
|
1637 | 885 |
\isacommand{with} @{text bn}$^\alpha_1$ \isacommand{and} \ldots \isacommand{and} @{text bn}$^\alpha_m$\\ |
1611 | 886 |
\isacommand{where}\\ |
1587 | 887 |
$\ldots$\\ |
1611 | 888 |
\end{tabular}} |
889 |
\end{cases}$\\ |
|
1619 | 890 |
\end{tabular}} |
891 |
\end{equation} |
|
1587 | 892 |
|
893 |
\noindent |
|
1637 | 894 |
Every type declaration @{text ty}$^\alpha_{1..n}$ consists of a collection of |
1611 | 895 |
term-constructors, each of which comes with a list of labelled |
1620 | 896 |
types that stand for the types of the arguments of the term-constructor. |
1637 | 897 |
For example a term-constructor @{text "C\<^sup>\<alpha>"} might have |
1611 | 898 |
|
899 |
\begin{center} |
|
1637 | 900 |
@{text "C\<^sup>\<alpha> label\<^isub>1::ty"}$'_1$ @{text "\<dots> label\<^isub>l::ty"}$'_l\;\;$ @{text "binding_clauses"} |
1611 | 901 |
\end{center} |
1587 | 902 |
|
1611 | 903 |
\noindent |
1637 | 904 |
whereby some of the @{text ty}$'_{1..l}$ (or their components) are contained in the collection |
905 |
of @{text ty}$^\alpha_{1..n}$ declared in \eqref{scheme}. In this case we will call the |
|
1636 | 906 |
corresponding argument a \emph{recursive argument}. The labels annotated on |
907 |
the types are optional and can be used in the (possibly empty) list of |
|
1637 | 908 |
\emph{binding clauses}. These clauses indicate the binders and their scope of |
909 |
in a term-constructor. They come in three \emph{modes}: |
|
1636 | 910 |
|
1587 | 911 |
|
1611 | 912 |
\begin{center} |
1617
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
913 |
\begin{tabular}{l} |
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
914 |
\isacommand{bind}\; {\it binders}\; \isacommand{in}\; {\it label}\\ |
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
915 |
\isacommand{bind\_set}\; {\it binders}\; \isacommand{in}\; {\it label}\\ |
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
916 |
\isacommand{bind\_res}\; {\it binders}\; \isacommand{in}\; {\it label}\\ |
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
917 |
\end{tabular} |
1611 | 918 |
\end{center} |
919 |
||
920 |
\noindent |
|
1636 | 921 |
The first mode is for binding lists of atoms (the order of binders matters); the second is for sets |
1637 | 922 |
of binders (the order does not matter, but the cardinality does) and the last is for |
1620 | 923 |
sets of binders (with vacuous binders preserving alpha-equivalence). |
924 |
||
925 |
In addition we distinguish between \emph{shallow} binders and \emph{deep} |
|
926 |
binders. Shallow binders are of the form \isacommand{bind}\; {\it label}\; |
|
1637 | 927 |
\isacommand{in}\; {\it label'} (similar for the other two modes). The |
1620 | 928 |
restriction we impose on shallow binders is that the {\it label} must either |
929 |
refer to a type that is an atom type or to a type that is a finite set or |
|
1637 | 930 |
list of an atom type. Two examples for the use of shallow binders are the |
931 |
specification of lambda-terms, where a single name is bound, and of |
|
932 |
type-schemes, where a finite set of names is bound: |
|
1611 | 933 |
|
934 |
\begin{center} |
|
1612 | 935 |
\begin{tabular}{@ {}cc@ {}} |
936 |
\begin{tabular}{@ {}l@ {\hspace{-1mm}}} |
|
937 |
\isacommand{nominal\_datatype} {\it lam} =\\ |
|
938 |
\hspace{5mm}\phantom{$\mid$} Var\;{\it name}\\ |
|
939 |
\hspace{5mm}$\mid$ App\;{\it lam}\;{\it lam}\\ |
|
940 |
\hspace{5mm}$\mid$ Lam\;{\it x::name}\;{\it t::lam}\\ |
|
1617
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
941 |
\hspace{21mm}\isacommand{bind} {\it x} \isacommand{in} {\it t}\\ |
1611 | 942 |
\end{tabular} & |
1612 | 943 |
\begin{tabular}{@ {}l@ {}} |
944 |
\isacommand{nominal\_datatype} {\it ty} =\\ |
|
945 |
\hspace{5mm}\phantom{$\mid$} TVar\;{\it name}\\ |
|
946 |
\hspace{5mm}$\mid$ TFun\;{\it ty}\;{\it ty}\\ |
|
1617
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
947 |
\isacommand{and} {\it tsc} = All\;{\it xs::(name fset)}\;{\it T::ty}\\ |
1619 | 948 |
\hspace{24mm}\isacommand{bind\_res} {\it xs} \isacommand{in} {\it T}\\ |
1611 | 949 |
\end{tabular} |
950 |
\end{tabular} |
|
951 |
\end{center} |
|
1587 | 952 |
|
1612 | 953 |
\noindent |
1637 | 954 |
Note that in this specification \emph{name} refers to an atom type. |
1628 | 955 |
If we have shallow binders that ``share'' a body, for instance $t$ in |
1637 | 956 |
the following term-constructor |
1620 | 957 |
|
958 |
\begin{center} |
|
959 |
\begin{tabular}{ll} |
|
1637 | 960 |
\it {\rm Foo} x::name y::name t::lam & \it |
1620 | 961 |
\isacommand{bind}\;x\;\isacommand{in}\;t,\; |
962 |
\isacommand{bind}\;y\;\isacommand{in}\;t |
