diff -r 42ac18991a50 -r b16702bb6242 progs/scala/positions.scala --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/progs/scala/positions.scala Fri Jun 23 00:27:53 2017 +0100 @@ -0,0 +1,155 @@ +import scala.annotation.tailrec +import scala.language.implicitConversions +import scala.language.reflectiveCalls + + +abstract class Rexp +case object ZERO extends Rexp +case object ONE extends Rexp +case class CHAR(c: Char) extends Rexp +case class ALT(r1: Rexp, r2: Rexp) extends Rexp +case class SEQ(r1: Rexp, r2: Rexp) extends Rexp +case class STAR(r: Rexp) extends Rexp + +// some convenience for typing in regular expressions +def charlist2rexp(s : List[Char]): Rexp = s match { + case Nil => ONE + case c::Nil => CHAR(c) + case c::s => SEQ(CHAR(c), charlist2rexp(s)) +} +implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList) + +implicit def RexpOps(r: Rexp) = new { + def | (s: Rexp) = ALT(r, s) + def % = STAR(r) + def ~ (s: Rexp) = SEQ(r, s) +} + +implicit def stringOps(s: String) = new { + def | (r: Rexp) = ALT(s, r) + def | (r: String) = ALT(s, r) + def % = STAR(s) + def ~ (r: Rexp) = SEQ(s, r) + def ~ (r: String) = SEQ(s, r) +} + +// enumerates regular expressions until a certain depth +// using the characters in the string +def generate(n: Int, s: String) : Set[Rexp] = n match { + case 0 => Set(ZERO, ONE) ++ s.toSet.map(CHAR) + case n => { + val rs = generate(n - 1, s) + rs ++ + (for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) ++ + (for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) ++ + (for (r <- rs) yield STAR(r)) + } +} + + + +abstract class Val +case object Empty extends Val +case class Chr(c: Char) extends Val +case class Sequ(v1: Val, v2: Val) extends Val +case class Left(v: Val) extends Val +case class Right(v: Val) extends Val +case class Stars(vs: List[Val]) extends Val + + + +// extracts a string from value +def flatten(v: Val) : String = v match { + case Empty => "" + case Chr(c) => c.toString + case Left(v) => flatten(v) + case Right(v) => flatten(v) + case Sequ(v1, v2) => flatten(v1) + flatten(v2) + case Stars(vs) => vs.map(flatten).mkString +} + +def flat_len(v: Val) : Int = flatten(v).length + +// extracts a set of candidate values from a "non-starred" regular expression +def values(r: Rexp) : Set[Val] = r match { + case ZERO => Set() + case ONE => Set(Empty) + case CHAR(c) => Set(Chr(c)) + case ALT(r1, r2) => values(r1).map(Left(_)) ++ values(r2).map(Right(_)) + case SEQ(r1, r2) => for (v1 <- values(r1); v2 <- values(r2)) yield Sequ(v1, v2) + case STAR(r) => values(r).map(v => Stars(List(v))) ++ Set(Stars(Nil)) + // to do much more would cause the set to be infinite +} + + +def values_str(r: Rexp, s: String) : Set[Val] = + values(r).filter(flatten(_) == s) + +val List(val1, val2) = values_str(("ab" | "a") ~ ("c" | "bc"), "abc").toList + +// Position +type Pos = List[Int] + + +def positions(v: Val) : Set[Pos] = v match { + case Empty => Set(Nil) + case Chr(c) => Set(Nil) + case Left(v) => Set(Nil) ++ positions(v).map(0::_) + case Right(v) => Set(Nil) ++ positions(v).map(1::_) + case Sequ(v1, v2) => Set(Nil) ++ positions(v1).map(0::_) ++ positions(v2).map(1::_) + case Stars(vs) => Set(Nil) ++ vs.zipWithIndex.flatMap{ case (v, n) => positions(v).map(n::_) } +} + +val v1 = Sequ(Chr('a'), Chr('b')) +val ps1 = positions(v1) +val ps1L = positions(Left(v1)) +val ps1R = positions(Right(v1)) + +val v3 = Stars(List(Left(Chr('x')), Right(Left(Chr('y'))))) +val v4 = Stars(List(Right(Right(Sequ(Chr('x'), Chr('y')))))) + +val ps3 = positions(v3) +val ps4 = positions(v4) + +def at(v: Val, ps: List[Int]) : Val = (v, ps) match { + case (v, Nil) => v + case (Left(v), 0::ps) => at(v, ps) + case (Right(v), 1::ps) => at(v, ps) + case (Sequ(v1, v2), 0::ps) => at(v1, ps) + case (Sequ(v1, v2), 1::ps) => at(v2, ps) + case (Stars(vs), n::ps) => at(vs(n), ps) +} + +ps1.map(at(v1, _)) +ps1L.map(at(Left(v1), _)) +ps1R.map(at(Right(v1), _)) + + +def pflat_len(v: Val, p: Pos) : Int = + if (positions(v) contains p) flat_len(at(v, p)) else -1 + + +// for lexicographic list-orderings +import scala.math.Ordering.Implicits._ + +def smaller_than(pss: Set[Pos], ps: Pos) : Set[Pos] = + pss.filter(_ < ps) + + +// order from the alternative posix paper +def ordr(v1: Val, p: List[Int], v2: Val) : Boolean = { + pflat_len(v1, p) > pflat_len(v2, p) && + smaller_than(positions(v1) | positions(v2), p).forall(q => pflat_len(v1, q) == pflat_len(v2, q)) +} + +//tests +val List(val1, val2) = values_str(("ab" | "a") ~ ("c" | "bc"), "abc").toList + +positions(val1).map(p => (p, ordr(val1, p, val2))).filter{ case (_, b) => b == true } +positions(val1) +at(val1, List(0)) + +smaller_than(positions(val1), List(1, 0)) + +val List(val1, val2) = values_str("a" ~ (("ab" | "a") ~ ("c" | "bc")), "aabc").toList +positions(val2).map(p => (p, ordr(val2, p, val1))).filter{ case (_, b) => b == true }