thys/LexerExt.thy
author Chengsong
Mon, 10 Jul 2023 01:33:45 +0100
changeset 660 eddc4eaba7c4
parent 397 e1b74d618f1b
permissions -rw-r--r--
addresses Gerog "N_r meaning and relation with backtracking?" comment
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     1
   
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
     2
theory LexerExt
276
a3134f7de065 updated
cu
parents: 261
diff changeset
     3
  imports SpecExt 
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     4
begin
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     5
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     6
276
a3134f7de065 updated
cu
parents: 261
diff changeset
     7
section {* The Lexer Functions by Sulzmann and Lu  *}
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     8
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     9
fun 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    10
  mkeps :: "rexp \<Rightarrow> val"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    11
where
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
    12
  "mkeps(ONE) = Void"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    13
| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)"
276
a3134f7de065 updated
cu
parents: 261
diff changeset
    14
| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))"
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
    15
| "mkeps(STAR r) = Stars []"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    16
| "mkeps(UPNTIMES r n) = Stars []"
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
    17
| "mkeps(NTIMES r n) = Stars (replicate n (mkeps r))"
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
    18
| "mkeps(FROMNTIMES r n) = Stars (replicate n (mkeps r))"
227
a8749366ad5d NMTIMES case also done
Christian Urban <urbanc@in.tum.de>
parents: 226
diff changeset
    19
| "mkeps(NMTIMES r n m) = Stars (replicate n (mkeps r))"
397
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
    20
| "mkeps(NOT ZERO) = Nt Void"
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
    21
| "mkeps(NOT (CH _ )) = Nt Void"
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
    22
| "mkeps(NOT (SEQ r1 r2)) = Seq (mkeps (NOT r1)) (mkeps (NOT r1))"
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
    23
| "mkeps(NOT (ALT r1 r2)) = (if nullable(r1) then Right (mkeps (NOT r2)) else  (mkeps (NOT r1)))"
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
    24
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
    25
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    26
fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    27
where
397
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
    28
  "injval (CH d) c Void = Char d"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    29
| "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    30
| "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    31
| "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    32
| "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    33
| "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)"
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
    34
| "injval (STAR r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" 
276
a3134f7de065 updated
cu
parents: 261
diff changeset
    35
| "injval (NTIMES r n) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" 
a3134f7de065 updated
cu
parents: 261
diff changeset
    36
| "injval (FROMNTIMES r n) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" 
a3134f7de065 updated
cu
parents: 261
diff changeset
    37
| "injval (UPNTIMES r n) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" 
a3134f7de065 updated
cu
parents: 261
diff changeset
    38
| "injval (NMTIMES r n m) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" 
a3134f7de065 updated
cu
parents: 261
diff changeset
    39
  
a3134f7de065 updated
cu
parents: 261
diff changeset
    40
fun 
a3134f7de065 updated
cu
parents: 261
diff changeset
    41
  lexer :: "rexp \<Rightarrow> string \<Rightarrow> val option"
a3134f7de065 updated
cu
parents: 261
diff changeset
    42
where
a3134f7de065 updated
cu
parents: 261
diff changeset
    43
  "lexer r [] = (if nullable r then Some(mkeps r) else None)"
a3134f7de065 updated
cu
parents: 261
diff changeset
    44
| "lexer r (c#s) = (case (lexer (der c r) s) of  
a3134f7de065 updated
cu
parents: 261
diff changeset
    45
                    None \<Rightarrow> None
a3134f7de065 updated
cu
parents: 261
diff changeset
    46
                  | Some(v) \<Rightarrow> Some(injval r c v))"
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
    47
276
a3134f7de065 updated
cu
parents: 261
diff changeset
    48
a3134f7de065 updated
cu
parents: 261
diff changeset
    49
a3134f7de065 updated
cu
parents: 261
diff changeset
    50
section {* Mkeps, Injval Properties *}
243
09ab631ce7fa updated literature
Christian Urban <urbanc@in.tum.de>
parents: 239
diff changeset
    51
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    52
lemma mkeps_flat:
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    53
  assumes "nullable(r)" 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    54
  shows "flat (mkeps r) = []"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    55
using assms
276
a3134f7de065 updated
cu
parents: 261
diff changeset
    56
  apply(induct rule: nullable.induct) 
397
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
    57
          apply(auto)
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
    58
  apply presburger  
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
    59
  apply(case_tac r)
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
    60
  apply(auto)
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
    61
  sorry
276
a3134f7de065 updated
cu
parents: 261
diff changeset
    62
  
a3134f7de065 updated
cu
parents: 261
diff changeset
    63
lemma mkeps_nullable:
a3134f7de065 updated
cu
parents: 261
diff changeset
    64
  assumes "nullable(r)" 
a3134f7de065 updated
cu
parents: 261
diff changeset
    65
  shows "\<Turnstile> mkeps r : r"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    66
using assms
276
a3134f7de065 updated
cu
parents: 261
diff changeset
    67
apply(induct rule: nullable.induct) 
a3134f7de065 updated
cu
parents: 261
diff changeset
    68
         apply(auto intro: Prf.intros split: if_splits)
a3134f7de065 updated
cu
parents: 261
diff changeset
    69
  using Prf.intros(8) apply force
a3134f7de065 updated
cu
parents: 261
diff changeset
    70
     apply(subst append.simps(1)[symmetric])
a3134f7de065 updated
cu
parents: 261
diff changeset
    71
     apply(rule Prf.intros)
a3134f7de065 updated
cu
parents: 261
diff changeset
    72
       apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
    73
      apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
    74
       apply (simp add: mkeps_flat)
a3134f7de065 updated
cu
parents: 261
diff changeset
    75
      apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
    76
  using Prf.intros(9) apply force
a3134f7de065 updated
cu
parents: 261
diff changeset
    77
    apply(subst append.simps(1)[symmetric])
a3134f7de065 updated
cu
parents: 261
diff changeset
    78
     apply(rule Prf.intros)
a3134f7de065 updated
cu
parents: 261
diff changeset
    79
       apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
    80
      apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
    81
       apply (simp add: mkeps_flat)
a3134f7de065 updated
cu
parents: 261
diff changeset
    82
    apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
    83
  using Prf.intros(11) apply force
a3134f7de065 updated
cu
parents: 261
diff changeset
    84
    apply(subst append.simps(1)[symmetric])
a3134f7de065 updated
cu
parents: 261
diff changeset
    85
     apply(rule Prf.intros)
a3134f7de065 updated
cu
parents: 261
diff changeset
    86
       apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
    87
      apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
