# HG changeset patch # User Chengsong # Date 1583328352 0 # Node ID dfcf3fa58d7fa79f5eb2dffa3f4bb4272b72cde9 # Parent 676440e0a233449ecb54b21b13a194a44a0886c6 nteresting diff -r 676440e0a233 -r dfcf3fa58d7f twtsevms/twtsevms.tex --- a/twtsevms/twtsevms.tex Wed Mar 04 13:00:59 2020 +0000 +++ b/twtsevms/twtsevms.tex Wed Mar 04 13:25:52 2020 +0000 @@ -89,18 +89,70 @@ \begin{document} \maketitle +Suppose (basic) regular expressions are given by the following grammar: -Hello. -Let us play with the function $f$ on annotated regular expressions: +\[ r ::= \ZERO \mid \ONE + \mid c + \mid r_1 \cdot r_2 + \mid r_1 + r_2 + \mid r^* +\] + + +If we let the alphabet +where $c$ is selected from +be $\sum = \{0,1\}$, +then bitcodes can be defined in a +regular expression style: + + +\[ bs ::= \ZERO \mid \ONE + \mid 1 + \mid 0 + \mid bs_1 \cdot bs_2 + \mid \sum{bs_{list}} + \mid bs^* +\] + +We can define an isomorphism between the regex +definition of bitcodes and our list definition of bitcodes: \begin{center} -$f(\ZERO) = \ZERO$ + $b ::= 1 \mid 0 \qquad +bs ::= [] \mid b::bs +$ +\end{center} +For example we can let $\sigma([])= \ONE$. +But how to define such isomorphism in detail is not explicitly needed for now. + +\emph{Annotated regular expressions} can be defined by the following +grammar using new $bs$ definition: + +\begin{center} +\begin{tabular}{lcl} + $\textit{a}$ & $::=$ & $\ZERO$\\ + & $\mid$ & $_{bs}\ONE$\\ + & $\mid$ & $_{bs}{\bf c}$\\ + & $\mid$ & $_{bs}\sum\,as$\\ + & $\mid$ & $_{bs}a_1\cdot a_2$\\ + & $\mid$ & $_{bs}a^*$ +\end{tabular} +\end{center} +Let the set of all bitcoded regular expressions be $\textit{BS}$. +Let the set of all annotated regular expression be $\textit{AR}$. +Let us play with the function $f: \textit{AR} \rightarrow \textit{BS}$ on annotated regular expressions: +\begin{center} +$f(\ZERO) = \ZERO$\\ $f(_{bs}\ONE) = \textit{bs}$\\ $f(_{bs}a) = \textit{bs} $\\ -$f(_{bs}r_1\cdot r_2) = \textit{bs} \cdot $ +$f(_{bs}r_1\cdot r_2) = \textit{bs} \cdot( f(r_1) \cdot f(r_2))$\\ $f(_{bs}\sum{rs}) = \textit{bs} \cdot \sum\limits_{r \in rs}{f(\textit{r})}$\\ -$f(_{bs}r*) = \textit{bs} \cdot((0 \cdot f(r))\cdot 1) $ +$f(_{bs}r^*) = \textit{bs} \cdot((0 \cdot f(r))^*\cdot 1) $ \end{center} +We claim that: +\begin{center} +$f(a) = \{bs \mid a \gg bs\}$. +\end{center} \bibliographystyle{plain} \bibliography{root}