|
963 |
\end{tabular} |
|
964 |
\end{center} |
|
965 |
||
966 |
\noindent |
|
1628 | 967 |
then we have to make sure the modes of the binders agree. We cannot |
1637 | 968 |
have, for instance, in the first binding clause the mode \isacommand{bind} |
969 |
and in the second \isacommand{bind\_set}. |
|
1620 | 970 |
|
971 |
A \emph{deep} binder uses an auxiliary binding function that ``picks'' out |
|
1636 | 972 |
the atoms in one argument of the term-constructor, which can be bound in |
1628 | 973 |
other arguments and also in the same argument (we will |
1637 | 974 |
call such binders \emph{recursive}, see below). |
1620 | 975 |
The binding functions are expected to return either a set of atoms |
976 |
(for \isacommand{bind\_set} and \isacommand{bind\_res}) or a list of atoms |
|
977 |
(for \isacommand{bind}). They can be defined by primitive recursion over the |
|
978 |
corresponding type; the equations must be given in the binding function part of |
|
1628 | 979 |
the scheme shown in \eqref{scheme}. For example for a calculus containing lets |
1637 | 980 |
with tuple patterns, you might specify |
1617
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
981 |
|
1619 | 982 |
\begin{center} |
983 |
\begin{tabular}{l} |
|
984 |
\isacommand{nominal\_datatype} {\it trm} =\\ |
|
985 |
\hspace{5mm}\phantom{$\mid$} Var\;{\it name}\\ |
|
986 |
\hspace{5mm}$\mid$ App\;{\it trm}\;{\it trm}\\ |
|
987 |
\hspace{5mm}$\mid$ Lam\;{\it x::name}\;{\it t::trm} |
|
988 |
\;\;\isacommand{bind} {\it x} \isacommand{in} {\it t}\\ |
|
989 |
\hspace{5mm}$\mid$ Let\;{\it p::pat}\;{\it trm}\; {\it t::trm} |
|
1636 | 990 |
\;\;\isacommand{bind} {\it bn(p)} \isacommand{in} {\it t}\\ |
1619 | 991 |
\isacommand{and} {\it pat} =\\ |
1637 | 992 |
\hspace{5mm}\phantom{$\mid$} PNil\\ |
993 |
\hspace{5mm}$\mid$ PVar\;{\it name}\\ |
|
994 |
\hspace{5mm}$\mid$ PTup\;{\it pat}\;{\it pat}\\ |
|
1636 | 995 |
\isacommand{with} {\it bn::pat $\Rightarrow$ atom list}\\ |
1637 | 996 |
\isacommand{where} $\textit{bn}(\textrm{PNil}) = []$\\ |
997 |
\hspace{5mm}$\mid$ $\textit{bn}(\textrm{PVar}\;x) = [\textit{atom}\; x]$\\ |
|
998 |
\hspace{5mm}$\mid$ $\textit{bn}(\textrm{PTup}\;p_1\;p_2) = \textit{bn}(p_1)\; @\;\textit{bn}(p_2)$\\ |
|
1619 | 999 |
\end{tabular} |
1000 |
\end{center} |
|
1617
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
1001 |
|
1619 | 1002 |
\noindent |
1637 | 1003 |
In this specification the function @{text "bn"} determines which atoms of @{text p} are |
1004 |
bound in the argument @{text "t"}. Note that the second last clause the function @{text "atom"} |
|
1005 |
coerces a name into the generic atom type of Nominal Isabelle. This allows |
|
1006 |
us to treat binders of different atom type uniformly. |
|
1007 |
||
1008 |
As will shortly become clear, we cannot return an atom in a binding function |
|
1009 |
that is also bound in the corresponding term-constructor. That means in the |
|
1010 |
example above that the term-constructors PVar and PTup must not have a |
|
1011 |
binding clause. In the present version of Nominal Isabelle, we also adopted |
|
1012 |
the restriction from the Ott-tool that binding functions can only return: |
|
1013 |
the empty set or empty list (as in case PNil), a singleton set or singleton |
|
1014 |
list containing an atom (case PVar), or unions of atom sets or appended atom |
|
1015 |
lists (case PTup). This restriction will simplify proofs later on. |
|
1016 |
The the most drastic restriction we have to impose on deep binders is that |
|
1017 |
we cannot have ``overlapping'' deep binders. Consider for example the |
|
1018 |
term-constructors: |
|
1617
99cee15cb5ff
more tuning in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1613
diff
changeset
|
1019 |
|
1620 | 1020 |
\begin{center} |
1021 |
\begin{tabular}{ll} |
|
1637 | 1022 |
\it {\rm Foo} p::pat q::pat t::trm & \it \isacommand{bind}\;bn(p)\;\isacommand{in}\;t,\; |
1620 | 1023 |
\isacommand{bind}\;bn(q)\;\isacommand{in}\;t\\ |
1637 | 1024 |
\it {\rm Foo}$'$x::name p::pat t::trm & \it \it \isacommand{bind}\;x\;\isacommand{in}\;t,\; |
1620 | 1025 |
\isacommand{bind}\;bn(p)\;\isacommand{in}\;t |
1026 |
||
1027 |
\end{tabular} |
|
1028 |
\end{center} |
|
1029 |
||
1030 |
\noindent |
|
1637 | 1031 |
In the first case we bind all atoms from the pattern @{text p} in @{text t} |
1032 |
and also all atoms from @{text q} in @{text t}. As a result we have no way |
|
1033 |
to determine whether the binder came from the binding function @{text |
|
1034 |
"bn(p)"} or @{text "bn(q)"}. Similarly in the second case. There the binder |
|
1035 |