    88
    apply (simp add: mkeps_flat)
a3134f7de065 updated
cu
parents: 261
diff changeset
    89
   apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
    90
  apply(simp)
397
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
    91
  sorry
276
a3134f7de065 updated
cu
parents: 261
diff changeset
    92
    
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    93
243
09ab631ce7fa updated literature
Christian Urban <urbanc@in.tum.de>
parents: 239
diff changeset
    94
lemma Prf_injval_flat:
276
a3134f7de065 updated
cu
parents: 261
diff changeset
    95
  assumes "\<Turnstile> v : der c r" 
243
09ab631ce7fa updated literature
Christian Urban <urbanc@in.tum.de>
parents: 239
diff changeset
    96
  shows "flat (injval r c v) = c # (flat v)"
09ab631ce7fa updated literature
Christian Urban <urbanc@in.tum.de>
parents: 239
diff changeset
    97
using assms
09ab631ce7fa updated literature
Christian Urban <urbanc@in.tum.de>
parents: 239
diff changeset
    98
apply(induct arbitrary: v rule: der.induct)
276
a3134f7de065 updated
cu
parents: 261
diff changeset
    99
apply(auto elim!: Prf_elims intro: mkeps_flat split: if_splits)
397
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
   100
  sorry
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   101
a3134f7de065 updated
cu
parents: 261
diff changeset
   102
lemma Prf_injval:
a3134f7de065 updated
cu
parents: 261
diff changeset
   103
  assumes "\<Turnstile> v : der c r" 
a3134f7de065 updated
cu
parents: 261
diff changeset
   104
  shows "\<Turnstile> (injval r c v) : r"
a3134f7de065 updated
cu
parents: 261
diff changeset
   105
using assms
a3134f7de065 updated
cu
parents: 261
diff changeset
   106
apply(induct r arbitrary: c v rule: rexp.induct)
a3134f7de065 updated
cu
parents: 261
diff changeset
   107
apply(auto intro!: Prf.intros mkeps_nullable elim!: Prf_elims split: if_splits)[6]
a3134f7de065 updated
cu
parents: 261
diff changeset
   108
    apply(simp add: Prf_injval_flat)
a3134f7de065 updated
cu
parents: 261
diff changeset
   109
   apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   110
  apply(case_tac x2)
a3134f7de065 updated
cu
parents: 261
diff changeset
   111
    apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   112
  apply(erule Prf_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   113
   apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   114
   apply(erule Prf_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   115
   apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   116
  apply(erule Prf_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   117
   apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   118
  using Prf.intros(7) Prf_injval_flat apply auto[1]
a3134f7de065 updated
cu
parents: 261
diff changeset
   119
    apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   120
    apply(case_tac x2)
a3134f7de065 updated
cu
parents: 261
diff changeset
   121
     apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   122
    apply(erule Prf_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   123
    apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   124
    apply(erule Prf_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   125
   apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   126
  apply(erule Prf_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   127
   apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   128
    apply(subst append.simps(2)[symmetric])
a3134f7de065 updated
cu
parents: 261
diff changeset
   129
    apply(rule Prf.intros)
a3134f7de065 updated
cu
parents: 261
diff changeset
   130
      apply(simp add: Prf_injval_flat)
a3134f7de065 updated
cu
parents: 261
diff changeset
   131
     apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   132
    apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   133
    prefer 2
a3134f7de065 updated
cu
parents: 261
diff changeset
   134
   apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   135
   apply(case_tac "x3a < x2")
a3134f7de065 updated
cu
parents: 261
diff changeset
   136
    apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   137
    apply(erule Prf_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   138
   apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   139
    apply(case_tac x2)
a3134f7de065 updated
cu
parents: 261
diff changeset
   140
    apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   141
    apply(case_tac x3a)
a3134f7de065 updated
cu
parents: 261
diff changeset
   142
     apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   143
    apply(erule Prf_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   144
    apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   145
    apply(erule Prf_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   146
    apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   147
    apply(erule Prf_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   148
    apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   149
  using Prf.intros(12) Prf_injval_flat apply auto[1]
a3134f7de065 updated
cu
parents: 261
diff changeset
   150
   apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   151
    apply(erule Prf_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   152
   apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   153
    apply(erule Prf_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   154
    apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   155
    apply(subst append.simps(2)[symmetric])
a3134f7de065 updated
cu
parents: 261
diff changeset
   156
    apply(rule Prf.intros)
a3134f7de065 updated
cu
parents: 261
diff changeset
   157
     apply(simp add: Prf_injval_flat)
a3134f7de065 updated
cu
parents: 261
diff changeset
   158
     apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   159
     apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   160
    apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   161
   apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   162
  using Prf.intros(12) Prf_injval_flat apply auto[1]
a3134f7de065 updated
cu
parents: 261
diff changeset
   163
    apply(case_tac x2)
a3134f7de065 updated
cu
parents: 261
diff changeset
   164
   apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   165
    apply(erule Prf_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   166
   apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   167
    apply(erule Prf_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   168
    apply(simp_all)
a3134f7de065 updated
cu
parents: 261
diff changeset
   169
    apply (simp add: Prf.intros(10) Prf_injval_flat)
a3134f7de065 updated
cu
parents: 261
diff changeset
   170
  using Prf.intros(10) Prf_injval_flat apply auto[1]
a3134f7de065 updated
cu
parents: 261
diff changeset
   171
  apply(erule Prf_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   172
  apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   173
    apply(erule Prf_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   174
    apply(simp_all)
a3134f7de065 updated
cu
parents: 261
diff changeset
   175
    apply(subst append.simps(2)[symmetric])
a3134f7de065 updated
cu
parents: 261
diff changeset
   176
    apply(rule Prf.intros)
a3134f7de065 updated
cu
parents: 261
diff changeset
   177
     apply(simp add: Prf_injval_flat)
a3134f7de065 updated
cu
parents: 261
diff changeset
   178
     apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   179
   apply(simp)
397
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
   180
  sorry
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
   181
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   182
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   183
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   184
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   185
text {*
a3134f7de065 updated
cu
parents: 261
diff changeset
   186
  Mkeps and injval produce, or preserve, Posix values.
