thys/LexerExt.thy
author Christian Urban <urbanc@in.tum.de>
Mon, 27 Feb 2017 14:50:39 +0000
changeset 220 a8b32da484df
parent 216 thys/Lexer.thy@ce3d07860a4a
child 221 c21938d0b396
permissions -rw-r--r--
updated
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     1
   
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
     2
theory LexerExt
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
     3
  imports Main
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     4
begin
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     5
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     6
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
     7
section {* Sequential Composition of Languages *}
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     8
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     9
definition
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    10
  Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    11
where 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    12
  "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    13
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    14
text {* Two Simple Properties about Sequential Composition *}
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    15
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    16
lemma seq_empty [simp]:
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    17
  shows "A ;; {[]} = A"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    18
  and   "{[]} ;; A = A"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    19
by (simp_all add: Sequ_def)
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    20
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    21
lemma seq_null [simp]:
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    22
  shows "A ;; {} = {}"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    23
  and   "{} ;; A = {}"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    24
by (simp_all add: Sequ_def)
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    25
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    26
lemma seq_assoc: 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    27
  shows "A ;; (B ;; C) = (A ;; B) ;; C"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    28
apply(auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    29
apply(metis append_assoc)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    30
apply(metis)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    31
done
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
    32
145
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
    33
section {* Semantic Derivative (Left Quotient) of Languages *}
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
    34
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    35
definition
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    36
  Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    37
where
112
698967eceaf1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 111
diff changeset
    38
  "Der c A \<equiv> {s. c # s \<in> A}"
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    39
204
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    40
definition
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    41
  Ders :: "string \<Rightarrow> string set \<Rightarrow> string set"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    42
where
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    43
  "Ders s A \<equiv> {s'. s @ s' \<in> A}"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
    44
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    45
lemma Der_null [simp]:
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    46
  shows "Der c {} = {}"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    47
unfolding Der_def
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    48
by auto
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    49
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    50
lemma Der_empty [simp]:
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    51
  shows "Der c {[]} = {}"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    52
unfolding Der_def
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    53
by auto
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    54
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    55
lemma Der_char [simp]:
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    56
  shows "Der c {[d]} = (if c = d then {[]} else {})"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    57
unfolding Der_def
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    58
by auto
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    59
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    60
lemma Der_union [simp]:
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    61
  shows "Der c (A \<union> B) = Der c A \<union> Der c B"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    62
unfolding Der_def
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    63
by auto
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    64
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
    65
lemma Der_Sequ [simp]:
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    66
  shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    67
unfolding Der_def Sequ_def
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
    68
by (auto simp add: Cons_eq_append_conv)
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
    69
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    70
lemma Der_UNION: 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    71
  shows "Der c (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. Der c (B x))"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    72
by (auto simp add: Der_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    73
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    74
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    75
section {* Power operation for Sets *}
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    76
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    77
fun 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    78
  Pow :: "string set \<Rightarrow> nat \<Rightarrow> string set" ("_ \<up> _" [101, 102] 101)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    79
where
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    80
   "A \<up> 0 = {[]}"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    81
|  "A \<up> (Suc n) = A ;; (A \<up> n)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    82
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    83
lemma Pow_empty [simp]:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    84
  shows "[] \<in> A \<up> n \<longleftrightarrow> (n = 0 \<or> [] \<in> A)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    85
by(induct n) (auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    86
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    87
lemma Pow_plus:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    88
  "A \<up> (n + m) = A \<up> n ;; A \<up> m"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    89
by (induct n) (simp_all add: seq_assoc)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
    90
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    91
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
    92
section {* Kleene Star for Languages *}
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    93
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    94
inductive_set
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    95
  Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    96
  for A :: "string set"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    97
where
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    98
  start[intro]: "[] \<in> A\<star>"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    99
| step[intro]:  "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   100
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   101
lemma star_cases:
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   102
  shows "A\<star> = {[]} \<union> A ;; A\<star>"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   103
unfolding Sequ_def
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   104
by (auto) (metis Star.simps)
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   105
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   106
lemma star_decomp: 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   107
  assumes a: "c # x \<in> A\<star>" 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   108
  shows "\<exists>a b. x = a @ b \<and> c # a \<in> A \<and> b \<in> A\<star>"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   109
using a
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   110
by (induct x\<equiv>"c # x" rule: Star.induct) 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   111
   (auto simp add: append_eq_Cons_conv)
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   112
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   113
lemma Der_star [simp]:
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   114
  shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   115
proof -    
113
90fe1a1d7d0e updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 112
diff changeset
   116
  have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"  
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   117
    by (simp only: star_cases[symmetric])
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   118
  also have "... = Der c (A ;; A\<star>)"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   119
    by (simp only: Der_union Der_empty) (simp)
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   120
  also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   121
    by simp
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   122
  also have "... =  (Der c A) ;; A\<star>"
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   123
    unfolding Sequ_def Der_def
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   124
    by (auto dest: star_decomp)
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   125
  finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   126
qed
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   127
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   128
lemma Star_in_Pow:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   129
  assumes a: "s \<in> A\<star>"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   130
  shows "\<exists>n. s \<in> A \<up> n"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   131