@{text "bn(p)"} overlaps with the shallow binder @{text x}. The reason why |
|
1693 | 1036 |
we must exclude such specifications is that they cannot be represent by |
1637 | 1037 |
the general binders described in Section \ref{sec:binders}. However |
1038 |
the following two term-constructors are allowed |
|
1620 | 1039 |
|
1040 |
\begin{center} |
|
1041 |
\begin{tabular}{ll} |
|
1637 | 1042 |
\it {\rm Bar} p::pat t::trm s::trm & \it \isacommand{bind}\;bn(p)\;\isacommand{in}\;t,\; |
1620 | 1043 |
\isacommand{bind}\;bn(p)\;\isacommand{in}\;s\\ |
1637 | 1044 |
\it {\rm Bar}$'$p::pat t::trm & \it \isacommand{bind}\;bn(p)\;\isacommand{in}\;p,\; |
1620 | 1045 |
\isacommand{bind}\;bn(p)\;\isacommand{in}\;t\\ |
1046 |
\end{tabular} |
|
1047 |
\end{center} |
|
1048 |
||
1049 |
\noindent |
|
1628 | 1050 |
since there is no overlap of binders. |
1619 | 1051 |
|
1637 | 1052 |
Note that in the last example we wrote {\it\isacommand{bind}\;bn(p)\;\isacommand{in}\;p}. |
1693 | 1053 |
Whenever such a binding clause is present, we will call the binder \emph{recursive}. |
1637 | 1054 |
To see the purpose for this, consider ``plain'' Lets and Let\_recs: |
1636 | 1055 |
|
1056 |
\begin{center} |
|
1637 | 1057 |
\begin{tabular}{@ {}l@ {}} |
1636 | 1058 |
\isacommand{nominal\_datatype} {\it trm} =\\ |
1059 |
\hspace{5mm}\phantom{$\mid$}\ldots\\ |
|
1060 |
\hspace{5mm}$\mid$ Let\;{\it a::assn}\; {\it t::trm} |
|
1061 |
\;\;\isacommand{bind} {\it bn(a)} \isacommand{in} {\it t}\\ |
|
1637 | 1062 |
\hspace{5mm}$\mid$ Let\_rec\;{\it a::assn}\; {\it t::trm} |
1063 |
\;\;\isacommand{bind} {\it bn(a)} \isacommand{in} {\it t}, |
|
1064 |
\isacommand{bind} {\it bn(a)} \isacommand{in} {\it a}\\ |
|
1636 | 1065 |
\isacommand{and} {\it assn} =\\ |
1066 |
\hspace{5mm}\phantom{$\mid$} ANil\\ |
|
1067 |
\hspace{5mm}$\mid$ ACons\;{\it name}\;{\it trm}\;{\it assn}\\ |
|
1068 |
\isacommand{with} {\it bn::assn $\Rightarrow$ atom list}\\ |
|
1069 |
\isacommand{where} $bn(\textrm{ANil}) = []$\\ |
|
1070 |
\hspace{5mm}$\mid$ $bn(\textrm{ACons}\;x\;t\;a) = [atom\; x]\; @\; bn(a)$\\ |
|
1071 |
\end{tabular} |
|
1072 |
\end{center} |
|
1073 |
||
1074 |
\noindent |
|
1637 | 1075 |
The difference is that with Let we only want to bind the atoms @{text |
1076 |
"bn(a)"} in the term @{text t}, but with Let\_rec we also want to bind the atoms |
|
1077 |
inside the assignment. This requires recursive binders and also has |
|
1078 |
consequences for the free variable function and alpha-equivalence relation, |
|
1079 |
which we are going to explain in the rest of this section. |
|
1080 |
||
1081 |
Having dealt with all syntax matters, the problem now is how we can turn |
|
1082 |
specifications into actual type definitions in Isabelle/HOL and then |
|
1083 |
establish a reasoning infrastructure for them. Because of the problem |
|
1084 |
Pottier and Cheney pointed out, we cannot in general re-arrange arguments of |
|
1085 |
term-constructors so that binders and their bodies are next to each other, and |
|
1086 |
then use the type constructors @{text "abs_set"}, @{text "abs_res"} and |
|
1087 |
@{text "abs_list"} from Section \ref{sec:binders}. Therefore we will first |
|
1088 |
extract datatype definitions from the specification and then define an |
|
1693 | 1089 |
alpha-equivalence relation over them. |
1637 | 1090 |
|
1091 |
||
1092 |
The datatype definition can be obtained by just stripping off the |
|
1093 |
binding clauses and the labels on the types. We also have to invent |
|
1094 |
new names for the types @{text "ty\<^sup>\<alpha>"} and term-constructors @{text "C\<^sup>\<alpha>"} |
|
1095 |
given by user. In our implementation we just use an affix like |
|
1636 | 1096 |
|
1097 |
\begin{center} |
|
1637 | 1098 |
@{text "ty\<^sup>\<alpha> \<mapsto> ty_raw"} \hspace{7mm} @{text "C\<^sup>\<alpha> \<mapsto> C_raw"} |
1636 | 1099 |
\end{center} |
1100 |
||
1101 |
\noindent |
|
1637 | 1102 |
The resulting datatype definition is legal in Isabelle/HOL provided the datatypes are |
1103 |
non-empty and the types in the constructors only occur in positive |
|
1693 | 1104 |
position (see \cite{} for an indepth explanation of the datatype package |
1637 | 1105 |
in Isabelle/HOL). We then define the user-specified binding |
1106 |
functions by primitive recursion over the raw datatypes. We can also |
|
1107 |
easily define a permutation operation by primitive recursion so that for each |
|
1108 |
term constructor @{text "C_raw ty\<^isub>1 \<dots> ty\<^isub>n"} we have that |
|
1587 | 1109 |
|
1628 | 1110 |
\begin{center} |
1637 | 1111 |
@{text "p \<bullet> (C_raw x\<^isub>1 \<dots> x\<^isub>n) \<equiv> C_raw (p \<bullet> x\<^isub>1) \<dots> (p \<bullet> x\<^isub>n)"} |