a3134f7de065 updated
cu
parents: 261
diff changeset
   187
*}
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   188
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   189
lemma Posix_mkeps:
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   190
  assumes "nullable r"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   191
  shows "[] \<in> r \<rightarrow> mkeps r"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   192
using assms
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   193
apply(induct r rule: nullable.induct)
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   194
apply(auto intro: Posix.intros simp add: nullable_correctness Sequ_def)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   195
apply(subst append.simps(1)[symmetric])
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   196
apply(rule Posix.intros)
397
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
   197
   apply(auto)
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
   198
  apply(case_tac r)
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
   199
  apply(auto)
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
   200
  sorry
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   201
    
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   202
172
cdc0bdcfba3f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 151
diff changeset
   203
lemma Posix_injval:
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   204
  assumes "s \<in> (der c r) \<rightarrow> v" 
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   205
  shows "(c # s) \<in> r \<rightarrow> (injval r c v)"
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   206
using assms
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   207
proof(induct r arbitrary: s v rule: rexp.induct)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   208
  case ZERO
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   209
  have "s \<in> der c ZERO \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   210
  then have "s \<in> ZERO \<rightarrow> v" by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   211
  then have "False" by cases
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   212
  then show "(c # s) \<in> ZERO \<rightarrow> (injval ZERO c v)" by simp
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   213
next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   214
  case ONE
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   215
  have "s \<in> der c ONE \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   216
  then have "s \<in> ZERO \<rightarrow> v" by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   217
  then have "False" by cases
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   218
  then show "(c # s) \<in> ONE \<rightarrow> (injval ONE c v)" by simp
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   219
next 
397
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
   220
  case (CH d)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   221
  consider (eq) "c = d" | (ineq) "c \<noteq> d" by blast
397
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
   222
  then show "(c # s) \<in> (CH d) \<rightarrow> (injval (CH d) c v)"
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   223
  proof (cases)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   224
    case eq
397
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
   225
    have "s \<in> der c (CH d) \<rightarrow> v" by fact
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   226
    then have "s \<in> ONE \<rightarrow> v" using eq by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   227
    then have eqs: "s = [] \<and> v = Void" by cases simp
397
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
   228
    show "(c # s) \<in> CH d \<rightarrow> injval (CH d) c v" using eq eqs 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   229
    by (auto intro: Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   230
  next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   231
    case ineq
397
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
   232
    have "s \<in> der c (CH d) \<rightarrow> v" by fact
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   233
    then have "s \<in> ZERO \<rightarrow> v" using ineq by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   234
    then have "False" by cases
397
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
   235
    then show "(c # s) \<in> CH d \<rightarrow> injval (CH d) c v" by simp
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   236
  qed
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   237
next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   238
  case (ALT r1 r2)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   239
  have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   240
  have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   241
  have "s \<in> der c (ALT r1 r2) \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   242
  then have "s \<in> ALT (der c r1) (der c r2) \<rightarrow> v" by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   243
  then consider (left) v' where "v = Left v'" "s \<in> der c r1 \<rightarrow> v'" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   244
              | (right) v' where "v = Right v'" "s \<notin> L (der c r1)" "s \<in> der c r2 \<rightarrow> v'" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   245
              by cases auto
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   246
  then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v"
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   247
  proof (cases)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   248
    case left
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   249
    have "s \<in> der c r1 \<rightarrow> v'" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   250
    then have "(c # s) \<in> r1 \<rightarrow> injval r1 c v'" using IH1 by simp
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   251
    then have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Left v')" by (auto intro: Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   252
    then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using left by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   253
  next 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   254
    case right
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   255
    have "s \<notin> L (der c r1)" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   256
    then have "c # s \<notin> L r1" by (simp add: der_correctness Der_def)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   257
    moreover 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   258
    have "s \<in> der c r2 \<rightarrow> v'" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   259
    then have "(c # s) \<in> r2 \<rightarrow> injval r2 c v'" using IH2 by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   260
    ultimately have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Right v')" 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   261
      by (auto intro: Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   262
    then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using right by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   263
  qed
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   264
next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   265
  case (SEQ r1 r2)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   266
  have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   267
  have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   268
  have "s \<in> der c (SEQ r1 r2) \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   269
  then consider 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   270
