author | Cezary Kaliszyk <kaliszyk@in.tum.de> |
Wed, 10 Feb 2010 11:31:53 +0100 | |
changeset 1118 | 3e405c2fbe90 |
parent 1087 | bb7f4457091a |
permissions | -rw-r--r-- |
1062 | 1 |
(* Title: Nominal2_Eqvt |
2 |
Authors: Brian Huffman, Christian Urban |
|
3 |
||
4 |
Equivariance, Supp and Fresh Lemmas for Operators. |
|
1087
bb7f4457091a
moved some lemmas to Nominal; updated all files
Christian Urban <urbanc@in.tum.de>
parents:
1079
diff
changeset
|
5 |
(Contains most, but not all such lemmas.) |
1062 | 6 |
*) |
7 |
theory Nominal2_Eqvt |
|
8 |
imports Nominal2_Base |
|
9 |
uses ("nominal_thmdecls.ML") |
|
10 |
("nominal_permeq.ML") |
|
11 |
begin |
|
12 |
||
13 |
section {* Logical Operators *} |
|
14 |
||
15 |
||
16 |
lemma eq_eqvt: |
|
17 |
shows "p \<bullet> (x = y) \<longleftrightarrow> (p \<bullet> x) = (p \<bullet> y)" |
|
18 |
unfolding permute_eq_iff permute_bool_def .. |
|
19 |
||
20 |
lemma if_eqvt: |
|
21 |
shows "p \<bullet> (if b then x else y) = (if p \<bullet> b then p \<bullet> x else p \<bullet> y)" |
|
22 |
by (simp add: permute_fun_def permute_bool_def) |
|
23 |
||
24 |
lemma True_eqvt: |
|
25 |
shows "p \<bullet> True = True" |
|
26 |
unfolding permute_bool_def .. |
|
27 |
||
28 |
lemma False_eqvt: |
|
29 |
shows "p \<bullet> False = False" |
|
30 |
unfolding permute_bool_def .. |
|
31 |
||
32 |
lemma imp_eqvt: |
|
33 |
shows "p \<bullet> (A \<longrightarrow> B) = ((p \<bullet> A) \<longrightarrow> (p \<bullet> B))" |
|
34 |
by (simp add: permute_bool_def) |
|
35 |
||
36 |
lemma conj_eqvt: |
|
37 |
shows "p \<bullet> (A \<and> B) = ((p \<bullet> A) \<and> (p \<bullet> B))" |
|
38 |
by (simp add: permute_bool_def) |
|
39 |
||
40 |
lemma disj_eqvt: |
|
41 |
shows "p \<bullet> (A \<or> B) = ((p \<bullet> A) \<or> (p \<bullet> B))" |
|
42 |
by (simp add: permute_bool_def) |
|
43 |
||
44 |
lemma Not_eqvt: |
|
45 |
shows "p \<bullet> (\<not> A) = (\<not> (p \<bullet> A))" |
|
46 |
by (simp add: permute_bool_def) |
|
47 |
||
48 |
lemma all_eqvt: |
|
49 |
shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. (p \<bullet> P) x)" |
|
50 |
unfolding permute_fun_def permute_bool_def |
|
51 |
by (auto, drule_tac x="p \<bullet> x" in spec, simp) |
|
52 |
||
53 |
lemma all_eqvt2: |
|
54 |
shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. p \<bullet> P (- p \<bullet> x))" |
|
55 |
unfolding permute_fun_def permute_bool_def |
|
56 |
by (auto, drule_tac x="p \<bullet> x" in spec, simp) |
|
57 |
||
58 |
lemma ex_eqvt: |
|
59 |
shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. (p \<bullet> P) x)" |
|
60 |
unfolding permute_fun_def permute_bool_def |
|
61 |
by (auto, rule_tac x="p \<bullet> x" in exI, simp) |
|
62 |
||
63 |
lemma ex_eqvt2: |
|
64 |
shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. p \<bullet> P (- p \<bullet> x))" |
|
65 |
unfolding permute_fun_def permute_bool_def |
|
66 |
by (auto, rule_tac x="p \<bullet> x" in exI, simp) |
|
67 |
||
68 |
lemma ex1_eqvt: |
|
69 |
shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. (p \<bullet> P) x)" |
|
70 |
unfolding Ex1_def |
|
71 |
by (simp add: ex_eqvt permute_fun_def conj_eqvt all_eqvt imp_eqvt eq_eqvt) |
|
72 |
||
73 |
lemma ex1_eqvt2: |
|
74 |
shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. p \<bullet> P (- p \<bullet> x))" |
|
75 |
unfolding Ex1_def ex_eqvt2 conj_eqvt all_eqvt2 imp_eqvt eq_eqvt |