1628 | 1112 |
\end{center} |
1113 |
||
1114 |
\noindent |
|
1637 | 1115 |
From this definition we can easily show that the raw datatypes are |
1116 |
all permutation types (Def ??) by a simple structural induction over |
|
1117 |
the @{text "ty_raw"}s. |
|
1118 |
||
1693 | 1119 |
The first non-trivial step we have to perform is the generation free-variable |
1637 | 1120 |
functions from the specifications. Given types @{text "ty\<^isub>1, \<dots>, ty\<^isub>n"} |
1121 |
we need to define the free-variable functions |
|
1122 |
||
1123 |
\begin{center} |
|
1124 |
@{text "fv_ty\<^isub>1 :: ty\<^isub>1 \<Rightarrow> atom set \<dots> fv_ty\<^isub>n :: ty\<^isub>n \<Rightarrow> atom set"} |
|
1125 |
\end{center} |
|
1126 |
||
1127 |
\noindent |
|
1704 | 1128 |
We define them together with the auxiliary free variable functions for |
1705 | 1129 |
binding functions. Given binding functions of types |
1130 |
@{text "bn\<^isub>1 :: ty\<^isub>i\<^isub>1 \<Rightarrow> \<dots> \<dots> bn\<^isub>m :: ty\<^isub>i\<^isub>m \<Rightarrow> \<dots>"} we need to define |
|
1628 | 1131 |
|
1637 | 1132 |
\begin{center} |
1704 | 1133 |
@{text "fv_bn\<^isub>1 :: ty\<^isub>i\<^isub>1 \<Rightarrow> atom set \<dots> fv_bn\<^isub>m :: ty\<^isub>i\<^isub>m \<Rightarrow> atom set"} |
1637 | 1134 |
\end{center} |
1636 | 1135 |
|
1637 | 1136 |
\noindent |
1137 |
The basic idea behind these free-variable functions is to collect all atoms |
|
1138 |
that are not bound in a term constructor, but because of the rather |
|
1139 |
complicated binding mechanisms the details are somewhat involved. |
|
1140 |
||
1141 |
Given a term-constructor @{text "C_raw ty\<^isub>1 \<dots> ty\<^isub>n"}, of type @{text ty} together with |
|
1142 |
some binding clauses, the function @{text "fv_ty (C_raw x\<^isub>1 \<dots> x\<^isub>n)"} will be |
|
1143 |
the union of the values defined below for each argument, say @{text "x\<^isub>i"} with type @{text "ty\<^isub>i"}. |
|
1144 |
From the binding clause of this term constructor, we can determine whether the |
|
1145 |
argument @{text "x\<^isub>i"} is a shallow or deep binder, and in the latter case also |
|
1146 |
whether it is a recursive or non-recursive of a binder. In these cases the value is: |
|
1628 | 1147 |
|
1148 |
\begin{center} |
|
1636 | 1149 |
\begin{tabular}{cp{7cm}} |
1150 |
$\bullet$ & @{term "{}"} provided @{text "x\<^isub>i"} is a shallow binder\\ |
|
1704 | 1151 |
$\bullet$ & @{text "fv_bn\<^isub>j x\<^isub>i"} provided @{text "x\<^isub>i"} is a deep |
1152 |
non-recursive binder with the auxiliary function @{text "bn\<^isub>j"}\\ |
|
1153 |
$\bullet$ & @{text "fv_ty\<^isub>i x\<^isub>i - bn\<^isub>j x\<^isub>i"} provided @{text "x\<^isub>i"} is |
|
1154 |
a deep recursive binder with the auxiliary function @{text "bn\<^isub>j"} |
|
1628 | 1155 |
\end{tabular} |
1156 |
\end{center} |
|
1157 |
||
1636 | 1158 |
\noindent |
1637 | 1159 |
In case the argument @{text "x\<^isub>i"} is not a binder, it might be a body of |
1704 | 1160 |
one or more abstractions. Let @{text "bnds"} be the bound atoms computed |
1709 | 1161 |
as follows: If @{text "x\<^isub>i"} is not a body of an abstraction @{term "{}"}. |
1704 | 1162 |
Otherwise there are two cases: either the |
1163 |
corresponding binders are all shallow or there is a single deep binder. |
|
1164 |
In the former case we build the union of all shallow binders; in the |
|
1636 | 1165 |
later case we just take set or list of atoms the specified binding |
1704 | 1166 |
function returns. With @{text "bnds"} computed as above the value of |
1709 | 1167 |
for @{text "x\<^isub>i"} is given by: |
1168 |
||
1636 | 1169 |
\begin{center} |
1170 |
\begin{tabular}{cp{7cm}} |
|
1171 |
$\bullet$ & @{text "{atom x\<^isub>i} - bnds"} provided @{term "x\<^isub>i"} is an atom\\ |
|
1172 |
$\bullet$ & @{text "(atoms x\<^isub>i) - bnds"} provided @{term "x\<^isub>i"} is a set of atoms\\ |
|
1657 | 1173 |
$\bullet$ & @{text "(atoms (set x\<^isub>i)) - bnds"} provided @{term "x\<^isub>i"} is a list of atoms\\ |
1709 | 1174 |
$\bullet$ & @{text "(fv_ty\<^isub>m x\<^isub>i) - bnds"} provided @{term "x\<^isub>i"} is one of the datatypes |
1175 |
we are defining, with the free variable function @{text "fv_ty\<^isub>m"}\\ |
|
1176 |
$\bullet$ & @{text "(fv\<^isup>\<alpha> x\<^isub>i) - bnds"} provided @{term "x\<^isub>i"} is a defined nominal datatype |
|
1177 |
with a free variable function @{text "fv\<^isup>\<alpha>"}\\\\ |
|
1178 |
$\bullet$ & @{term "{}"} otherwise |
|
1636 | 1179 |
\end{tabular} |
1180 |
\end{center} |
|
1628 | 1181 |
|
1704 | 1182 |
