import scala.annotation.tailrec
import scala.language.implicitConversions
import scala.language.reflectiveCalls
abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
// some convenience for typing in regular expressions
def charlist2rexp(s : List[Char]): Rexp = s match {
case Nil => ONE
case c::Nil => CHAR(c)
case c::s => SEQ(CHAR(c), charlist2rexp(s))
}
implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
implicit def RexpOps(r: Rexp) = new {
def | (s: Rexp) = ALT(r, s)
def % = STAR(r)
def ~ (s: Rexp) = SEQ(r, s)
}
implicit def stringOps(s: String) = new {
def | (r: Rexp) = ALT(s, r)
def | (r: String) = ALT(s, r)
def % = STAR(s)
def ~ (r: Rexp) = SEQ(s, r)
def ~ (r: String) = SEQ(s, r)
}
// enumerates regular expressions until a certain depth
// using the characters in the string
def generate(n: Int, s: String) : Set[Rexp] = n match {
case 0 => Set(ZERO, ONE) ++ s.toSet.map(CHAR)
case n => {
val rs = generate(n - 1, s)
rs ++
(for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) ++
(for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) ++
(for (r <- rs) yield STAR(r))
}
}
abstract class Val
case object Empty extends Val
case class Chr(c: Char) extends Val
case class Sequ(v1: Val, v2: Val) extends Val
case class Left(v: Val) extends Val
case class Right(v: Val) extends Val
case class Stars(vs: List[Val]) extends Val
// extracts a string from value
def flatten(v: Val) : String = v match {
case Empty => ""
case Chr(c) => c.toString
case Left(v) => flatten(v)
case Right(v) => flatten(v)
case Sequ(v1, v2) => flatten(v1) + flatten(v2)
case Stars(vs) => vs.map(flatten).mkString
}
def flat_len(v: Val) : Int = flatten(v).length
// extracts a set of candidate values from a "non-starred" regular expression
def values(r: Rexp) : Set[Val] = r match {
case ZERO => Set()
case ONE => Set(Empty)
case CHAR(c) => Set(Chr(c))
case ALT(r1, r2) => values(r1).map(Left(_)) ++ values(r2).map(Right(_))
case SEQ(r1, r2) => for (v1 <- values(r1); v2 <- values(r2)) yield Sequ(v1, v2)
case STAR(r) => values(r).map(v => Stars(List(v))) ++ Set(Stars(Nil))
// to do much more would cause the set to be infinite
}
def values_str(r: Rexp, s: String) : Set[Val] =
values(r).filter(flatten(_) == s)
val List(val1, val2) = values_str(("ab" | "a") ~ ("c" | "bc"), "abc").toList
// Position
type Pos = List[Int]
def positions(v: Val) : Set[Pos] = v match {
case Empty => Set(Nil)
case Chr(c) => Set(Nil)
case Left(v) => Set(Nil) ++ positions(v).map(0::_)
case Right(v) => Set(Nil) ++ positions(v).map(1::_)
case Sequ(v1, v2) => Set(Nil) ++ positions(v1).map(0::_) ++ positions(v2).map(1::_)
case Stars(vs) => Set(Nil) ++ vs.zipWithIndex.flatMap{ case (v, n) => positions(v).map(n::_) }
}
val v1 = Sequ(Chr('a'), Chr('b'))
val ps1 = positions(v1)
val ps1L = positions(Left(v1))
val ps1R = positions(Right(v1))
val v3 = Stars(List(Left(Chr('x')), Right(Left(Chr('y')))))
val v4 = Stars(List(Right(Right(Sequ(Chr('x'), Chr('y'))))))
val ps3 = positions(v3)
val ps4 = positions(v4)
def at(v: Val, ps: List[Int]) : Val = (v, ps) match {
case (v, Nil) => v
case (Left(v), 0::ps) => at(v, ps)
case (Right(v), 1::ps) => at(v, ps)
case (Sequ(v1, v2), 0::ps) => at(v1, ps)
case (Sequ(v1, v2), 1::ps) => at(v2, ps)
case (Stars(vs), n::ps) => at(vs(n), ps)
}
ps1.map(at(v1, _))
ps1L.map(at(Left(v1), _))
ps1R.map(at(Right(v1), _))
def pflat_len(v: Val, p: Pos) : Int =
if (positions(v) contains p) flat_len(at(v, p)) else -1
// for lexicographic list-orderings
import scala.math.Ordering.Implicits._
def smaller_than(pss: Set[Pos], ps: Pos) : Set[Pos] =
pss.filter(_ < ps)
// order from the alternative posix paper
def ordr(v1: Val, p: List[Int], v2: Val) : Boolean = {
pflat_len(v1, p) > pflat_len(v2, p) &&
smaller_than(positions(v1) | positions(v2), p).forall(q => pflat_len(v1, q) == pflat_len(v2, q))
}
//tests
val List(val1, val2) = values_str(("ab" | "a") ~ ("c" | "bc"), "abc").toList
positions(val1).map(p => (p, ordr(val1, p, val2))).filter{ case (_, b) => b == true }
positions(val1)
at(val1, List(0))
smaller_than(positions(val1), List(1, 0))
val List(val1, val2) = values_str("a" ~ (("ab" | "a") ~ ("c" | "bc")), "aabc").toList
positions(val2).map(p => (p, ordr(val2, p, val1))).filter{ case (_, b) => b == true }