        (left_nullable) v1 v2 s1 s2 where 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   271
        "v = Left (Seq v1 v2)"  "s = s1 @ s2" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   272
        "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "nullable r1" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   273
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   274
      | (right_nullable) v1 s1 s2 where 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   275
        "v = Right v1" "s = s1 @ s2"  
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   276
        "s \<in> der c r2 \<rightarrow> v1" "nullable r1" "s1 @ s2 \<notin> L (SEQ (der c r1) r2)"
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   277
      | (not_nullable) v1 v2 s1 s2 where
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   278
        "v = Seq v1 v2" "s = s1 @ s2" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   279
        "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "\<not>nullable r1" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   280
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   281
        by (force split: if_splits elim!: Posix_elims simp add: Sequ_def der_correctness Der_def)   
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   282
  then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   283
    proof (cases)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   284
      case left_nullable
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   285
      have "s1 \<in> der c r1 \<rightarrow> v1" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   286
      then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   287
      moreover
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   288
      have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   289
      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   290
      ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using left_nullable by (rule_tac Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   291
      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using left_nullable by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   292
    next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   293
      case right_nullable
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   294
      have "nullable r1" by fact
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   295
      then have "[] \<in> r1 \<rightarrow> (mkeps r1)" by (rule Posix_mkeps)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   296
      moreover
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   297
      have "s \<in> der c r2 \<rightarrow> v1" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   298
      then have "(c # s) \<in> r2 \<rightarrow> (injval r2 c v1)" using IH2 by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   299
      moreover
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   300
      have "s1 @ s2 \<notin> L (SEQ (der c r1) r2)" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   301
      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = c # s \<and> [] @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" using right_nullable
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   302
        by(auto simp add: der_correctness Der_def append_eq_Cons_conv Sequ_def)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   303
      ultimately have "([] @ (c # s)) \<in> SEQ r1 r2 \<rightarrow> Seq (mkeps r1) (injval r2 c v1)"
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   304
      by(rule Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   305
      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using right_nullable by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   306
    next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   307
      case not_nullable
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   308
      have "s1 \<in> der c r1 \<rightarrow> v1" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   309
      then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   310
      moreover
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   311
      have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   312
      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   313
      ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using not_nullable 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   314
        by (rule_tac Posix.intros) (simp_all) 
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   315
      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using not_nullable by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   316
    qed
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   317
next
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   318
case (UPNTIMES r n s v)
a3134f7de065 updated
cu
parents: 261
diff changeset
   319
  have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
a3134f7de065 updated
cu
parents: 261
diff changeset
   320
  have "s \<in> der c (UPNTIMES r n) \<rightarrow> v" by fact
a3134f7de065 updated
cu
parents: 261
diff changeset
   321
  then consider
a3134f7de065 updated
cu
parents: 261
diff changeset
   322
      (cons) v1 vs s1 s2 where 
a3134f7de065 updated
cu
parents: 261
diff changeset
   323
        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
a3134f7de065 updated
cu
parents: 261
diff changeset
   324
        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (UPNTIMES r (n - 1)) \<rightarrow> (Stars vs)" "0 < n"
a3134f7de065 updated
cu
parents: 261
diff changeset
   325
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (UPNTIMES r (n - 1)))" 
a3134f7de065 updated
cu
parents: 261
diff changeset
   326
    (* here *)
a3134f7de065 updated
cu
parents: 261
diff changeset
   327
    apply(auto elim: Posix_elims simp add: der_correctness Der_def intro: Posix.intros split: if_splits)
a3134f7de065 updated
cu
parents: 261
diff changeset
   328
    apply(erule Posix_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   329
    apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   330
    apply(subgoal_tac "\<exists>vss. v2 = Stars vss")
a3134f7de065 updated
cu
parents: 261
diff changeset
   331
    apply(clarify)
a3134f7de065 updated
cu
parents: 261
diff changeset
   332
    apply(drule_tac x="vss" in meta_spec)
a3134f7de065 updated
cu
parents: 261
diff changeset
   333
    apply(drule_tac x="s1" in meta_spec)
a3134f7de065 updated
cu
parents: 261
diff changeset
   334
    apply(drule_tac x="s2" in meta_spec)
a3134f7de065 updated
cu
parents: 261
diff changeset
   335
     apply(simp add: der_correctness Der_def)
a3134f7de065 updated
cu
parents: 261
diff changeset
   336
    apply(erule Posix_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   337
     apply(auto)
a3134f7de065 updated
cu
parents: 261
diff changeset
   338
      done
a3134f7de065 updated
cu
parents: 261
diff changeset
   339
    then show "(c # s) \<in> (UPNTIMES r n) \<rightarrow> injval (UPNTIMES r n) c v" 
a3134f7de065 updated
cu
parents: 261
diff changeset
   340
    proof (cases)
a3134f7de065 updated
cu
parents: 261
diff changeset
   341
      case cons
a3134f7de065 updated
cu
parents: 261
diff changeset
   342
          have "s1 \<in> der c r \<rightarrow> v1" by fact
a3134f7de065 updated
cu
parents: 261
diff changeset
   343
          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
a3134f7de065 updated
cu
parents: 261
diff changeset
   344
        moreover
a3134f7de065 updated
cu
parents: 261
diff changeset
   345
          have "s2 \<in> (UPNTIMES r (n - 1)) \<rightarrow> Stars vs" by fact
a3134f7de065 updated
cu
parents: 261
diff changeset
   346
        moreover 
a3134f7de065 updated
cu
parents: 261
diff changeset
   347
          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