\noindent Next, for each binding function @{text "bn"} we define a |
1183 |
free variable function @{text "fv_bn"}. The basic idea behind this |
|
1184 |
function is to compute all the free atoms under this binding |
|
1185 |
function. So given that @{text "bn"} is a binding function for type |
|
1186 |
@{text "ty\<^isub>i"} it will be the same as @{text "fv_ty\<^isub>i"} with the |
|
1187 |
omission of the arguments present in @{text "bn"}. |
|
1637 | 1188 |
|
1704 | 1189 |
For a binding function clause @{text "bn (C_raw x\<^isub>1 \<dots> x\<^isub>n) = rhs"}, |
1190 |
we define @{text "fv_bn"} to be the union of the values calculated |
|
1191 |
for @{text "x\<^isub>j"} as follows: |
|
1637 | 1192 |
|
1193 |
\begin{center} |
|
1194 |
\begin{tabular}{cp{7cm}} |
|
1709 | 1195 |
$\bullet$ & @{term "{}"} provided @{term "x\<^isub>j"} occurs in @{text "rhs"} and is an atom, |
1196 |
atom list or atom set\\ |
|
1704 | 1197 |
$\bullet$ & @{text "fv_bn\<^isub>m x\<^isub>j"} provided @{term "x\<^isub>j"} occurs in @{text "rhs"} |
1198 |
with the recursive call @{text "bn\<^isub>m x\<^isub>j"}\\ |
|
1709 | 1199 |
$\bullet$ & @{text "atoms x\<^isub>j"} provided @{term "x\<^isub>j"} is a set of atoms not in @{text "rhs"}\\ |
1200 |
$\bullet$ & @{term "atoml x\<^isub>j"} provided @{term "x\<^isub>j"} is a list of atoms not in @{text "rhs"}\\ |
|
1201 |
$\bullet$ & @{text "fv_ty\<^isub>i x\<^isub>j"} provided @{term "x\<^isub>j"} is not in @{text "rhs"} and is |
|
1202 |
one of the datatypes |
|
1203 |
we are defining, with the free variable function @{text "fv_ty\<^isub>m"}\\ |
|
1204 |
$\bullet$ & @{text "fv_ty\<^isup>\<alpha> x\<^isub>j - bnds"} provided @{term "x\<^isub>j"} is not in @{text "rhs"} |
|
1205 |
and is an existing nominal datatype with the free variable function @{text "fv\<^isup>\<alpha>"}\\ |
|
1706 | 1206 |
$\bullet$ & @{term "{}"} otherwise |
1637 | 1207 |
\end{tabular} |
1208 |
\end{center} |
|
1209 |
||
1705 | 1210 |
We then define the alpha equivalence relations. For the types @{text "ty\<^isub>1, \<dots>, ty\<^isub>n"} |
1211 |
we need to define |
|
1212 |
||
1213 |
\begin{center} |
|
1214 |
@{text "\<approx>\<^isub>1 :: ty\<^isub>1 \<Rightarrow> ty\<^isub>1 \<Rightarrow> bool \<dots> \<approx>\<^isub>n :: ty\<^isub>n \<Rightarrow> ty\<^isub>n \<Rightarrow> bool"} |
|
1215 |
\end{center} |
|
1216 |
||
1217 |
\noindent |
|
1218 |
together with the auxiliary equivalences for binding functions. Given binding |
|
1219 |
functions for types @{text "bn\<^isub>1 :: ty\<^isub>i\<^isub>1 \<Rightarrow> \<dots> \<dots> bn\<^isub>m :: ty\<^isub>i\<^isub>m \<Rightarrow> \<dots>"} we need to define |
|
1220 |
\begin{center} |
|
1221 |
@{text "\<approx>bn\<^isub>1 :: ty\<^isub>i\<^isub>1 \<Rightarrow> ty\<^isub>i\<^isub>1 \<Rightarrow> bool \<dots> \<approx>bn\<^isub>n :: ty\<^isub>i\<^isub>m \<Rightarrow> ty\<^isub>i\<^isub>m \<Rightarrow> bool"} |
|
1222 |
\end{center} |
|
1223 |
||
1710 | 1224 |
Given a term-constructor @{text "C_raw ty\<^isub>1 \<dots> ty\<^isub>n"}, of a type @{text ty}, two instances |
1225 |
of this constructor are alpha-equivalent @{text "C_raw x\<^isub>1 \<dots> x\<^isub>n \<approx> C_raw y\<^isub>1 \<dots> y\<^isub>n"} if there |
|
1707
70c5e688f677
Change @{text} to @{term}
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
1706
diff
changeset
|
1226 |
exist permutations @{text "\<pi>\<^isub>1 \<dots> \<pi>\<^isub>p"} (one for each bound argument) such that |
1710 | 1227 |
the conjunction of equivalences defined below for each argument pair @{text "x\<^isub>j"}, @{text "y\<^isub>j"} holds. |
1706 | 1228 |
For an argument pair @{text "x\<^isub>j"}, @{text "y\<^isub>j"} this holds if: |
1229 |
||
1230 |
\begin{center} |
|
1231 |
\begin{tabular}{cp{7cm}} |
|
1232 |
$\bullet$ & @{text "x\<^isub>j"} is a shallow binder\\ |
|
1233 |
$\bullet$ & @{text "x\<^isub>j \<approx>bn\<^isub>m y\<^isub>j"} provided @{text "x\<^isub>j"} is a deep non-recursive binder |
|
1234 |
with the auxiliary binding function @{text "bn\<^isub>m"}\\ |
|
1707
70c5e688f677
Change @{text} to @{term}
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
1706
diff
changeset
|
1235 |
$\bullet$ & @{term "(bn\<^isub>m x\<^isub>j, (x\<^isub>j, x\<^isub>n)) \<approx>gen R fvs \<pi> (bn\<^isub>m y\<^isub>j, (y\<^isub>j, y\<^isub>n))"} |
70c5e688f677
Change @{text} to @{term}
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
1706
diff
changeset
|
1236 |
provided @{term "x\<^isub>j"} is a deep recursive binder with the auxiliary binding |
70c5e688f677
Change @{text} to @{term}
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
1706
diff
changeset
|
