|
1 import scala.annotation.tailrec |
|
2 import scala.language.implicitConversions |
|
3 import scala.language.reflectiveCalls |
|
4 |
|
5 |
|
6 abstract class Rexp |
|
7 case object ZERO extends Rexp |
|
8 case object ONE extends Rexp |
|
9 case class CHAR(c: Char) extends Rexp |
|
10 case class ALT(r1: Rexp, r2: Rexp) extends Rexp |
|
11 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp |
|
12 case class STAR(r: Rexp) extends Rexp |
|
13 |
|
14 // some convenience for typing in regular expressions |
|
15 def charlist2rexp(s : List[Char]): Rexp = s match { |
|
16 case Nil => ONE |
|
17 case c::Nil => CHAR(c) |
|
18 case c::s => SEQ(CHAR(c), charlist2rexp(s)) |
|
19 } |
|
20 implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList) |
|
21 |
|
22 implicit def RexpOps(r: Rexp) = new { |
|
23 def | (s: Rexp) = ALT(r, s) |
|
24 def % = STAR(r) |
|
25 def ~ (s: Rexp) = SEQ(r, s) |
|
26 } |
|
27 |
|
28 implicit def stringOps(s: String) = new { |
|
29 def | (r: Rexp) = ALT(s, r) |
|
30 def | (r: String) = ALT(s, r) |
|
31 def % = STAR(s) |
|
32 def ~ (r: Rexp) = SEQ(s, r) |
|
33 def ~ (r: String) = SEQ(s, r) |
|
34 } |
|
35 |
|
36 // enumerates regular expressions until a certain depth |
|
37 // using the characters in the string |
|
38 def generate(n: Int, s: String) : Set[Rexp] = n match { |
|
39 case 0 => Set(ZERO, ONE) ++ s.toSet.map(CHAR) |
|
40 case n => { |
|
41 val rs = generate(n - 1, s) |
|
42 rs ++ |
|
43 (for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) ++ |
|
44 (for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) ++ |
|
45 (for (r <- rs) yield STAR(r)) |
|
46 } |
|
47 } |
|
48 |
|
49 |
|
50 |
|
51 abstract class Val |
|
52 case object Empty extends Val |
|
53 case class Chr(c: Char) extends Val |
|
54 case class Sequ(v1: Val, v2: Val) extends Val |
|
55 case class Left(v: Val) extends Val |
|
56 case class Right(v: Val) extends Val |
|
57 case class Stars(vs: List[Val]) extends Val |
|
58 |
|
59 |
|
60 |
|
61 // extracts a string from value |
|
62 def flatten(v: Val) : String = v match { |
|
63 case Empty => "" |
|
64 case Chr(c) => c.toString |
|
65 case Left(v) => flatten(v) |
|
66 case Right(v) => flatten(v) |
|
67 case Sequ(v1, v2) => flatten(v1) + flatten(v2) |
|
68 case Stars(vs) => vs.map(flatten).mkString |
|
69 } |
|
70 |
|
71 def flat_len(v: Val) : Int = flatten(v).length |
|
72 |
|
73 // extracts a set of candidate values from a "non-starred" regular expression |
|
74 def values(r: Rexp) : Set[Val] = r match { |
|
75 case ZERO => Set() |
|
76 case ONE => Set(Empty) |
|
77 case CHAR(c) => Set(Chr(c)) |
|
78 case ALT(r1, r2) => values(r1).map(Left(_)) ++ values(r2).map(Right(_)) |
|
79 case SEQ(r1, r2) => for (v1 <- values(r1); v2 <- values(r2)) yield Sequ(v1, v2) |
|