a3134f7de065 updated
cu
parents: 261
diff changeset
   348
          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
a3134f7de065 updated
cu
parents: 261
diff changeset
   349
          then have "flat (injval r c v1) \<noteq> []" by simp
a3134f7de065 updated
cu
parents: 261
diff changeset
   350
        moreover 
a3134f7de065 updated
cu
parents: 261
diff changeset
   351
          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (UPNTIMES r (n - 1)))" by fact
a3134f7de065 updated
cu
parents: 261
diff changeset
   352
          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r (n - 1)))" 
a3134f7de065 updated
cu
parents: 261
diff changeset
   353
            by (simp add: der_correctness Der_def)
a3134f7de065 updated
cu
parents: 261
diff changeset
   354
        ultimately 
a3134f7de065 updated
cu
parents: 261
diff changeset
   355
        have "((c # s1) @ s2) \<in> UPNTIMES r n \<rightarrow> Stars (injval r c v1 # vs)" 
a3134f7de065 updated
cu
parents: 261
diff changeset
   356
           thm Posix.intros
a3134f7de065 updated
cu
parents: 261
diff changeset
   357
           apply (rule_tac Posix.intros)
a3134f7de065 updated
cu
parents: 261
diff changeset
   358
               apply(simp_all)
a3134f7de065 updated
cu
parents: 261
diff changeset
   359
              apply(case_tac n)
a3134f7de065 updated
cu
parents: 261
diff changeset
   360
            apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   361
           using Posix_elims(1) UPNTIMES.prems apply auto[1]
a3134f7de065 updated
cu
parents: 261
diff changeset
   362
             apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   363
             done
a3134f7de065 updated
cu
parents: 261
diff changeset
   364
        then show "(c # s) \<in> UPNTIMES r n \<rightarrow> injval (UPNTIMES r n) c v" using cons by(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   365
      qed
a3134f7de065 updated
cu
parents: 261
diff changeset
   366
    next
a3134f7de065 updated
cu
parents: 261
diff changeset
   367
      case (STAR r)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   368
  have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   369
  have "s \<in> der c (STAR r) \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   370
  then consider
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   371
      (cons) v1 vs s1 s2 where 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   372
        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   373
        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (STAR r) \<rightarrow> (Stars vs)"
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   374
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" 
149
ec3d221bfc45 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 146
diff changeset
   375
        apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)
142
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   376
        apply(rotate_tac 3)
149
ec3d221bfc45 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 146
diff changeset
   377
        apply(erule_tac Posix_elims(6))
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   378
        apply (simp add: Posix.intros(6))
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   379
        using Posix.intros(7) by blast
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   380
    then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   381
    proof (cases)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   382
      case cons
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   383
          have "s1 \<in> der c r \<rightarrow> v1" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   384
          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   385
        moreover
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   386
          have "s2 \<in> STAR r \<rightarrow> Stars vs" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   387
        moreover 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   388
          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   389
          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   390
          then have "flat (injval r c v1) \<noteq> []" by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   391
        moreover 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   392
          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   393
          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   394
            by (simp add: der_correctness Der_def)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   395
        ultimately 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   396
        have "((c # s1) @ s2) \<in> STAR r \<rightarrow> Stars (injval r c v1 # vs)" by (rule Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   397
        then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" using cons by(simp)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   398
    qed
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   399
  next
a3134f7de065 updated
cu
parents: 261
diff changeset
   400
    case (NTIMES r n s v)
a3134f7de065 updated
cu
parents: 261
diff changeset
   401
     have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
a3134f7de065 updated
cu
parents: 261
diff changeset
   402
  have "s \<in> der c (NTIMES r n) \<rightarrow> v" by fact
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   403
  then consider
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   404
      (cons) v1 vs s1 s2 where 
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   405
        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   406
        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (NTIMES r (n - 1)) \<rightarrow> (Stars vs)" "0 < n"
a3134f7de065 updated
cu
parents: 261
diff changeset
   407
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (NTIMES r (n - 1)))" 
a3134f7de065 updated
cu
parents: 261
diff changeset
   408
    apply(auto elim: Posix_elims simp add: der_correctness Der_def intro: Posix.intros split: if_splits)
a3134f7de065 updated
cu
parents: 261
diff changeset
   409
    apply(erule Posix_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   410
    apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   411
    apply(subgoal_tac "\<exists>vss. v2 = Stars vss")
a3134f7de065 updated
cu
parents: 261
diff changeset
   412
    apply(clarify)
a3134f7de065 updated
cu
parents: 261
diff changeset
   413
    apply(drule_tac x="vss" in meta_spec)
a3134f7de065 updated
cu
parents: 261
diff changeset
   414
    apply(drule_tac x="s1" in meta_spec)
a3134f7de065 updated
cu
parents: 261
diff changeset
   415
    apply(drule_tac x="s2" in meta_spec)
a3134f7de065 updated
cu
parents: 261
diff changeset
   416
     apply(simp add: der_correctness Der_def)
a3134f7de065 updated
cu
parents: 261
diff changeset
   417
    apply(erule Posix_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   418
     apply(auto)
a3134f7de065 updated
cu
parents: 261
diff changeset
   419
      done
a3134f7de065 updated
cu
parents: 261
diff changeset
   420
    then show "(c # s) \<in> (NTIMES r n) \<rightarrow> injval (NTIMES r n) c v" 
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   421
    proof (cases)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   422
      case cons
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   423
          have "s1 \<in> der c r \<rightarrow> v1" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   424
          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   425
        moreover
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   426
          have "s2 \<in> (NTIMES r (n - 1)) \<rightarrow> Stars vs" by fact
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   427
        moreover 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   428