|
76 |
by simp |
|
77 |
||
78 |
lemma the_eqvt: |
|
79 |
assumes unique: "\<exists>!x. P x" |
|
1087
bb7f4457091a
moved some lemmas to Nominal; updated all files
Christian Urban <urbanc@in.tum.de>
parents:
1079
diff
changeset
|
80 |
shows "(p \<bullet> (THE x. P x)) = (THE x. p \<bullet> P (- p \<bullet> x))" |
1062 | 81 |
apply(rule the1_equality [symmetric]) |
82 |
apply(simp add: ex1_eqvt2[symmetric]) |
|
83 |
apply(simp add: permute_bool_def unique) |
|
84 |
apply(simp add: permute_bool_def) |
|
85 |
apply(rule theI'[OF unique]) |
|
86 |
done |
|
87 |
||
88 |
section {* Set Operations *} |
|
89 |
||
1087
bb7f4457091a
moved some lemmas to Nominal; updated all files
Christian Urban <urbanc@in.tum.de>
parents:
1079
diff
changeset
|
90 |
lemma mem_permute_iff: |
bb7f4457091a
moved some lemmas to Nominal; updated all files
Christian Urban <urbanc@in.tum.de>
parents:
1079
diff
changeset
|
91 |
shows "(p \<bullet> x) \<in> (p \<bullet> X) \<longleftrightarrow> x \<in> X" |
bb7f4457091a
moved some lemmas to Nominal; updated all files
Christian Urban <urbanc@in.tum.de>
parents:
1079
diff
changeset
|
92 |
unfolding mem_def permute_fun_def permute_bool_def |
bb7f4457091a
moved some lemmas to Nominal; updated all files
Christian Urban <urbanc@in.tum.de>
parents:
1079
diff
changeset
|
93 |
by simp |
bb7f4457091a
moved some lemmas to Nominal; updated all files
Christian Urban <urbanc@in.tum.de>
parents:
1079
diff
changeset
|
94 |
|
1062 | 95 |
lemma mem_eqvt: |
96 |
shows "p \<bullet> (x \<in> A) \<longleftrightarrow> (p \<bullet> x) \<in> (p \<bullet> A)" |
|
1087
bb7f4457091a
moved some lemmas to Nominal; updated all files
Christian Urban <urbanc@in.tum.de>
parents:
1079
diff
changeset
|
97 |
unfolding mem_permute_iff permute_bool_def by simp |
1062 | 98 |
|
99 |
lemma not_mem_eqvt: |
|
100 |
shows "p \<bullet> (x \<notin> A) \<longleftrightarrow> (p \<bullet> x) \<notin> (p \<bullet> A)" |
|
101 |
unfolding mem_def permute_fun_def by (simp add: Not_eqvt) |
|
102 |
||
103 |
lemma Collect_eqvt: |
|
104 |
shows "p \<bullet> {x. P x} = {x. (p \<bullet> P) x}" |
|
105 |
unfolding Collect_def permute_fun_def .. |
|
106 |
||
107 |
lemma Collect_eqvt2: |
|
108 |
shows "p \<bullet> {x. P x} = {x. p \<bullet> (P (-p \<bullet> x))}" |
|
109 |
unfolding Collect_def permute_fun_def .. |
|
110 |
||
111 |
lemma empty_eqvt: |
|
112 |
shows "p \<bullet> {} = {}" |
|
113 |
unfolding empty_def Collect_eqvt2 False_eqvt .. |
|
114 |
||
115 |
lemma supp_set_empty: |
|
116 |
shows "supp {} = {}" |
|
117 |
by (simp add: supp_def empty_eqvt) |
|
118 |
||
119 |
lemma fresh_set_empty: |
|
120 |
shows "a \<sharp> {}" |
|
121 |
by (simp add: fresh_def supp_set_empty) |
|
122 |
||
123 |
lemma UNIV_eqvt: |
|
124 |
shows "p \<bullet> UNIV = UNIV" |
|
125 |
unfolding UNIV_def Collect_eqvt2 True_eqvt .. |
|
126 |
||
127 |
lemma union_eqvt: |
|
128 |
shows "p \<bullet> (A \<union> B) = (p \<bullet> A) \<union> (p \<bullet> B)" |
|
129 |
unfolding Un_def Collect_eqvt2 disj_eqvt mem_eqvt by simp |
|
130 |
||
131 |
lemma inter_eqvt: |
|
132 |
shows "p \<bullet> (A \<inter> B) = (p \<bullet> A) \<inter> (p \<bullet> B)" |
|
133 |
unfolding Int_def Collect_eqvt2 conj_eqvt mem_eqvt by simp |
|
134 |
||
135 |
lemma Diff_eqvt: |
|
136 |
fixes A B :: "'a::pt set" |
|
137 |
shows "p \<bullet> (A - B) = p \<bullet> A - p \<bullet> B" |
|
138 |