1237 |
function @{text "bn\<^isub>m"} and permutation @{text "\<pi>"}, @{term "fvs"} is a compound |
70c5e688f677
Change @{text} to @{term}
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
1706
diff
changeset
|
1238 |
free variable function returning the union of appropriate @{term "fv_ty\<^isub>x"} and |
1710 | 1239 |
@{term "R"} is the composition of equivalence relations @{text "\<approx>"} and @{text "\<approx>\<^isub>n"}\\ |
1706 | 1240 |
$\bullet$ & @{text "x\<^isub>j"} has a deep recursive binding\\ |
1713
a3f923d88215
close the missing parenthesis on both sides.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
1712
diff
changeset
|
1241 |
$\bullet$ & @{term "({x\<^isub>n}, x\<^isub>j) \<approx>gen R fv_ty \<pi> ({y\<^isub>n}, y\<^isub>j)"} provided @{text "x\<^isub>j"} has |
1710 | 1242 |
a shallow binder @{text "x\<^isub>n"} with permutation @{text "\<pi>"}, @{term "R"} is the |
1707
70c5e688f677
Change @{text} to @{term}
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
1706
diff
changeset
|
1243 |
alpha-equivalence for @{term "x\<^isub>j"} |
70c5e688f677
Change @{text} to @{term}
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
1706
diff
changeset
|
1244 |
and @{term "fv_ty"} is the free variable function for @{term "x\<^isub>j"}\\ |
1710 | 1245 |
$\bullet$ & @{term "(bn\<^isub>m x\<^isub>n, x\<^isub>j) \<approx>gen R fv_ty \<pi> (bn\<^isub>m y\<^isub>n, y\<^isub>j)"} provided @{text "x\<^isub>j"} |
1246 |
has a deep non-recursive binder @{text "bn\<^isub>m x\<^isub>n"} with permutation @{text "\<pi>"}, @{term "R"} is the |
|
1707
70c5e688f677
Change @{text} to @{term}
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
1706
diff
changeset
|
1247 |
alpha-equivalence for @{term "x\<^isub>j"} |
70c5e688f677
Change @{text} to @{term}
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
1706
diff
changeset
|
1248 |
and @{term "fv_ty"} is the free variable function for @{term "x\<^isub>j"}\\ |
1706 | 1249 |
$\bullet$ & @{text "x\<^isub>j \<approx>\<^isub>j y\<^isub>j"} for a nominal datatype with no bindings (this includes |
1250 |
the types being defined, raw)\\ |
|
1251 |
$\bullet$ & @{text "x\<^isub>j = y\<^isub>j"} otherwise\\ |
|
1252 |
\end{tabular} |
|
1253 |
\end{center} |
|
1705 | 1254 |
|
1708 | 1255 |
The alpha-equivalence relations for binding functions are similar to the alpha-equivalences |
1256 |
for their respective types, the difference is that they ommit checking the arguments that |
|
1257 |
are bound. We assumed that there are no bindings in the type on which the binding function |
|
1258 |
is defined so, there are no permutations involved. For a binding function clause |
|
1710 | 1259 |
@{text "bn (C_raw x\<^isub>1 \<dots> x\<^isub>n) = rhs"}, two instances of the constructor are equivalent |
1260 |
@{text "C_raw x\<^isub>1 \<dots> x\<^isub>n \<approx> C_raw y\<^isub>1 \<dots> y\<^isub>n"} if: |
|
1708 | 1261 |
\begin{center} |
1262 |
\begin{tabular}{cp{7cm}} |
|
1263 |
$\bullet$ & @{text "x\<^isub>j"} is not a nominal datatype and occurs in @{text "rhs"}\\ |
|
1264 |
$\bullet$ & @{text "x\<^isub>j = y\<^isub>j"} provided @{text "x\<^isub>j"} is not a nominal datatype and does not occur in @{text "rhs"}\\ |
|
1265 |
$\bullet$ & @{text "x\<^isub>j \<approx>bn\<^isub>m y\<^isub>j"} provided @{text "x\<^isub>j"} is a nominal datatype occuring in @{text "rhs"} |
|
1266 |
under the binding function @{text "bn\<^isub>m"}\\ |
|
1267 |
$\bullet$ & @{text "x\<^isub>j \<approx> y\<^isub>j"} otherwise\\ |
|
1268 |
\end{tabular} |
|
1269 |
\end{center} |
|
1270 |
||
1587 | 1271 |
*} |
1272 |
||
1637 | 1273 |
section {* The Lifting of Definitions and Properties *} |
1587 | 1274 |
|
1275 |
text {* |
|
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
1276 |
Restrictions |
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
1277 |
|
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
1278 |
\begin{itemize} |
1572 | 1279 |
\item non-emptiness |
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
1280 |
\item positive datatype definitions |
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
1281 |
\item finitely supported abstractions |
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
1282 |
\item respectfulness of the bn-functions\bigskip |
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
1283 |
\item binders can only have a ``single scope'' |
1577 | 1284 |
\item all bindings must have the same mode |
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
1285 |
\end{itemize} |
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
1286 |
*} |
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