using a
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   132
apply(induct)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   133
apply(auto)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   134
apply(rule_tac x="Suc n" in exI)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   135
apply(auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   136
done
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   137
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   138
lemma Pow_in_Star:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   139
  assumes a: "s \<in> A \<up> n"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   140
  shows "s \<in> A\<star>"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   141
using a
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   142
by (induct n arbitrary: s) (auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   143
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   144
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   145
lemma Star_def2: 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   146
  shows "A\<star> = (\<Union>n. A \<up> n)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   147
using Star_in_Pow Pow_in_Star
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   148
by (auto)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   149
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   150
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   151
section {* Regular Expressions *}
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   152
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   153
datatype rexp =
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   154
  ZERO
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   155
| ONE
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   156
| CHAR char
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   157
| SEQ rexp rexp
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   158
| ALT rexp rexp
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   159
| STAR rexp
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   160
| UPNTIMES rexp nat
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   161
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   162
section {* Semantics of Regular Expressions *}
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   163
 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   164
fun
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   165
  L :: "rexp \<Rightarrow> string set"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   166
where
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   167
  "L (ZERO) = {}"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   168
| "L (ONE) = {[]}"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   169
| "L (CHAR c) = {[c]}"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   170
| "L (SEQ r1 r2) = (L r1) ;; (L r2)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   171
| "L (ALT r1 r2) = (L r1) \<union> (L r2)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   172
| "L (STAR r) = (L r)\<star>"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   173
| "L (UPNTIMES r n) = (\<Union>i\<in> {..n} . (L r) \<up> i)"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   174
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   175
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   176
section {* Nullable, Derivatives *}
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   177
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   178
fun
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   179
 nullable :: "rexp \<Rightarrow> bool"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   180
where
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   181
  "nullable (ZERO) = False"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   182
| "nullable (ONE) = True"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   183
| "nullable (CHAR c) = False"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   184
| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   185
| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   186
| "nullable (STAR r) = True"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   187
| "nullable (UPNTIMES r n) = True"
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   188
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   189
fun
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   190
 der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   191
where
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   192
  "der c (ZERO) = ZERO"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   193
| "der c (ONE) = ZERO"
111
289728193164 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 110
diff changeset
   194
| "der c (CHAR d) = (if c = d then ONE else ZERO)"
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   195
| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   196
| "der c (SEQ r1 r2) = 
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   197
     (if nullable r1
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   198
      then ALT (SEQ (der c r1) r2) (der c r2)
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   199
      else SEQ (der c r1) r2)"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   200
| "der c (STAR r) = SEQ (der c r) (STAR r)"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   201
| "der c (UPNTIMES r 0) = ZERO"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   202
| "der c (UPNTIMES r (Suc n)) = SEQ (der c r) (UPNTIMES r n)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   203
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   204
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   205
fun 
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   206
 ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   207
where
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   208
  "ders [] r = r"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   209
| "ders (c # s) r = ders s (der c r)"
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   210
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   211
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   212
lemma nullable_correctness:
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   213
  shows "nullable r  \<longleftrightarrow> [] \<in> (L r)"
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   214
by (induct r) (auto simp add: Sequ_def) 
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   215
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   216
lemma Suc_reduce_Union:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   217
  "(\<Union>x\<in>{Suc n..Suc m}. B x) = (\<Union>x\<in>{n..m}. B (Suc x))"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   218
by (metis UN_extend_simps(10) image_Suc_atLeastAtMost)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   219
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   220
lemma Suc_reduce_Union2:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   221
  "(\<Union>x\<in>{Suc n..}. B x) = (\<Union>x\<in>{n..}. B (Suc x))"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   222
apply(auto)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   223
apply(rule_tac x="xa - 1" in bexI)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   224
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   225
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   226
done
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   227
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   228
lemma Seq_UNION: 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   229
  shows "(\<Union>x\<in>A. B ;; C x) = B ;; (\<Union>x\<in>A. C x)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   230
by (auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   231
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   232
lemma Seq_Union:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   233
  shows "A ;; (\<Union>x\<in>B. C x) = (\<Union>x\<in>B. A ;; C x)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   234
by (auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   235
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   236
lemma Der_Pow [simp]:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   237
  shows "Der c (A \<up> (Suc n)) = 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   238
     (Der c A) ;; (A \<up> n) \<union> (if [] \<in> A then Der c (A \<up> n) else {})"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   239
unfolding Der_def Sequ_def 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   240
by(auto simp add: Cons_eq_append_conv Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   241
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   242
lemma Suc_Union:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   243
  "(\<Union>x\<le>Suc m. B x) = (B (Suc m) \<union> (\<Union>x\<le>m. B x))"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   244
by (metis UN_insert atMost_Suc)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   245
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   246
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   247
lemma test:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   248
  shows "(\<Union>x\<le>Suc n. Der c (L r \<up> x)) = (\<Union>x\<le>n. Der c (L r) ;; L r \<up> x)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   249
apply(induct n)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   250
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   251
apply(auto)[1]
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   252
apply(case_tac xa)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   253
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   254
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   255
apply(auto)[1]
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   256
apply(case_tac "[] \<in> L r")
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   257
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   258
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   259
by (smt Der_Pow Suc_Union inf_sup_aci(5) inf_sup_aci(7) sup_idem)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   260
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   261
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   262
lemma der_correctness:
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   263
  shows "L (der c r) = Der c (L r)"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   264