          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   429
          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   430
          then have "flat (injval r c v1) \<noteq> []" by simp
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   431
        moreover 
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   432
          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (NTIMES r (n - 1)))" by fact
a3134f7de065 updated
cu
parents: 261
diff changeset
   433
          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (NTIMES r (n - 1)))" 
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   434
            by (simp add: der_correctness Der_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   435
        ultimately 
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   436
        have "((c # s1) @ s2) \<in> NTIMES r n \<rightarrow> Stars (injval r c v1 # vs)" 
a3134f7de065 updated
cu
parents: 261
diff changeset
   437
           apply (rule_tac Posix.intros)
a3134f7de065 updated
cu
parents: 261
diff changeset
   438
               apply(simp_all)
a3134f7de065 updated
cu
parents: 261
diff changeset
   439
              apply(case_tac n)
a3134f7de065 updated
cu
parents: 261
diff changeset
   440
            apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   441
           using Posix_elims(1) NTIMES.prems apply auto[1]
a3134f7de065 updated
cu
parents: 261
diff changeset
   442
             apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   443
             done
221
c21938d0b396 added also the ntimes case
Christian Urban <urbanc@in.tum.de>
parents: 220
diff changeset
   444
        then show "(c # s) \<in> NTIMES r n \<rightarrow> injval (NTIMES r n) c v" using cons by(simp)
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   445
      qed  
a3134f7de065 updated
cu
parents: 261
diff changeset
   446
  next
a3134f7de065 updated
cu
parents: 261
diff changeset
   447
    case (FROMNTIMES r n s v)
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   448
  have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   449
  have "s \<in> der c (FROMNTIMES r n) \<rightarrow> v" by fact
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   450
  then consider
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   451
      (cons) v1 vs s1 s2 where 
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   452
        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   453
        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (FROMNTIMES r (n - 1)) \<rightarrow> (Stars vs)" "0 < n"
a3134f7de065 updated
cu
parents: 261
diff changeset
   454
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (FROMNTIMES r (n - 1)))"
277
42268a284ea6 updated
cu
parents: 276
diff changeset
   455
     | (null) v1 vs s1 s2 where 
42268a284ea6 updated
cu
parents: 276
diff changeset
   456
        "v = Seq v1 (Stars vs)" "s = s1 @ s2"  "s2 \<in> (STAR r) \<rightarrow> (Stars vs)" 
42268a284ea6 updated
cu
parents: 276
diff changeset
   457
        "s1 \<in> der c r \<rightarrow> v1" "n = 0"
278
424bdcd01016 updated
cu
parents: 277
diff changeset
   458
         "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))"  
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   459
    apply(auto elim: Posix_elims simp add: der_correctness Der_def intro: Posix.intros split: if_splits)
277
42268a284ea6 updated
cu
parents: 276
diff changeset
   460
    prefer 2
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   461
    apply(erule Posix_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   462
    apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   463
    apply(subgoal_tac "\<exists>vss. v2 = Stars vss")
a3134f7de065 updated
cu
parents: 261
diff changeset
   464
    apply(clarify)
a3134f7de065 updated
cu
parents: 261
diff changeset
   465
    apply(drule_tac x="vss" in meta_spec)
a3134f7de065 updated
cu
parents: 261
diff changeset
   466
    apply(drule_tac x="s1" in meta_spec)
a3134f7de065 updated
cu
parents: 261
diff changeset
   467
    apply(drule_tac x="s2" in meta_spec)
a3134f7de065 updated
cu
parents: 261
diff changeset
   468
     apply(simp add: der_correctness Der_def)
277
42268a284ea6 updated
cu
parents: 276
diff changeset
   469
      apply(rotate_tac 5)
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   470
    apply(erule Posix_elims)
a3134f7de065 updated
cu
parents: 261
diff changeset
   471
      apply(auto)[2]
277
42268a284ea6 updated
cu
parents: 276
diff changeset
   472
    apply(erule Posix_elims)
42268a284ea6 updated
cu
parents: 276
diff changeset
   473
      apply(simp)
42268a284ea6 updated
cu
parents: 276
diff changeset
   474
     apply blast
42268a284ea6 updated
cu
parents: 276
diff changeset
   475
    apply(erule Posix_elims)
42268a284ea6 updated
cu
parents: 276
diff changeset
   476
    apply(auto)
42268a284ea6 updated
cu
parents: 276
diff changeset
   477
      apply(auto elim: Posix_elims simp add: der_correctness Der_def intro: Posix.intros split: if_splits)      
42268a284ea6 updated
cu
parents: 276
diff changeset
   478
    apply(subgoal_tac "\<exists>vss. v2 = Stars vss")
42268a284ea6 updated
cu
parents: 276
diff changeset
   479
     apply(clarify)
42268a284ea6 updated
cu
parents: 276
diff changeset
   480
    apply simp
42268a284ea6 updated
cu
parents: 276
diff changeset
   481
      apply(rotate_tac 6)
42268a284ea6 updated
cu
parents: 276
diff changeset
   482
    apply(erule Posix_elims)
42268a284ea6 updated
cu
parents: 276
diff changeset
   483
      apply(auto)[2]
42268a284ea6 updated
cu
parents: 276
diff changeset
   484
    done
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   485
    then show "(c # s) \<in> (FROMNTIMES r n) \<rightarrow> injval (FROMNTIMES r n) c v" 
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   486
    proof (cases)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   487
      case cons
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   488
          have "s1 \<in> der c r \<rightarrow> v1" by fact
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   489
          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   490
        moreover
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   491
          have "s2 \<in> (FROMNTIMES r (n - 1)) \<rightarrow> Stars vs" by fact
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   492
        moreover 
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   493
          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
a3134f7de065 updated
cu
parents: 261
diff changeset
   494
          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
a3134f7de065 updated
cu
parents: 261
diff changeset
   495
          then have "flat (injval r c v1) \<noteq> []" by simp
a3134f7de065 updated
cu
parents: 261
diff changeset
   496
        moreover 
a3134f7de065 updated
cu
parents: 261
diff changeset
   497
          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (FROMNTIMES r (n - 1)))" by fact
a3134f7de065 updated
cu
parents: 261
diff changeset
   498
          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (FROMNTIMES r (n - 1)))" 
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   499
            by (simp add: der_correctness Der_def)
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   500
        ultimately 
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   501
        have "((c # s1) @ s2) \<in> FROMNTIMES r n \<rightarrow> Stars (injval r c v1 # vs)" 
a3134f7de065 updated
cu
parents: 261
diff changeset
   502
           apply (rule_tac Posix.intros)
a3134f7de065 updated
cu
parents: 261
diff changeset
   503
               apply(simp_all)
a3134f7de065 updated
cu
parents: 261
diff changeset
   504
              apply(case_tac n)
a3134f7de065 updated
cu
parents: 261
diff changeset
   505
            apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   506