1287 |
|
1493
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
1288 |
section {* Examples *} |
1485
c004e7448dca
temporarily disabled tests in Nominal/ROOT
Christian Urban <urbanc@in.tum.de>
parents:
1484
diff
changeset
|
1289 |
|
1702 | 1290 |
text {* |
1291 |
||
1292 |
\begin{figure} |
|
1293 |
\begin{boxedminipage}{\linewidth} |
|
1294 |
\small |
|
1295 |
\begin{tabular}{l} |
|
1296 |
\isacommand{atom\_decl}~@{text "var"}\\ |
|
1297 |
\isacommand{atom\_decl}~@{text "cvar"}\\ |
|
1298 |
\isacommand{atom\_decl}~@{text "tvar"}\\[1mm] |
|
1299 |
\isacommand{nominal\_datatype}~@{text "tkind ="}\\ |
|
1300 |
\phantom{$|$}~@{text "KStar"}~$|$~@{text "KFun tkind tkind"}\\ |
|
1301 |
\isacommand{and}~@{text "ckind ="}\\ |
|
1302 |
\phantom{$|$}~@{text "CKSim ty ty"}\\ |
|
1303 |
\isacommand{and}~@{text "ty ="}\\ |
|
1304 |
\phantom{$|$}~@{text "TVar tvar"}~$|$~@{text "T string"}~$|$~@{text "TApp ty ty"}\\ |
|
1305 |
$|$~@{text "TFun string ty_list"}~% |
|
1306 |
$|$~@{text "TAll tv::tvar tkind ty::ty"} \isacommand{bind}~@{text "tv"}~\isacommand{in}~@{text ty}\\ |
|
1307 |
$|$~@{text "TArr ckind ty"}\\ |
|
1308 |
\isacommand{and}~@{text "ty_lst ="}\\ |
|
1309 |
\phantom{$|$}~@{text "TNil"}~$|$~@{text "TCons ty ty_lst"}\\ |
|
1310 |
\isacommand{and}~@{text "cty ="}\\ |
|
1311 |
\phantom{$|$}~@{text "CVar cvar"}~% |
|
1312 |
$|$~@{text "C string"}~$|$~@{text "CApp cty cty"}~$|$~@{text "CFun string co_lst"}\\ |
|
1313 |
$|$~@{text "CAll cv::cvar ckind cty::cty"} \isacommand{bind}~@{text "cv"}~\isacommand{in}~@{text cty}\\ |
|
1314 |
$|$~@{text "CArr ckind cty"}~$|$~@{text "CRefl ty"}~$|$~@{text "CSym cty"}~$|$~@{text "CCirc cty cty"}\\ |
|
1315 |
$|$~@{text "CAt cty ty"}~$|$~@{text "CLeft cty"}~$|$~@{text "CRight cty"}~$|$~@{text "CSim cty cty"}\\ |
|
1316 |
$|$~@{text "CRightc cty"}~$|$~@{text "CLeftc cty"}~$|$~@{text "Coerce cty cty"}\\ |
|
1317 |
\isacommand{and}~@{text "co_lst ="}\\ |
|
1318 |
\phantom{$|$}@{text "CNil"}~$|$~@{text "CCons cty co_lst"}\\ |
|
1319 |
\isacommand{and}~@{text "trm ="}\\ |
|
1320 |
\phantom{$|$}~@{text "Var var"}~$|$~@{text "K string"}\\ |
|
1321 |
$|$~@{text "LAM_ty tv::tvar tkind t::trm"} \isacommand{bind}~@{text "tv"}~\isacommand{in}~@{text t}\\ |
|
1322 |
$|$~@{text "LAM_cty cv::cvar ckind t::trm"} \isacommand{bind}~@{text "cv"}~\isacommand{in}~@{text t}\\ |
|
1323 |
$|$~@{text "App_ty trm ty"}~$|$~@{text "App_cty trm cty"}~$|$~@{text "App trm trm"}\\ |
|
1324 |
$|$~@{text "Lam v::var ty t::trm"} \isacommand{bind}~@{text "v"}~\isacommand{in}~@{text t}\\ |
|
1325 |
$|$~@{text "Let x::var ty trm t::trm"} \isacommand{bind}~{text x}~\isacommand{in}~{text t}\\ |
|
1326 |
$|$~@{text "Case trm assoc_lst"}~$|$~@{text "Cast trm co"}\\ |
|
1327 |
\isacommand{and}~@{text "assoc_lst ="}\\ |
|
1328 |
\phantom{$|$}~@{text ANil}~% |
|
1329 |
$|$~@{text "ACons p::pat t::trm assoc_lst"} \isacommand{bind}~@{text "bv p"}~\isacommand{in}~@{text t}\\ |
|
1330 |
\isacommand{and}~@{text "pat ="}\\ |
|
1331 |
\phantom{$|$}~@{text "Kpat string tvtk_lst tvck_lst vt_lst"}\\ |
|
1332 |
\isacommand{and}~@{text "vt_lst ="}\\ |
|
1333 |
\phantom{$|$}~@{text VTNil}~$|$~@{text "VTCons var ty vt_lst"}\\ |
|
1334 |
\isacommand{and}~@{text "tvtk_lst ="}\\ |
|
1335 |
\phantom{$|$}~@{text TVTKNil}~$|$~@{text "TVTKCons tvar tkind tvtk_lst"}\\ |
|
1336 |
\isacommand{and}~@{text "tvck_lst ="}\\ |
|
1337 |
\phantom{$|$}~@{text TVCKNil}~$|$ @{text "TVCKCons cvar ckind tvck_lst"}\\ |
|
1338 |
\isacommand{binder}\\ |
|
1339 |
@{text "bv :: pat \<Rightarrow> atom list"}~\isacommand{and}~% |
|
1340 |
@{text "bv1 :: vt_lst \<Rightarrow> atom list"}~\isacommand{and}\\ |
|
1341 |
@{text "bv2 :: tvtk_lst \<Rightarrow> atom list"}~\isacommand{and}~% |
|
1342 |
@{text "bv3 :: tvck_lst \<Rightarrow> atom list"}\\ |
|
1343 |
\isacommand{where}\\ |
|
1344 |
\phantom{$|$}~@{text "bv (K s tvts tvcs vs) = (bv3 tvts) @ (bv2 tvcs) @ (bv1 vs)"}\\ |
|
1345 |
$|$~@{text "bv1 VTNil = []"}\\ |
|
1346 |
$|$~@{text "bv1 (VTCons x ty tl) = (atom x)::(bv1 tl)"}\\ |
|
1347 |
$|$~@{text "bv2 TVTKNil = []"}\\ |
|
1348 |
$|$~@{text "bv2 (TVTKCons a ty tl) = (atom a)::(bv2 tl)"}\\ |
|
1349 |
$|$~@{text "bv3 TVCKNil = []"}\\ |
|
1350 |
$|$~@{text "bv3 (TVCKCons c cty tl) = (atom c)::(bv3 tl)"}\\ |
|
1351 |
\end{tabular} |
|
1352 |
\end{boxedminipage} |
|
1353 |
\caption{\label{nominalcorehas}} |
|
1354 |
\end{figure} |
|
1355 |
*} |
|
1356 |
||
1357 |
||
1358 |
||
1359 |
||
1517
62d6f7acc110
corrected the strong induction principle in the lambda-calculus case; gave a second (oartial) version that is more elegant
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
1360 |