80 case STAR(r) => values(r).map(v => Stars(List(v))) ++ Set(Stars(Nil)) |
|
81 // to do much more would cause the set to be infinite |
|
82 } |
|
83 |
|
84 |
|
85 def values_str(r: Rexp, s: String) : Set[Val] = |
|
86 values(r).filter(flatten(_) == s) |
|
87 |
|
88 val List(val1, val2) = values_str(("ab" | "a") ~ ("c" | "bc"), "abc").toList |
|
89 |
|
90 // Position |
|
91 type Pos = List[Int] |
|
92 |
|
93 |
|
94 def positions(v: Val) : Set[Pos] = v match { |
|
95 case Empty => Set(Nil) |
|
96 case Chr(c) => Set(Nil) |
|
97 case Left(v) => Set(Nil) ++ positions(v).map(0::_) |
|
98 case Right(v) => Set(Nil) ++ positions(v).map(1::_) |
|
99 case Sequ(v1, v2) => Set(Nil) ++ positions(v1).map(0::_) ++ positions(v2).map(1::_) |
|
100 case Stars(vs) => Set(Nil) ++ vs.zipWithIndex.flatMap{ case (v, n) => positions(v).map(n::_) } |
|
101 } |
|
102 |
|
103 val v1 = Sequ(Chr('a'), Chr('b')) |
|
104 val ps1 = positions(v1) |
|
105 val ps1L = positions(Left(v1)) |
|
106 val ps1R = positions(Right(v1)) |
|
107 |
|
108 val v3 = Stars(List(Left(Chr('x')), Right(Left(Chr('y'))))) |
|
109 val v4 = Stars(List(Right(Right(Sequ(Chr('x'), Chr('y')))))) |
|
110 |
|
111 val ps3 = positions(v3) |
|
112 val ps4 = positions(v4) |
|
113 |
|
114 def at(v: Val, ps: List[Int]) : Val = (v, ps) match { |
|
115 case (v, Nil) => v |
|
116 case (Left(v), 0::ps) => at(v, ps) |
|
117 case (Right(v), 1::ps) => at(v, ps) |
|
118 case (Sequ(v1, v2), 0::ps) => at(v1, ps) |
|
119 case (Sequ(v1, v2), 1::ps) => at(v2, ps) |
|
120 case (Stars(vs), n::ps) => at(vs(n), ps) |
|
121 } |
|
122 |
|
123 ps1.map(at(v1, _)) |
|
124 ps1L.map(at(Left(v1), _)) |
|
125 ps1R.map(at(Right(v1), _)) |
|
126 |
|
127 |
|
128 def pflat_len(v: Val, p: Pos) : Int = |
|
129 if (positions(v) contains p) flat_len(at(v, p)) else -1 |
|
130 |
|
131 |
|
132 // for lexicographic list-orderings |
|
133 import scala.math.Ordering.Implicits._ |
|
134 |
|
135 def smaller_than(pss: Set[Pos], ps: Pos) : Set[Pos] = |
|
136 pss.filter(_ < ps) |
|
137 |
|
138 |
|
139 // order from the alternative posix paper |
|
140 def ordr(v1: Val, p: List[Int], v2: Val) : Boolean = { |
|
141 pflat_len(v1, p) > pflat_len(v2, p) && |
|
142 smaller_than(positions(v1) | positions(v2), p).forall(q => pflat_len(v1, q) == pflat_len(v2, q)) |
|
143 } |
|
144 |
|
145 //tests |
|
146 val List(val1, val2) = values_str(("ab" | "a") ~ ("c" | "bc"), "abc").toList |
|
147 |
|
148 positions(val1).map(p => (p, ordr(val1, p, val2))).filter{ case (_, b) => b == true } |
|
149 positions(val1) |
|
150 at(val1, List(0)) |
|
151 |
|
152 smaller_than(positions(val1), List(1, 0)) |
|
153 |
|
154 val List(val1, val2) = values_str("a" ~ (("ab" | "a") ~ ("c" | "bc")), "aabc").toList |
|
155 positions(val2).map(p => (p, ordr(val2, p, val1))).filter{ case (_, b) => b == true } |