unfolding set_diff_eq Collect_eqvt2 conj_eqvt Not_eqvt mem_eqvt by simp |
|
139 |
||
140 |
lemma Compl_eqvt: |
|
141 |
fixes A :: "'a::pt set" |
|
142 |
shows "p \<bullet> (- A) = - (p \<bullet> A)" |
|
143 |
unfolding Compl_eq_Diff_UNIV Diff_eqvt UNIV_eqvt .. |
|
144 |
||
145 |
lemma insert_eqvt: |
|
146 |
shows "p \<bullet> (insert x A) = insert (p \<bullet> x) (p \<bullet> A)" |
|
147 |
unfolding permute_set_eq_image image_insert .. |
|
148 |
||
149 |
lemma vimage_eqvt: |
|
150 |
shows "p \<bullet> (f -` A) = (p \<bullet> f) -` (p \<bullet> A)" |
|
151 |
unfolding vimage_def permute_fun_def [where f=f] |
|
152 |
unfolding Collect_eqvt2 mem_eqvt .. |
|
153 |
||
154 |
lemma image_eqvt: |
|
155 |
shows "p \<bullet> (f ` A) = (p \<bullet> f) ` (p \<bullet> A)" |
|
156 |
unfolding permute_set_eq_image |
|
157 |
unfolding permute_fun_def [where f=f] |
|
158 |
by (simp add: image_image) |
|
159 |
||
160 |
lemma finite_permute_iff: |
|
161 |
shows "finite (p \<bullet> A) \<longleftrightarrow> finite A" |
|
162 |
unfolding permute_set_eq_vimage |
|
163 |
using bij_permute by (rule finite_vimage_iff) |
|
164 |
||
165 |
lemma finite_eqvt: |
|
166 |
shows "p \<bullet> finite A = finite (p \<bullet> A)" |
|
167 |
unfolding finite_permute_iff permute_bool_def .. |
|
168 |
||
169 |
||
170 |
section {* List Operations *} |
|
171 |
||
172 |
lemma append_eqvt: |
|
173 |
shows "p \<bullet> (xs @ ys) = (p \<bullet> xs) @ (p \<bullet> ys)" |
|
174 |
by (induct xs) auto |
|
175 |
||
176 |
lemma supp_append: |
|
177 |
shows "supp (xs @ ys) = supp xs \<union> supp ys" |
|
178 |
by (induct xs) (auto simp add: supp_Nil supp_Cons) |
|
179 |
||
180 |
lemma fresh_append: |
|
181 |
shows "a \<sharp> (xs @ ys) \<longleftrightarrow> a \<sharp> xs \<and> a \<sharp> ys" |
|
182 |
by (induct xs) (simp_all add: fresh_Nil fresh_Cons) |
|
183 |
||
184 |
lemma rev_eqvt: |
|
185 |
shows "p \<bullet> (rev xs) = rev (p \<bullet> xs)" |
|
186 |
by (induct xs) (simp_all add: append_eqvt) |
|
187 |
||
188 |
lemma supp_rev: |
|
189 |
shows "supp (rev xs) = supp xs" |
|
190 |
by (induct xs) (auto simp add: supp_append supp_Cons supp_Nil) |
|
191 |
||
192 |
lemma fresh_rev: |
|
193 |
shows "a \<sharp> rev xs \<longleftrightarrow> a \<sharp> xs" |
|
194 |
by (induct xs) (auto simp add: fresh_append fresh_Cons fresh_Nil) |
|
195 |
||
196 |
lemma set_eqvt: |
|
197 |
shows "p \<bullet> (set xs) = set (p \<bullet> xs)" |
|
198 |
by (induct xs) (simp_all add: empty_eqvt insert_eqvt) |
|
199 |
||
200 |
(* needs finite support premise |
|
201 |
lemma supp_set: |
|
202 |
fixes x :: "'a::pt" |
|
203 |
shows "supp (set xs) = supp xs" |
|
204 |
*) |
|
205 |
||
206 |
||
207 |
section {* Product Operations *} |
|
208 |
||
209 |
lemma fst_eqvt: |
|
210 |
"p \<bullet> (fst x) = fst (p \<bullet> x)" |
|
211 |
by (cases x) simp |
|
212 |
||
213 |
lemma snd_eqvt: |
|
214 |
"p \<bullet> (snd x) = snd (p \<bullet> x)" |
|
215 |
by (cases x) simp |
|
216 |
||
217 |
||
218 |
section {* Units *} |
|
219 |
||
220 |
lemma supp_unit: |
|
221 |
shows "supp () = {}" |
|
222 |
by (simp add: supp_def) |
|
223 |
||
224 |
lemma fresh_unit: |
|
225 |
shows "a \<sharp> ()" |
|
226 |
by (simp add: fresh_def supp_unit) |
|
227 |
||
228 |
section {* Equivariance automation *} |
|
229 |
||
230 |
text {* Setup of the theorem attributes @{text eqvt} and @{text eqvt_force} *} |
|
231 |