apply(induct c r rule: der.induct) 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   265
apply(simp_all add: nullable_correctness)[7]
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   266
apply(simp only: der.simps L.simps)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   267
apply(simp only: Der_UNION)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   268
apply(simp only: Seq_UNION[symmetric])
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   269
apply(simp add: test)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   270
done
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   271
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   272
204
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   273
lemma ders_correctness:
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   274
  shows "L (ders s r) = Ders s (L r)"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   275
apply(induct s arbitrary: r)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   276
apply(simp_all add: Ders_def der_correctness Der_def)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   277
done
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   278
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   279
lemma ders_ZERO:
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   280
  shows "ders s (ZERO) = ZERO"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   281
apply(induct s)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   282
apply(simp_all)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   283
done
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   284
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   285
lemma ders_ONE:
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   286
  shows "ders s (ONE) = (if s = [] then ONE else ZERO)"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   287
apply(induct s)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   288
apply(simp_all add: ders_ZERO)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   289
done
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   290
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   291
lemma ders_CHAR:
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   292
  shows "ders s (CHAR c) = (if s = [c] then ONE else 
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   293
                           (if s = [] then (CHAR c) else ZERO))"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   294
apply(induct s)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   295
apply(simp_all add: ders_ZERO ders_ONE)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   296
done
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   297
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   298
lemma  ders_ALT:
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   299
  shows "ders s (ALT r1 r2) = ALT (ders s r1) (ders s r2)"
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   300
apply(induct s arbitrary: r1 r2)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   301
apply(simp_all)
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   302
done
cd9e40280784 added paper about size derivatives
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 193
diff changeset
   303
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   304
section {* Values *}
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   305
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   306
datatype val = 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   307
  Void
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   308
| Char char
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   309
| Seq val val
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   310
| Right val
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   311
| Left val
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   312
| Stars "val list"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   313
108
73f7dc60c285 updated paper
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 107
diff changeset
   314
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   315
section {* The string behind a value *}
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   316
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   317
fun 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   318
  flat :: "val \<Rightarrow> string"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   319
where
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   320
  "flat (Void) = []"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   321
| "flat (Char c) = [c]"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   322
| "flat (Left v) = flat v"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   323
| "flat (Right v) = flat v"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   324
| "flat (Seq v1 v2) = (flat v1) @ (flat v2)"
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   325
| "flat (Stars []) = []"
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   326
| "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))" 
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   327
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   328
lemma flat_Stars [simp]:
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   329
 "flat (Stars vs) = concat (map flat vs)"
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   330
by (induct vs) (auto)
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   331
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   332
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   333
section {* Relation between values and regular expressions *}
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   334
91
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   335
inductive 
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   336
  Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<turnstile> _ : _" [100, 100] 100)
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   337
where
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   338
 "\<lbrakk>\<turnstile> v1 : r1; \<turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<turnstile> Seq v1 v2 : SEQ r1 r2"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   339
| "\<turnstile> v1 : r1 \<Longrightarrow> \<turnstile> Left v1 : ALT r1 r2"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   340
| "\<turnstile> v2 : r2 \<Longrightarrow> \<turnstile> Right v2 : ALT r1 r2"
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   341
| "\<turnstile> Void : ONE"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   342
| "\<turnstile> Char c : CHAR c"
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   343
| "\<turnstile> Stars [] : STAR r"
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   344
| "\<lbrakk>\<turnstile> v : r; \<turnstile> Stars vs : STAR r\<rbrakk> \<Longrightarrow> \<turnstile> Stars (v # vs) : STAR r"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   345
| "\<turnstile> Stars [] : UPNTIMES r 0"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   346
| "\<lbrakk>\<turnstile> v : r; \<turnstile> Stars vs : UPNTIMES r n\<rbrakk> \<Longrightarrow> \<turnstile> Stars (v # vs) : UPNTIMES r (Suc n)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   347
| "\<lbrakk>\<turnstile> Stars vs : UPNTIMES r n\<rbrakk> \<Longrightarrow> \<turnstile> Stars vs : UPNTIMES r (Suc n)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   348
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   349
91
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   350
142
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   351
inductive_cases Prf_elims:
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   352
  "\<turnstile> v : ZERO"
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   353
  "\<turnstile> v : SEQ r1 r2"
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   354
  "\<turnstile> v : ALT r1 r2"
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   355
  "\<turnstile> v : ONE"
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   356
  "\<turnstile> v : CHAR c"
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   357
(*  "\<turnstile> vs : STAR r"*)
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   358
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   359
lemma Prf_flat_L:
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   360
  assumes "\<turnstile> v : r" shows "flat v \<in> L r"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   361
using assms
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   362
apply(induct v r rule: Prf.induct)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   363
apply(auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   364
apply(rotate_tac 2)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   365
apply(rule_tac x="Suc x" in bexI)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   366
apply(auto simp add: Sequ_def)[2]
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   367
done
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   368
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   369
lemma Prf_Stars:
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   370
  assumes "\<forall>v \<in> set vs. \<turnstile> v : r"
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   371
  shows "\<turnstile> Stars vs : STAR r"
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   372
using assms
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   373
by(induct vs) (auto intro: Prf.intros)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   374
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   375
lemma Prf_Stars_UPNTIMES:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   376
  assumes "\<forall>v \<in> set vs. \<turnstile> v : r" "(length vs) = n"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   377
  shows "\<turnstile> Stars vs : UPNTIMES r n"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   378
using assms
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   379
apply(induct vs arbitrary: n) 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   380
apply(auto intro: Prf.intros)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   381
done
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   382
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   383
lemma Prf_UPNTIMES_bigger:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   384
  assumes "\<turnstile> Stars vs : UPNTIMES r n" "n \<le> m" 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   385
  shows "\<turnstile> Stars vs : UPNTIMES r m"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   386
using assms