section {* Adequacy *} |
62d6f7acc110
corrected the strong induction principle in the lambda-calculus case; gave a second (oartial) version that is more elegant
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
1361 |
|
62d6f7acc110
corrected the strong induction principle in the lambda-calculus case; gave a second (oartial) version that is more elegant
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
1362 |
section {* Related Work *} |
62d6f7acc110
corrected the strong induction principle in the lambda-calculus case; gave a second (oartial) version that is more elegant
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
1363 |
|
1570 | 1364 |
text {* |
1365 |
Ott is better with list dot specifications; subgrammars |
|
1366 |
||
1367 |
untyped; |
|
1368 |
||
1369 |
*} |
|
1370 |
||
1371 |
||
1493
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
1372 |
section {* Conclusion *} |
1485
c004e7448dca
temporarily disabled tests in Nominal/ROOT
Christian Urban <urbanc@in.tum.de>
parents:
1484
diff
changeset
|
1373 |
|
c004e7448dca
temporarily disabled tests in Nominal/ROOT
Christian Urban <urbanc@in.tum.de>
parents:
1484
diff
changeset
|
1374 |
text {* |
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
1375 |
Complication when the single scopedness restriction is lifted (two |
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
1376 |
overlapping permutations) |
1662 | 1377 |
|
1378 |
||
1379 |
The formalisation presented here will eventually become part of the |
|
1380 |
Isabelle distribution, but for the moment it can be downloaded from |
|
1381 |
the Mercurial repository linked at |
|
1382 |
\href{http://isabelle.in.tum.de/nominal/download} |
|
1383 |
{http://isabelle.in.tum.de/nominal/download}.\medskip |
|
1520
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
1384 |
*} |
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
1385 |
|
6ac75fd979d4
more of the introduction
Christian Urban <urbanc@in.tum.de>
parents:
1517
diff
changeset
|
1386 |
text {* |
1493
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
1387 |
|
1517
62d6f7acc110
corrected the strong induction principle in the lambda-calculus case; gave a second (oartial) version that is more elegant
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
1388 |
TODO: function definitions: |
62d6f7acc110
corrected the strong induction principle in the lambda-calculus case; gave a second (oartial) version that is more elegant
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
1389 |
\medskip |
62d6f7acc110
corrected the strong induction principle in the lambda-calculus case; gave a second (oartial) version that is more elegant
Christian Urban <urbanc@in.tum.de>
parents:
1506
diff
changeset
|
1390 |
|
1493
52f68b524fd2
slightly more of the paper
Christian Urban <urbanc@in.tum.de>
parents:
1491
diff
changeset
|
1391 |
\noindent |
1528
d6ee4a1b34ce
more tuning on the paper
Christian Urban <urbanc@in.tum.de>
parents:
1524
diff
changeset
|
1392 |
{\bf Acknowledgements:} We are very grateful to Andrew Pitts for |
1506
7c607df46a0a
slightly more in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1493
diff
changeset
|
1393 |
many discussions about Nominal Isabelle. We thank Peter Sewell for |
7c607df46a0a
slightly more in the paper
Christian Urban <urbanc@in.tum.de>
parents:
1493
diff
changeset
|
1394 |
making the informal notes \cite{SewellBestiary} available to us and |
1556 | 1395 |
also for patiently explaining some of the finer points about the abstract |
1702 | 1396 |
definitions and about the implementation of the Ott-tool. We |
1397 |
also thank Stephanie Weirich for suggesting to separate the subgrammars |
|
1398 |
of kinds and types in our Core-Haskell example. |
|
1485
c004e7448dca
temporarily disabled tests in Nominal/ROOT
Christian Urban <urbanc@in.tum.de>
parents:
1484
diff
changeset
|
1399 |
|
1577 | 1400 |
Lookup: Merlin paper by James Cheney; Mark Shinwell PhD |
754
b85875d65b10
added a paper for possible notes
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
1401 |
|
1577 | 1402 |
Future work: distinct list abstraction |
1403 |
||
1404 |
||
754
b85875d65b10
added a paper for possible notes
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
1405 |
*} |
b85875d65b10
added a paper for possible notes
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
1406 |
|
1484 | 1407 |
|
1408 |
||
754
b85875d65b10
added a paper for possible notes
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
1409 |
(*<*) |
b85875d65b10
added a paper for possible notes
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
1410 |
end |
1704 | 1411 |
(*>*) |