||
232 |
use "nominal_thmdecls.ML" |
|
233 |
setup "Nominal_ThmDecls.setup" |
|
234 |
||
235 |
lemmas [eqvt] = |
|
236 |
(* connectives *) |
|
237 |
eq_eqvt if_eqvt imp_eqvt disj_eqvt conj_eqvt Not_eqvt |
|
1087
bb7f4457091a
moved some lemmas to Nominal; updated all files
Christian Urban <urbanc@in.tum.de>
parents:
1079
diff
changeset
|
238 |
True_eqvt False_eqvt ex_eqvt all_eqvt ex1_eqvt |
1062 | 239 |
imp_eqvt [folded induct_implies_def] |
240 |
||
241 |
(* nominal *) |
|
1079
c70e7545b738
updated to latest Nominal2
Christian Urban <urbanc@in.tum.de>
parents:
1066
diff
changeset
|
242 |
permute_eqvt supp_eqvt fresh_eqvt |
c70e7545b738
updated to latest Nominal2
Christian Urban <urbanc@in.tum.de>
parents:
1066
diff
changeset
|
243 |
permute_pure |
1062 | 244 |
|
245 |
(* datatypes *) |
|
1087
bb7f4457091a
moved some lemmas to Nominal; updated all files
Christian Urban <urbanc@in.tum.de>
parents:
1079
diff
changeset
|
246 |
permute_prod.simps append_eqvt rev_eqvt set_eqvt |
1062 | 247 |
fst_eqvt snd_eqvt |
248 |
||
249 |
(* sets *) |
|
1087
bb7f4457091a
moved some lemmas to Nominal; updated all files
Christian Urban <urbanc@in.tum.de>
parents:
1079
diff
changeset
|
250 |
empty_eqvt UNIV_eqvt union_eqvt inter_eqvt mem_eqvt |
bb7f4457091a
moved some lemmas to Nominal; updated all files
Christian Urban <urbanc@in.tum.de>
parents:
1079
diff
changeset
|
251 |
Diff_eqvt Compl_eqvt insert_eqvt Collect_eqvt |
1062 | 252 |
|
253 |
thm eqvts |
|
254 |
thm eqvts_raw |
|
255 |
||
256 |
text {* helper lemmas for the eqvt_tac *} |
|
257 |
||
258 |
definition |
|
259 |
"unpermute p = permute (- p)" |
|
260 |
||
261 |
lemma eqvt_apply: |
|
262 |
fixes f :: "'a::pt \<Rightarrow> 'b::pt" |
|
263 |
and x :: "'a::pt" |
|
264 |
shows "p \<bullet> (f x) \<equiv> (p \<bullet> f) (p \<bullet> x)" |
|
265 |
unfolding permute_fun_def by simp |
|
266 |
||
267 |
lemma eqvt_lambda: |
|
268 |
fixes f :: "'a::pt \<Rightarrow> 'b::pt" |
|
269 |
shows "p \<bullet> (\<lambda>x. f x) \<equiv> (\<lambda>x. p \<bullet> (f (unpermute p x)))" |
|
270 |
unfolding permute_fun_def unpermute_def by simp |
|
271 |
||
272 |
lemma eqvt_bound: |
|
273 |
shows "p \<bullet> unpermute p x \<equiv> x" |
|
274 |
unfolding unpermute_def by simp |
|
275 |
||
276 |
use "nominal_permeq.ML" |
|
277 |
||
278 |
||
279 |
lemma "p \<bullet> (A \<longrightarrow> B = C)" |
|
280 |
apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) |
|
281 |
oops |
|
282 |
||
283 |
lemma "p \<bullet> (\<lambda>(x::'a::pt). A \<longrightarrow> (B::'a \<Rightarrow> bool) x = C) = foo" |
|
284 |
apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) |
|
285 |
oops |
|
286 |
||
287 |
lemma "p \<bullet> (\<lambda>x y. \<exists>z. x = z \<and> x = y \<longrightarrow> z \<noteq> x) = foo" |
|
288 |
apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) |
|
289 |
oops |
|
290 |
||
291 |
lemma "p \<bullet> (\<lambda>f x. f (g (f x))) = foo" |
|
292 |
apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) |
|
293 |
oops |
|
294 |
||
295 |
lemma "p \<bullet> (\<lambda>q. q \<bullet> (r \<bullet> x)) = foo" |
|
296 |
apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) |
|
297 |
oops |
|
298 |
||
299 |
lemma "p \<bullet> (q \<bullet> r \<bullet> x) = foo" |
|
300 |
apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) |
|
301 |
oops |
|
302 |
||
303 |
||
304 |
end |