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   387
apply(induct m arbitrary:)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   388
apply(auto)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   389
using Prf.intros(10) le_Suc_eq by blast
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   390
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   391
lemma UPNTIMES_Stars:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   392
 assumes "\<turnstile> v : UPNTIMES r n"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   393
 shows "\<exists>vs. v = Stars vs \<and> (\<forall>v \<in> set vs. \<turnstile> v : r) \<and> length vs \<le> n"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   394
using assms
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   395
apply(induct n arbitrary: v)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   396
apply(erule Prf.cases)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   397
apply(simp_all)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   398
apply(erule Prf.cases)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   399
apply(simp_all)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   400
apply(auto)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   401
using le_SucI by blast
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   402
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   403
lemma Star_string:
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   404
  assumes "s \<in> A\<star>"
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   405
  shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A)"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   406
using assms
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   407
apply(induct rule: Star.induct)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   408
apply(auto)
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   409
apply(rule_tac x="[]" in exI)
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   410
apply(simp)
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   411
apply(rule_tac x="s1#ss" in exI)
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   412
apply(simp)
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   413
done
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   414
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   415
lemma Star_val:
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   416
  assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<turnstile> v : r"
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   417
  shows "\<exists>vs. concat (map flat vs) = concat ss \<and> (\<forall>v\<in>set vs. \<turnstile> v : r)"
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   418
using assms
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   419
apply(induct ss)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   420
apply(auto)
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   421
apply (metis empty_iff list.set(1))
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   422
by (metis concat.simps(2) list.simps(9) set_ConsD)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   423
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   424
lemma Star_val_length:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   425
  assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<turnstile> v : r"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   426
  shows "\<exists>vs. concat (map flat vs) = concat ss \<and> (\<forall>v\<in>set vs. \<turnstile> v : r) \<and> (length vs) = (length ss)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   427
using assms
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   428
apply(induct ss)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   429
apply(auto)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   430
by (metis List.bind_def bind_simps(2) length_Suc_conv set_ConsD)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   431
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   432
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   433
lemma Star_Pow:
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   434
  assumes "s \<in> A \<up> n"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   435
  shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A) \<and> (length ss = n)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   436
using assms
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   437
apply(induct n arbitrary: s)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   438
apply(auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   439
apply(drule_tac x="s2" in meta_spec)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   440
apply(auto)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   441
apply(rule_tac x="s1#ss" in exI)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   442
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   443
done
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   444
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   445
lemma L_flat_Prf1:
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   446
  assumes "\<turnstile> v : r" shows "flat v \<in> L r"
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   447
using assms
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   448
apply(induct)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   449
apply(auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   450
apply(rule_tac x="Suc x" in bexI)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   451
apply(auto simp add: Sequ_def)[2]
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   452
done
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   453
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   454
lemma L_flat_Prf2:
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   455
  assumes "s \<in> L r" shows "\<exists>v. \<turnstile> v : r \<and> flat v = s"
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   456
using assms
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   457
apply(induct r arbitrary: s)
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   458
apply(auto simp add: Sequ_def intro: Prf.intros)
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   459
using Prf.intros(1) flat.simps(5) apply blast
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   460
using Prf.intros(2) flat.simps(3) apply blast
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   461
using Prf.intros(3) flat.simps(4) apply blast
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   462
apply(subgoal_tac "\<exists>vs::val list. concat (map flat vs) = s \<and> (\<forall>v \<in> set vs. \<turnstile> v : r)")
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   463
apply(auto)[1]
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   464
apply(rule_tac x="Stars vs" in exI)
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   465
apply(simp)
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   466
apply (simp add: Prf_Stars)
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   467
apply(drule Star_string)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   468
apply(auto)
90
3c8cfdf95252 proved some lemmas about star and mkeps (injval etc not yet done)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 89
diff changeset
   469
apply(rule Star_val)
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   470
apply(auto)
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   471
apply(subgoal_tac "\<exists>vs::val list. concat (map flat vs) = s \<and> (\<forall>v \<in> set vs. \<turnstile> v : r) \<and> (length vs = x)")
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   472
apply(auto)[1]
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   473
apply(rule_tac x="Stars vs" in exI)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   474
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   475
apply(drule_tac n="length vs" in Prf_Stars_UPNTIMES)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   476
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   477
using Prf_UPNTIMES_bigger apply blast
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   478
apply(drule Star_Pow)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   479
apply(auto)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   480
using Star_val_length by blast
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   481
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   482
lemma L_flat_Prf:
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   483
  "L(r) = {flat v | v. \<turnstile> v : r}"
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   484
using L_flat_Prf1 L_flat_Prf2 by blast
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   485
93
37e3f1174974 extended all proofs that worked before to the Star case...required a stronger notion of non-problematic values |=
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 92
diff changeset
   486
145
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
   487
section {* Sulzmann and Lu functions *}
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   488
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   489
fun 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   490
  mkeps :: "rexp \<Rightarrow> val"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   491
where
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   492
  "mkeps(ONE) = Void"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   493
| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   494
| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))"
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   495
| "mkeps(STAR r) = Stars []"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   496
| "mkeps(UPNTIMES r n) = Stars []"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   497
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   498
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   499
fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   500
where
101
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   501
  "injval (CHAR d) c Void = Char d"
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   502
| "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   503
| "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   504
| "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   505
| "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   506
| "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)"
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   507
| "injval (STAR r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" 
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   508
