--- a/twtsevms/twtsevms.tex Wed Mar 04 13:00:59 2020 +0000
+++ b/twtsevms/twtsevms.tex Wed Mar 04 13:25:52 2020 +0000
@@ -89,18 +89,70 @@
\begin{document}
\maketitle
+Suppose (basic) regular expressions are given by the following grammar:
-Hello.
-Let us play with the function $f$ on annotated regular expressions:
+\[ r ::= \ZERO \mid \ONE
+ \mid c
+ \mid r_1 \cdot r_2
+ \mid r_1 + r_2
+ \mid r^*
+\]
+
+
+If we let the alphabet
+where $c$ is selected from
+be $\sum = \{0,1\}$,
+then bitcodes can be defined in a
+regular expression style:
+
+
+\[ bs ::= \ZERO \mid \ONE
+ \mid 1
+ \mid 0
+ \mid bs_1 \cdot bs_2
+ \mid \sum{bs_{list}}
+ \mid bs^*
+\]
+
+We can define an isomorphism between the regex
+definition of bitcodes and our list definition of bitcodes:
\begin{center}
-$f(\ZERO) = \ZERO$
+ $b ::= 1 \mid 0 \qquad
+bs ::= [] \mid b::bs
+$
+\end{center}
+For example we can let $\sigma([])= \ONE$.
+But how to define such isomorphism in detail is not explicitly needed for now.
+
+\emph{Annotated regular expressions} can be defined by the following
+grammar using new $bs$ definition:
+
+\begin{center}
+\begin{tabular}{lcl}
+ $\textit{a}$ & $::=$ & $\ZERO$\\
+ & $\mid$ & $_{bs}\ONE$\\
+ & $\mid$ & $_{bs}{\bf c}$\\
+ & $\mid$ & $_{bs}\sum\,as$\\
+ & $\mid$ & $_{bs}a_1\cdot a_2$\\
+ & $\mid$ & $_{bs}a^*$
+\end{tabular}
+\end{center}
+Let the set of all bitcoded regular expressions be $\textit{BS}$.
+Let the set of all annotated regular expression be $\textit{AR}$.
+Let us play with the function $f: \textit{AR} \rightarrow \textit{BS}$ on annotated regular expressions:
+\begin{center}
+$f(\ZERO) = \ZERO$\\
$f(_{bs}\ONE) = \textit{bs}$\\
$f(_{bs}a) = \textit{bs} $\\
-$f(_{bs}r_1\cdot r_2) = \textit{bs} \cdot $
+$f(_{bs}r_1\cdot r_2) = \textit{bs} \cdot( f(r_1) \cdot f(r_2))$\\
$f(_{bs}\sum{rs}) = \textit{bs} \cdot \sum\limits_{r \in rs}{f(\textit{r})}$\\
-$f(_{bs}r*) = \textit{bs} \cdot((0 \cdot f(r))\cdot 1) $
+$f(_{bs}r^*) = \textit{bs} \cdot((0 \cdot f(r))^*\cdot 1) $
\end{center}
+We claim that:
+\begin{center}
+$f(a) = \{bs \mid a \gg bs\}$.
+\end{center}
\bibliographystyle{plain}
\bibliography{root}