          using Posix_elims(1) FROMNTIMES.prems apply auto[1]
a3134f7de065 updated
cu
parents: 261
diff changeset
   507
          using cons(5) apply blast
a3134f7de065 updated
cu
parents: 261
diff changeset
   508
             apply(simp)
a3134f7de065 updated
cu
parents: 261
diff changeset
   509
             done
223
17c079699ea0 FROMNTIMES not yet done
Christian Urban <urbanc@in.tum.de>
parents: 222
diff changeset
   510
        then show "(c # s) \<in> FROMNTIMES r n \<rightarrow> injval (FROMNTIMES r n) c v" using cons by(simp)
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   511
      next 
a3134f7de065 updated
cu
parents: 261
diff changeset
   512
       case null
277
42268a284ea6 updated
cu
parents: 276
diff changeset
   513
          have "s1 \<in> der c r \<rightarrow> v1" by fact
42268a284ea6 updated
cu
parents: 276
diff changeset
   514
          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
42268a284ea6 updated
cu
parents: 276
diff changeset
   515
          moreover 
42268a284ea6 updated
cu
parents: 276
diff changeset
   516
            have "s2 \<in> STAR r \<rightarrow> Stars vs" by fact
42268a284ea6 updated
cu
parents: 276
diff changeset
   517
          moreover 
42268a284ea6 updated
cu
parents: 276
diff changeset
   518
          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
42268a284ea6 updated
cu
parents: 276
diff changeset
   519
          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   520
          then have "flat (injval r c v1) \<noteq> []" by simp
277
42268a284ea6 updated
cu
parents: 276
diff changeset
   521
          moreover
42268a284ea6 updated
cu
parents: 276
diff changeset
   522
             moreover 
42268a284ea6 updated
cu
parents: 276
diff changeset
   523
          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" by fact
42268a284ea6 updated
cu
parents: 276
diff changeset
   524
          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" 
42268a284ea6 updated
cu
parents: 276
diff changeset
   525
            by (simp add: der_correctness Der_def)
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   526
        ultimately 
277
42268a284ea6 updated
cu
parents: 276
diff changeset
   527
        have "((c # s1) @ s2) \<in> FROMNTIMES r 0 \<rightarrow> Stars (injval r c v1 # vs)" 
42268a284ea6 updated
cu
parents: 276
diff changeset
   528
           apply (rule_tac Posix.intros) back
42268a284ea6 updated
cu
parents: 276
diff changeset
   529
             apply(simp_all)
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   530
           done
a3134f7de065 updated
cu
parents: 261
diff changeset
   531
        then show "(c # s) \<in> FROMNTIMES r n \<rightarrow> injval (FROMNTIMES r n) c v" using null 
a3134f7de065 updated
cu
parents: 261
diff changeset
   532
          apply(simp)
277
42268a284ea6 updated
cu
parents: 276
diff changeset
   533
          done  
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   534
      qed  
a3134f7de065 updated
cu
parents: 261
diff changeset
   535
  next
278
424bdcd01016 updated
cu
parents: 277
diff changeset
   536
    case (NMTIMES r n m s v)
424bdcd01016 updated
cu
parents: 277
diff changeset
   537
      have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
424bdcd01016 updated
cu
parents: 277
diff changeset
   538
  have "s \<in> der c (NMTIMES r n m) \<rightarrow> v" by fact
424bdcd01016 updated
cu
parents: 277
diff changeset
   539
  then consider
424bdcd01016 updated
cu
parents: 277
diff changeset
   540
      (cons) v1 vs s1 s2 where 
424bdcd01016 updated
cu
parents: 277
diff changeset
   541
        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
424bdcd01016 updated
cu
parents: 277
diff changeset
   542
        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (NMTIMES r (n - 1) (m - 1)) \<rightarrow> (Stars vs)" "0 < n" "n \<le> m"
424bdcd01016 updated
cu
parents: 277
diff changeset
   543
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (NMTIMES r (n - 1) (m - 1)))"
424bdcd01016 updated
cu
parents: 277
diff changeset
   544
     | (null) v1 vs s1 s2 where 
424bdcd01016 updated
cu
parents: 277
diff changeset
   545
        "v = Seq v1 (Stars vs)" "s = s1 @ s2"  "s2 \<in> (UPNTIMES r (m - 1)) \<rightarrow> (Stars vs)" 
424bdcd01016 updated
cu
parents: 277
diff changeset
   546
        "s1 \<in> der c r \<rightarrow> v1" "n = 0" "0 < m"
424bdcd01016 updated
cu
parents: 277
diff changeset
   547
         "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (UPNTIMES r (m - 1)))"  
424bdcd01016 updated
cu
parents: 277
diff changeset
   548
    apply(auto elim: Posix_elims simp add: der_correctness Der_def intro: Posix.intros split: if_splits)
424bdcd01016 updated
cu
parents: 277
diff changeset
   549
    prefer 2
424bdcd01016 updated
cu
parents: 277
diff changeset
   550
    apply(erule Posix_elims)
424bdcd01016 updated
cu
parents: 277
diff changeset
   551
    apply(simp)
424bdcd01016 updated
cu
parents: 277
diff changeset
   552
    apply(subgoal_tac "\<exists>vss. v2 = Stars vss")
424bdcd01016 updated
cu
parents: 277
diff changeset
   553
    apply(clarify)
424bdcd01016 updated
cu
parents: 277
diff changeset
   554
    apply(drule_tac x="vss" in meta_spec)
424bdcd01016 updated
cu
parents: 277
diff changeset
   555
    apply(drule_tac x="s1" in meta_spec)
424bdcd01016 updated
cu
parents: 277
diff changeset
   556
    apply(drule_tac x="s2" in meta_spec)
424bdcd01016 updated
cu
parents: 277
diff changeset
   557
     apply(simp add: der_correctness Der_def)
424bdcd01016 updated
cu
parents: 277
diff changeset
   558
      apply(rotate_tac 5)
424bdcd01016 updated
cu
parents: 277
diff changeset
   559
    apply(erule Posix_elims)
424bdcd01016 updated
cu
parents: 277
diff changeset
   560
      apply(auto)[2]
424bdcd01016 updated
cu
parents: 277
diff changeset
   561
    apply(erule Posix_elims)
424bdcd01016 updated
cu
parents: 277
diff changeset
   562
      apply(simp)
424bdcd01016 updated
cu
parents: 277
diff changeset
   563
     apply blast
424bdcd01016 updated
cu
parents: 277
diff changeset
   564
      
424bdcd01016 updated
cu
parents: 277
diff changeset
   565
    apply(erule Posix_elims)
424bdcd01016 updated
cu
parents: 277
diff changeset
   566
    apply(auto)
424bdcd01016 updated
cu
parents: 277
diff changeset
   567
      apply(auto elim: Posix_elims simp add: der_correctness Der_def intro: Posix.intros split: if_splits)      
424bdcd01016 updated
cu
parents: 277
diff changeset
   568
    apply(subgoal_tac "\<exists>vss. v2 = Stars vss")
424bdcd01016 updated
cu
parents: 277
diff changeset
   569
     apply(clarify)
424bdcd01016 updated
cu
parents: 277
diff changeset
   570
    apply simp
424bdcd01016 updated
cu
parents: 277
diff changeset
   571
      apply(rotate_tac 6)
424bdcd01016 updated
cu
parents: 277
diff changeset
   572
    apply(erule Posix_elims)
424bdcd01016 updated
cu
parents: 277
diff changeset
   573
      apply(auto)[2]
424bdcd01016 updated
cu
parents: 277
diff changeset
   574
    done
424bdcd01016 updated
cu
parents: 277
diff changeset
   575
    then show "(c # s) \<in> (NMTIMES r n m) \<rightarrow> injval (NMTIMES r n m) c v" 
424bdcd01016 updated
cu
parents: 277
diff changeset
   576
    proof (cases)
424bdcd01016 updated
cu
parents: 277
diff changeset
   577
      case cons
424bdcd01016 updated
cu
parents: 277
diff changeset
   578
          have "s1 \<in> der c r \<rightarrow> v1" by fact
424bdcd01016 updated
cu
parents: 277
diff changeset
   579
          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
424bdcd01016 updated
cu
parents: 277
diff changeset
   580
        moreover
424bdcd01016 updated
cu
parents: 277
diff changeset
   581
          have "s2 \<in> (NMTIMES r (n - 1) (m - 1)) \<rightarrow> Stars vs" by fact
424bdcd01016 updated
cu
parents: 277
diff changeset
   582
        moreover 
424bdcd01016 updated
cu
parents: 277
diff changeset
   583
          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