| "injval (UPNTIMES r n) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)"
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   509
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   510
section {* Mkeps, injval *}
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   511
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   512
lemma mkeps_nullable:
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   513
  assumes "nullable(r)" 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   514
  shows "\<turnstile> mkeps r : r"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   515
using assms
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   516
apply(induct rule: nullable.induct) 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   517
apply(auto intro: Prf.intros)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   518
using Prf.intros(8) Prf_UPNTIMES_bigger by blast
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   519
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   520
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   521
lemma mkeps_flat:
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   522
  assumes "nullable(r)" 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   523
  shows "flat (mkeps r) = []"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   524
using assms
142
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   525
by (induct rule: nullable.induct) (auto)
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   526
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   527
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   528
lemma Prf_injval:
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   529
  assumes "\<turnstile> v : der c r" 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   530
  shows "\<turnstile> (injval r c v) : r"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   531
using assms
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   532
apply(induct r arbitrary: c v rule: rexp.induct)
142
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   533
apply(auto intro!: Prf.intros mkeps_nullable elim!: Prf_elims split: if_splits)
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   534
(* STAR *)
91
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   535
apply(rotate_tac 2)
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   536
apply(erule Prf.cases)
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   537
apply(simp_all)[7]
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   538
apply(auto)
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   539
apply (metis Prf.intros(6) Prf.intros(7))
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   540
apply (metis Prf.intros(7))
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   541
(* UPNTIMES *)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   542
apply(case_tac x2)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   543
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   544
using Prf_elims(1) apply auto[1]
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   545
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   546
apply(erule Prf.cases)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   547
apply(simp_all)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   548
apply(clarify)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   549
apply(drule UPNTIMES_Stars)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   550
apply(clarify)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   551
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   552
apply(rule Prf.intros(9))
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   553
apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   554
using Prf_Stars_UPNTIMES Prf_UPNTIMES_bigger by blast
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   555
107
6adda4a667b1 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 106
diff changeset
   556
lemma Prf_injval_flat:
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   557
  assumes "\<turnstile> v : der c r" 
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   558
  shows "flat (injval r c v) = c # (flat v)"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   559
using assms
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   560
apply(induct arbitrary: v rule: der.induct)
144
b356c7adf61a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 143
diff changeset
   561
apply(auto elim!: Prf_elims split: if_splits)
b356c7adf61a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 143
diff changeset
   562
apply(metis mkeps_flat)
91
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   563
apply(rotate_tac 2)
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   564
apply(erule Prf.cases)
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   565
apply(simp_all)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   566
apply(drule UPNTIMES_Stars)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   567
apply(clarify)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   568
apply(simp)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   569
done
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   570
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   571
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   572
104
59bad592a009 updated theories and cleaned them up
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 103
diff changeset
   573
section {* Our Alternative Posix definition *}
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   574
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   575
inductive 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   576
  Posix :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   577
where
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   578
  Posix_ONE: "[] \<in> ONE \<rightarrow> Void"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   579
| Posix_CHAR: "[c] \<in> (CHAR c) \<rightarrow> (Char c)"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   580
| Posix_ALT1: "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   581
| Posix_ALT2: "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   582
| Posix_SEQ: "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2;
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   583
    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow> 
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   584
    (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)"
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   585
| Posix_STAR1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> [];
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   586
    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk>
97
38696f516c6b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 95
diff changeset
   587
    \<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)"
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   588
| Posix_STAR2: "[] \<in> STAR r \<rightarrow> Stars []"
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   589
| Posix_UPNTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> UPNTIMES r n \<rightarrow> Stars vs; flat v \<noteq> [];
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   590
    \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r n))\<rbrakk>
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   591
    \<Longrightarrow> (s1 @ s2) \<in> UPNTIMES r (Suc n) \<rightarrow> Stars (v # vs)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   592
| Posix_UPNTIMES2: "[] \<in> UPNTIMES r n \<rightarrow> Stars []"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   593
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   594
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   595
inductive_cases Posix_elims:
149
ec3d221bfc45 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 146
diff changeset
   596
  "s \<in> ZERO \<rightarrow> v"
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   597
  "s \<in> ONE \<rightarrow> v"
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   598
  "s \<in> CHAR c \<rightarrow> v"
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   599
  "s \<in> ALT r1 r2 \<rightarrow> v"
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   600
  "s \<in> SEQ r1 r2 \<rightarrow> v"
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   601
  "s \<in> STAR r \<rightarrow> v"
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   602
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   603
lemma Posix1:
101
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   604
  assumes "s \<in> r \<rightarrow> v"
123
1bee7006b92b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 122
diff changeset
   605
  shows "s \<in> L r" "flat v = s"
101
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   606
using assms
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   607
apply (induct s r v rule: Posix.induct)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   608
apply(auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   609
apply(rule_tac x="Suc x" in bexI)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   610
apply(auto simp add: Sequ_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   611
done
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   612
101
7f4f8c34da95 fixed inj function
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 100
diff changeset
   613
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   614
lemma Posix1a:
122
7c6c907660d8 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 121
diff changeset
   615
  assumes "s \<in> r \<rightarrow> v"
123
1bee7006b92b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 122
diff changeset
   616
  shows "\<turnstile> v : r"
122
7c6c907660d8 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 121
diff changeset
   617
using assms
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   618
apply(induct s r v rule: Posix.induct)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   619
apply(auto intro: Prf.intros)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   620
using Prf.intros(8) Prf_UPNTIMES_bigger by blast
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   621
122
7c6c907660d8 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 121
diff changeset
   622
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   623
lemma Posix_mkeps:
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   624
  assumes "nullable r"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   625
  shows "[] \<in> r \<rightarrow> mkeps r"
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   626
using assms
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   627
apply(induct r rule: nullable.induct)
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   628
apply(auto intro: Posix.intros simp add: nullable_correctness Sequ_def)
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   629
apply(subst append.simps(1)[symmetric])
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   630
apply(rule Posix.intros)
123
1bee7006b92b updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 122
diff changeset
   631
apply(auto)
91
f067e59b58d9 more lemmas for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 90
diff changeset
   632
done
89
9613e6ace30f added theory for star
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   633
142
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   634
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   635
lemma Posix_determ:
122
7c6c907660d8 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 121
diff changeset
   636
  assumes "s \<in> r \<rightarrow> v1" "s \<in> r \<rightarrow> v2"
7c6c907660d8 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 121
diff changeset
   637
  shows "v1 = v2"
7c6c907660d8 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 121
diff changeset
   638
using assms
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   639
proof (induct s r v1 arbitrary: v2 rule: Posix.induct)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   640
  case (Posix_ONE v2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   641
  have "[] \<in> ONE \<rightarrow> v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   642
  then show "Void = v2" by cases auto
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   643
next 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   644
  case (Posix_CHAR c v2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   645
  have "[c] \<in> CHAR c \<rightarrow> v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   646
  then show "Char c = v2" by cases auto
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   647
next 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   648
  case (Posix_ALT1 s r1 v r2 v2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   649
  have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   650
  moreover
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   651
  have "s \<in> r1 \<rightarrow> v" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   652
  then have "s \<in> L r1" by (simp add: Posix1)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   653
  ultimately obtain v' where eq: "v2 = Left v'" "s \<in> r1 \<rightarrow> v'" by cases auto 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   654
  moreover
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   655
  have IH: "\<And>v2. s \<in> r1 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   656
  ultimately have "v = v'" by simp
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   657
  then show "Left v = v2" using eq by simp
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   658
next 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   659
  case (Posix_ALT2 s r2 v r1 v2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   660
  have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   661
  moreover
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   662
  have "s \<notin> L r1" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   663
  ultimately obtain v' where eq: "v2 = Right v'" "s \<in> r2 \<rightarrow> v'" 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   664
    by cases (auto simp add: Posix1) 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   665
  moreover
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   666
  have IH: "\<And>v2. s \<in> r2 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   667
  ultimately have "v = v'" by simp
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   668
  then show "Right v = v2" using eq by simp
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   669
next
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   670
  case (Posix_SEQ s1 r1 v1 s2 r2 v2 v')
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   671
  have "(s1 @ s2) \<in> SEQ r1 r2 \<rightarrow> v'" 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   672
       "s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   673
       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact+
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   674
  then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \<in> r1 \<rightarrow> v1'" "s2 \<in> r2 \<rightarrow> v2'"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   675
  apply(cases) apply (auto simp add: append_eq_append_conv2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   676
  using Posix1(1) by fastforce+
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   677
  moreover
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   678
  have IHs: "\<And>v1'. s1 \<in> r1 \<rightarrow> v1' \<Longrightarrow> v1 = v1'"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   679
            "\<And>v2'. s2 \<in> r2 \<rightarrow> v2' \<Longrightarrow> v2 = v2'" by fact+
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   680
  ultimately show "Seq v1 v2 = v'" by simp
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   681
next
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   682
  case (Posix_STAR1 s1 r v s2 vs v2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   683
  have "(s1 @ s2) \<in> STAR r \<rightarrow> v2" 
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   684
       "s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" "flat v \<noteq> []"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   685
       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact+
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   686
  then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (STAR r) \<rightarrow> (Stars vs')"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   687
  apply(cases) apply (auto simp add: append_eq_append_conv2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   688
  using Posix1(1) apply fastforce
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   689
  apply (metis Posix1(1) Posix_STAR1.hyps(6) append_Nil append_Nil2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   690
  using Posix1(2) by blast
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   691
  moreover
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   692
  have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   693
            "\<And>v2. s2 \<in> STAR r \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   694
  ultimately show "Stars (v # vs) = v2" by auto
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   695
next
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   696
  case (Posix_STAR2 r v2)
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   697
  have "[] \<in> STAR r \<rightarrow> v2" by fact
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   698
  then show "Stars [] = v2" by cases (auto simp add: Posix1)
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   699
next
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   700
  case (Posix_UPNTIMES1 s1 r v s2 n vs v2)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   701
  have "(s1 @ s2) \<in> UPNTIMES r (Suc n) \<rightarrow> v2" 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   702
       "s1 \<in> r \<rightarrow> v" "s2 \<in> (UPNTIMES r n) \<rightarrow> Stars vs" "flat v \<noteq> []"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   703
       "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r n))" by fact+
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   704
  then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (UPNTIMES r n) \<rightarrow> (Stars vs')"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   705
  apply(cases) apply (auto simp add: append_eq_append_conv2)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   706
  using Posix1(1) apply fastforce
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   707
  apply (metis Posix1(1) Posix_UPNTIMES1.hyps(6) append_Nil append_Nil2)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   708
  using Posix1(2) by blast
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   709
  moreover
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   710
  have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   711
            "\<And>v2. s2 \<in> UPNTIMES r n \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   712
  ultimately show "Stars (v # vs) = v2" by auto
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   713
next
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   714
  case (Posix_UPNTIMES2 r n v2)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   715
  have "[] \<in> UPNTIMES r n \<rightarrow> v2" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   716
  then show "Stars [] = v2" by cases (auto simp add: Posix1)
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   717
qed
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   718
100
8b919b3d753e strengthened PMatch to get determ
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 99
diff changeset
   719
172
cdc0bdcfba3f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 151
diff changeset
   720
lemma Posix_injval:
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   721
  assumes "s \<in> (der c r) \<rightarrow> v"
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   722
  shows "(c # s) \<in> r \<rightarrow> (injval r c v)"
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   723
using assms
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   724
proof(induct r arbitrary: s v rule: rexp.induct)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   725
  case ZERO
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   726
  have "s \<in> der c ZERO \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   727
  then have "s \<in> ZERO \<rightarrow> v" by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   728
  then have "False" by cases
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   729
  then show "(c # s) \<in> ZERO \<rightarrow> (injval ZERO c v)" by simp
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   730
next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   731
  case ONE
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   732
  have "s \<in> der c ONE \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   733
  then have "s \<in> ZERO \<rightarrow> v" by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   734
  then have "False" by cases