424bdcd01016 updated
cu
parents: 277
diff changeset
   584
          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
424bdcd01016 updated
cu
parents: 277
diff changeset
   585
          then have "flat (injval r c v1) \<noteq> []" by simp
424bdcd01016 updated
cu
parents: 277
diff changeset
   586
        moreover 
424bdcd01016 updated
cu
parents: 277
diff changeset
   587
          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (NMTIMES r (n - 1) (m - 1)))" by fact
424bdcd01016 updated
cu
parents: 277
diff changeset
   588
          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (NMTIMES r (n - 1) (m - 1)))" 
424bdcd01016 updated
cu
parents: 277
diff changeset
   589
            by (simp add: der_correctness Der_def)
424bdcd01016 updated
cu
parents: 277
diff changeset
   590
        ultimately 
424bdcd01016 updated
cu
parents: 277
diff changeset
   591
        have "((c # s1) @ s2) \<in> NMTIMES r n m \<rightarrow> Stars (injval r c v1 # vs)" 
424bdcd01016 updated
cu
parents: 277
diff changeset
   592
           apply (rule_tac Posix.intros)
424bdcd01016 updated
cu
parents: 277
diff changeset
   593
               apply(simp_all)
424bdcd01016 updated
cu
parents: 277
diff changeset
   594
              apply(case_tac n)
424bdcd01016 updated
cu
parents: 277
diff changeset
   595
            apply(simp)
424bdcd01016 updated
cu
parents: 277
diff changeset
   596
          using Posix_elims(1) NMTIMES.prems apply auto[1]
424bdcd01016 updated
cu
parents: 277
diff changeset
   597
          using cons(5) apply blast
424bdcd01016 updated
cu
parents: 277
diff changeset
   598
           apply(simp)
424bdcd01016 updated
cu
parents: 277
diff changeset
   599
            apply(rule cons)
424bdcd01016 updated
cu
parents: 277
diff changeset
   600
             done
424bdcd01016 updated
cu
parents: 277
diff changeset
   601
        then show "(c # s) \<in> NMTIMES r n m \<rightarrow> injval (NMTIMES r n m) c v" using cons by(simp)
424bdcd01016 updated
cu
parents: 277
diff changeset
   602
      next 
424bdcd01016 updated
cu
parents: 277
diff changeset
   603
       case null
424bdcd01016 updated
cu
parents: 277
diff changeset
   604
          have "s1 \<in> der c r \<rightarrow> v1" by fact
424bdcd01016 updated
cu
parents: 277
diff changeset
   605
          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
424bdcd01016 updated
cu
parents: 277
diff changeset
   606
          moreover 
424bdcd01016 updated
cu
parents: 277
diff changeset
   607
            have "s2 \<in> UPNTIMES r (m - 1) \<rightarrow> Stars vs" by fact
424bdcd01016 updated
cu
parents: 277
diff changeset
   608
          moreover 
424bdcd01016 updated
cu
parents: 277
diff changeset
   609
          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
424bdcd01016 updated
cu
parents: 277
diff changeset
   610
          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
424bdcd01016 updated
cu
parents: 277
diff changeset
   611
          then have "flat (injval r c v1) \<noteq> []" by simp
424bdcd01016 updated
cu
parents: 277
diff changeset
   612
          moreover
424bdcd01016 updated
cu
parents: 277
diff changeset
   613
             moreover 
424bdcd01016 updated
cu
parents: 277
diff changeset
   614
          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (UPNTIMES r (m - 1)))" by fact
424bdcd01016 updated
cu
parents: 277
diff changeset
   615
          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r (m - 1)))" 
424bdcd01016 updated
cu
parents: 277
diff changeset
   616
            by (simp add: der_correctness Der_def)
424bdcd01016 updated
cu
parents: 277
diff changeset
   617
        ultimately 
424bdcd01016 updated
cu
parents: 277
diff changeset
   618
        have "((c # s1) @ s2) \<in> NMTIMES r 0 m \<rightarrow> Stars (injval r c v1 # vs)" 
424bdcd01016 updated
cu
parents: 277
diff changeset
   619
           apply (rule_tac Posix.intros) back
424bdcd01016 updated
cu
parents: 277
diff changeset
   620
              apply(simp_all)
424bdcd01016 updated
cu
parents: 277
diff changeset
   621
              apply(rule null)
424bdcd01016 updated
cu
parents: 277
diff changeset
   622
           done
424bdcd01016 updated
cu
parents: 277
diff changeset
   623
        then show "(c # s) \<in> NMTIMES r n m \<rightarrow> injval (NMTIMES r n m) c v" using null 
424bdcd01016 updated
cu
parents: 277
diff changeset
   624
          apply(simp)
424bdcd01016 updated
cu
parents: 277
diff changeset
   625
          done  
424bdcd01016 updated
cu
parents: 277
diff changeset
   626
      qed    
397
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
   627
   next
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
   628
     case (NOT r s v)
e1b74d618f1b updated Sizebound4
Christian Urban <christian.urban@kcl.ac.uk>
parents: 278
diff changeset
   629
     then show ?case sorry
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   630
qed
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   631
276
a3134f7de065 updated
cu
parents: 261
diff changeset
   632
section {* Lexer Correctness *}
145
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
   633
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   634
lemma lexer_correct_None:
145
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
   635
  shows "s \<notin> L r \<longleftrightarrow> lexer r s = None"
120
d74bfa11802c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   636
apply(induct s arbitrary: r)
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   637
apply(simp add: nullable_correctness)
120
d74bfa11802c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   638
apply(drule_tac x="der a r" in meta_spec)
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   639
apply(auto simp add: der_correctness Der_def)
120
d74bfa11802c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   640
done
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   641
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   642
lemma lexer_correct_Some:
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   643
  shows "s \<in> L r \<longleftrightarrow> (\<exists>v. lexer r s = Some(v) \<and> s \<in> r \<rightarrow> v)"
124
5378ddbd1381 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 123
diff changeset
   644
apply(induct s arbitrary: r)
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   645
apply(auto simp add: Posix_mkeps nullable_correctness)[1]
124
5378ddbd1381 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 123
diff changeset
   646
apply(drule_tac x="der a r" in meta_spec)
5378ddbd1381 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 123
diff changeset
   647
apply(simp add: der_correctness Der_def)
5378ddbd1381 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 123
diff changeset
   648
apply(rule iffI)
172
cdc0bdcfba3f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 151
diff changeset
   649
apply(auto intro: Posix_injval simp add: Posix1(1))
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   650
done 
149
ec3d221bfc45 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 146
diff changeset
   651
186
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
   652
lemma lexer_correctness:
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
   653
  shows "(lexer r s = Some v) \<longleftrightarrow> s \<in> r \<rightarrow> v"
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
   654
  and   "(lexer r s = None) \<longleftrightarrow> \<not>(\<exists>v. s \<in> r \<rightarrow> v)"
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
   655
using Posix1(1) Posix_determ lexer_correct_None lexer_correct_Some apply fastforce
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
   656
using Posix1(1) lexer_correct_None lexer_correct_Some by blast
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
   657
95
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 94
diff changeset
   658
end