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   735
  then show "(c # s) \<in> ONE \<rightarrow> (injval ONE c v)" by simp
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   736
next 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   737
  case (CHAR d)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   738
  consider (eq) "c = d" | (ineq) "c \<noteq> d" by blast
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   739
  then show "(c # s) \<in> (CHAR d) \<rightarrow> (injval (CHAR d) c v)"
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   740
  proof (cases)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   741
    case eq
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   742
    have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   743
    then have "s \<in> ONE \<rightarrow> v" using eq by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   744
    then have eqs: "s = [] \<and> v = Void" by cases simp
142
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   745
    show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" using eq eqs 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   746
    by (auto intro: Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   747
  next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   748
    case ineq
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   749
    have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   750
    then have "s \<in> ZERO \<rightarrow> v" using ineq by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   751
    then have "False" by cases
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   752
    then show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   753
  qed
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   754
next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   755
  case (ALT r1 r2)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   756
  have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   757
  have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   758
  have "s \<in> der c (ALT r1 r2) \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   759
  then have "s \<in> ALT (der c r1) (der c r2) \<rightarrow> v" by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   760
  then consider (left) v' where "v = Left v'" "s \<in> der c r1 \<rightarrow> v'" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   761
              | (right) v' where "v = Right v'" "s \<notin> L (der c r1)" "s \<in> der c r2 \<rightarrow> v'" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   762
              by cases auto
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   763
  then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v"
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   764
  proof (cases)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   765
    case left
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   766
    have "s \<in> der c r1 \<rightarrow> v'" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   767
    then have "(c # s) \<in> r1 \<rightarrow> injval r1 c v'" using IH1 by simp
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   768
    then have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Left v')" by (auto intro: Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   769
    then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using left by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   770
  next 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   771
    case right
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   772
    have "s \<notin> L (der c r1)" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   773
    then have "c # s \<notin> L r1" by (simp add: der_correctness Der_def)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   774
    moreover 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   775
    have "s \<in> der c r2 \<rightarrow> v'" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   776
    then have "(c # s) \<in> r2 \<rightarrow> injval r2 c v'" using IH2 by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   777
    ultimately have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Right v')" 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   778
      by (auto intro: Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   779
    then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using right by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   780
  qed
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   781
next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   782
  case (SEQ r1 r2)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   783
  have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   784
  have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   785
  have "s \<in> der c (SEQ r1 r2) \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   786
  then consider 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   787
        (left_nullable) v1 v2 s1 s2 where 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   788
        "v = Left (Seq v1 v2)"  "s = s1 @ s2" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   789
        "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "nullable r1" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   790
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   791
      | (right_nullable) v1 s1 s2 where 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   792
        "v = Right v1" "s = s1 @ s2"  
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   793
        "s \<in> der c r2 \<rightarrow> v1" "nullable r1" "s1 @ s2 \<notin> L (SEQ (der c r1) r2)"
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   794
      | (not_nullable) v1 v2 s1 s2 where
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   795
        "v = Seq v1 v2" "s = s1 @ s2" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   796
        "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "\<not>nullable r1" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   797
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   798
        by (force split: if_splits elim!: Posix_elims simp add: Sequ_def der_correctness Der_def)   
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   799
  then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   800
    proof (cases)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   801
      case left_nullable
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   802
      have "s1 \<in> der c r1 \<rightarrow> v1" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   803
      then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   804
      moreover
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   805
      have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   806
      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   807
      ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using left_nullable by (rule_tac Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   808
      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using left_nullable by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   809
    next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   810
      case right_nullable
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   811
      have "nullable r1" by fact
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   812
      then have "[] \<in> r1 \<rightarrow> (mkeps r1)" by (rule Posix_mkeps)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   813
      moreover
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   814
      have "s \<in> der c r2 \<rightarrow> v1" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   815
      then have "(c # s) \<in> r2 \<rightarrow> (injval r2 c v1)" using IH2 by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   816
      moreover
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   817
      have "s1 @ s2 \<notin> L (SEQ (der c r1) r2)" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   818
      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = c # s \<and> [] @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" using right_nullable
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   819
        by(auto simp add: der_correctness Der_def append_eq_Cons_conv Sequ_def)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   820
      ultimately have "([] @ (c # s)) \<in> SEQ r1 r2 \<rightarrow> Seq (mkeps r1) (injval r2 c v1)"
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   821
      by(rule Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   822
      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using right_nullable by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   823
    next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   824
      case not_nullable
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   825
      have "s1 \<in> der c r1 \<rightarrow> v1" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   826
      then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   827
      moreover
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   828
      have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   829
      then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   830
      ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using not_nullable 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   831
        by (rule_tac Posix.intros) (simp_all) 
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   832
      then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using not_nullable by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   833
    qed
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   834
next
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   835
  case (STAR r)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   836
  have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   837
  have "s \<in> der c (STAR r) \<rightarrow> v" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   838
  then consider
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   839
      (cons) v1 vs s1 s2 where 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   840
        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   841
        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (STAR r) \<rightarrow> (Stars vs)"
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   842
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" 
149
ec3d221bfc45 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 146
diff changeset
   843
        apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)
142
08dcf0d20f15 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 127
diff changeset
   844
        apply(rotate_tac 3)
149
ec3d221bfc45 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 146
diff changeset
   845
        apply(erule_tac Posix_elims(6))
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   846
        apply (simp add: Posix.intros(6))
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   847
        using Posix.intros(7) by blast
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   848
    then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   849
    proof (cases)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   850
      case cons
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   851
          have "s1 \<in> der c r \<rightarrow> v1" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   852
          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   853
        moreover
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   854
          have "s2 \<in> STAR r \<rightarrow> Stars vs" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   855
        moreover 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   856
          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   857
          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   858
          then have "flat (injval r c v1) \<noteq> []" by simp
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   859
        moreover 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   860
          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" by fact
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   861
          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" 
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   862
            by (simp add: der_correctness Der_def)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   863
        ultimately 
146
da81ffac4b10 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 145
diff changeset
   864
        have "((c # s1) @ s2) \<in> STAR r \<rightarrow> Stars (injval r c v1 # vs)" by (rule Posix.intros)
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   865
        then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" using cons by(simp)
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   866
    qed
220
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   867
next 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   868
  case (UPNTIMES r n)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   869
  have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   870
  have "s \<in> der c (UPNTIMES r n) \<rightarrow> v" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   871
  then consider
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   872
      (cons) m v1 vs s1 s2 where 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   873
        "n = Suc m"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   874
        "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   875
        "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (UPNTIMES r m) \<rightarrow> (Stars vs)"
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   876
        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (UPNTIMES r m))" 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   877
        apply(case_tac n)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   878
        apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   879
        using Posix_elims(1) apply blast
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   880
        apply(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   881
        apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   882
        by (metis Posix1a UPNTIMES_Stars)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   883
    then show "(c # s) \<in> UPNTIMES r n \<rightarrow> injval (UPNTIMES r n) c v" 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   884
    proof (cases)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   885
      case cons
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   886
        have "n = Suc m" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   887
        moreover
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   888
          have "s1 \<in> der c r \<rightarrow> v1" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   889
          then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   890
        moreover
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   891
          have "s2 \<in> UPNTIMES r m \<rightarrow> Stars vs" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   892
        moreover 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   893
          have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   894
          then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   895
          then have "flat (injval r c v1) \<noteq> []" by simp
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   896
        moreover 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   897
          have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (UPNTIMES r m))" by fact
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   898
          then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r m))" 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   899
            by (simp add: der_correctness Der_def)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   900
        ultimately 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   901
        have "((c # s1) @ s2) \<in> UPNTIMES r (Suc m) \<rightarrow> Stars (injval r c v1 # vs)" 
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   902
          apply(rule_tac Posix.intros(8))
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   903
          apply(simp_all)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   904
          done
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   905
        then show "(c # s) \<in> UPNTIMES r n \<rightarrow> injval (UPNTIMES r n) c v" using cons by(simp)
a8b32da484df updated
Christian Urban <urbanc@in.tum.de>
parents: 216
diff changeset
   906
    qed
121
4c85af262ee7 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 120
diff changeset
   907
qed
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   908
145
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
   909
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
   910
section {* The Lexer by Sulzmann and Lu  *}
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
   911
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
   912
fun 
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
   913
  lexer :: "rexp \<Rightarrow> string \<Rightarrow> val option"
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
   914
where
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
   915
  "lexer r [] = (if nullable r then Some(mkeps r) else None)"
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
   916
| "lexer r (c#s) = (case (lexer (der c r) s) of  
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
   917
                    None \<Rightarrow> None
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
   918
                  | Some(v) \<Rightarrow> Some(injval r c v))"
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
   919
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
   920
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   921
lemma lexer_correct_None:
145
97735ef233be updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 144
diff changeset
   922
  shows "s \<notin> L r \<longleftrightarrow> lexer r s = None"
120
d74bfa11802c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   923
apply(induct s arbitrary: r)
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   924
apply(simp add: nullable_correctness)
120
d74bfa11802c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   925
apply(drule_tac x="der a r" in meta_spec)
143
1e7b36450d9a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 142
diff changeset
   926
apply(auto simp add: der_correctness Der_def)
120
d74bfa11802c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 113
diff changeset
   927
done
106
489dfa0d7ec9 more cleaning and moving unnessary stuff to the end
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 105
diff changeset
   928
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   929
lemma lexer_correct_Some:
185
841f7b9c0a6a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 172
diff changeset
   930
  shows "s \<in> L r \<longleftrightarrow> (\<exists>v. lexer r s = Some(v) \<and> s \<in> r \<rightarrow> v)"
124
5378ddbd1381 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 123
diff changeset
   931
apply(induct s arbitrary: r)
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   932
apply(auto simp add: Posix_mkeps nullable_correctness)[1]
124
5378ddbd1381 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 123
diff changeset
   933
apply(drule_tac x="der a r" in meta_spec)
5378ddbd1381 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 123
diff changeset
   934
apply(simp add: der_correctness Der_def)
5378ddbd1381 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 123
diff changeset
   935
apply(rule iffI)
172
cdc0bdcfba3f updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 151
diff changeset
   936
apply(auto intro: Posix_injval simp add: Posix1(1))
151
5a1196466a9c updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 150
diff changeset
   937
done 
149
ec3d221bfc45 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 146
diff changeset
   938
186
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
   939
lemma lexer_correctness:
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
   940
  shows "(lexer r s = Some v) \<longleftrightarrow> s \<in> r \<rightarrow> v"
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
   941
  and   "(lexer r s = None) \<longleftrightarrow> \<not>(\<exists>v. s \<in> r \<rightarrow> v)"
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
   942
using Posix1(1) Posix_determ lexer_correct_None lexer_correct_Some apply fastforce
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
   943
using Posix1(1) lexer_correct_None lexer_correct_Some by blast
0b94800eb616 added corollary
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 185
diff changeset
   944
149
ec3d221bfc45 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 146
diff changeset
   945
95
a33d3040bf7e started a paper and moved cruft to Attic
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 94
diff changeset
   946
end