--- a/thys/Hoare_tm2.thy Fri Apr 04 13:15:07 2014 +0100
+++ b/thys/Hoare_tm2.thy Tue Apr 29 15:26:48 2014 +0100
@@ -6,7 +6,7 @@
imports Hoare_gen
My_block
Data_slot
- "~~/src/HOL/Library/FinFun_Syntax"
+ FMap
begin
@@ -64,22 +64,33 @@
- position of head (int)
- tape (int \<rightharpoonup> Block)
*)
-type_synonym tconf = "nat \<times> (nat \<Rightarrow>f tm_inst option) \<times> nat \<times> int \<times> (int \<Rightarrow>f Block option)"
+type_synonym tconf = "nat \<times> (nat f\<rightharpoonup> tm_inst) \<times> nat \<times> int \<times> (int f\<rightharpoonup> Block)"
(* updates the position/tape according to an action *)
fun
- next_tape :: "taction \<Rightarrow> (int \<times> (int \<Rightarrow>f Block option)) \<Rightarrow> (int \<times> (int \<Rightarrow>f Block option))"
+ next_tape :: "taction \<Rightarrow> (int \<times> (int f\<rightharpoonup> Block)) \<Rightarrow> (int \<times> (int f\<rightharpoonup> Block))"
where
- "next_tape W0 (pos, m) = (pos, m(pos $:= Some Bk))" |
- "next_tape W1 (pos, m) = (pos, m(pos $:= Some Oc))" |
+ "next_tape W0 (pos, m) = (pos, m(pos f\<mapsto> Bk))" |
+ "next_tape W1 (pos, m) = (pos, m(pos f\<mapsto> Oc))" |
"next_tape L (pos, m) = (pos - 1, m)" |
"next_tape R (pos, m) = (pos + 1, m)"
fun tstep :: "tconf \<Rightarrow> tconf"
where "tstep (faults, prog, pc, pos, m) =
- (case (prog $ pc) of
+ (case (prog f! pc) of
Some ((action0, pc0), (action1, pc1)) \<Rightarrow>
- case (m $ pos) of
+ case (m f! pos) of
+ Some Bk \<Rightarrow> (faults, prog, pc0, next_tape action0 (pos, m)) |
+ Some Oc \<Rightarrow> (faults, prog, pc1, next_tape action1 (pos, m)) |
+ None \<Rightarrow> (faults + 1, prog, pc, pos, m)
+ | None \<Rightarrow> (faults + 1, prog, pc, pos, m))"
+
+
+fun tstep :: "tconf \<Rightarrow> tconf"
+ where "tstep (faults, prog, pc, pos, m) =
+ (case (prog f! pc) of
+ Some ((action0, pc0), (action1, pc1)) \<Rightarrow>
+ case (m f! pos) of
Some Bk \<Rightarrow> (faults, prog, pc0, next_tape action0 (pos, m)) |
Some Oc \<Rightarrow> (faults, prog, pc1, next_tape action1 (pos, m)) |
None \<Rightarrow> (faults + 1, prog, pc, pos, m)
@@ -88,19 +99,19 @@
lemma tstep_splits:
"(P (tstep s)) = ((\<forall> faults prog pc pos m action0 pc0 action1 pc1.
s = (faults, prog, pc, pos, m) \<longrightarrow>
- prog $ pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow>
- m $ pos = Some Bk \<longrightarrow> P (faults, prog, pc0, next_tape action0 (pos, m))) \<and>
+ prog f! pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow>
+ m f! pos = Some Bk \<longrightarrow> P (faults, prog, pc0, next_tape action0 (pos, m))) \<and>
(\<forall> faults prog pc pos m action0 pc0 action1 pc1.
s = (faults, prog, pc, pos, m) \<longrightarrow>
- prog $ pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow>
- m $ pos = Some Oc \<longrightarrow> P (faults, prog, pc1, next_tape action1 (pos, m))) \<and>
+ prog f! pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow>
+ m f! pos = Some Oc \<longrightarrow> P (faults, prog, pc1, next_tape action1 (pos, m))) \<and>
(\<forall> faults prog pc pos m action0 pc0 action1 pc1.
s = (faults, prog, pc, pos, m) \<longrightarrow>
- prog $ pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow>
- m $ pos = None \<longrightarrow> P (faults + 1, prog, pc, pos, m)) \<and>
+ prog f! pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow>
+ m f! pos = None \<longrightarrow> P (faults + 1, prog, pc, pos, m)) \<and>
(\<forall> faults prog pc pos m .
s = (faults, prog, pc, pos, m) \<longrightarrow>
- prog $ pc = None \<longrightarrow> P (faults + 1, prog, pc, pos, m))
+ prog f! pc = None \<longrightarrow> P (faults + 1, prog, pc, pos, m))
)"
by (cases s) (auto split: option.splits Block.splits)
@@ -111,9 +122,9 @@
| TPos int (* head of TM is at position int *)
| TFaults nat (* there are nat faults *)
-definition "tprog_set prog = {TC i inst | i inst. prog $ i = Some inst}"
+definition "tprog_set prog = {TC i inst | i inst. prog f! i = Some inst}"
definition "tpc_set pc = {TAt pc}"
-definition "tmem_set m = {TM i n | i n. m $ i = Some n}"
+definition "tmem_set m = {TM i n | i n. m f! i = Some n}"
definition "tpos_set pos = {TPos pos}"
definition "tfaults_set faults = {TFaults faults}"
@@ -170,8 +181,8 @@
primrec tassemble_to :: "tpg \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> tassert"
where
- "tassemble_to (TInstr ai) i j = (sg ({TC i ai}) ** <(j = i + 1)>)" |
- "tassemble_to (TSeq p1 p2) i j = (EXS j'. (tassemble_to p1 i j') ** (tassemble_to p2 j' j))" |
+ "tassemble_to (TInstr ai) i j = (sg ({TC i ai}) \<and>* <(j = i + 1)>)" |
+ "tassemble_to (TSeq p1 p2) i j = (EXS j'. (tassemble_to p1 i j') \<and>* (tassemble_to p2 j' j))" |
"tassemble_to (TLocal fp) i j = (EXS l. (tassemble_to (fp l) i j))" |
"tassemble_to (TLabel l) i j = <(i = j \<and> j = l)>"
@@ -405,21 +416,21 @@
by (unfold tpn_set_def, auto)
qed
-lemma codeD: "(st i ** sg {TC i inst} ** r) (trset_of (ft, prog, i', pos, mem))
- \<Longrightarrow> prog $ i = Some inst"
+lemma codeD: "(st i \<and>* sg {TC i inst} ** r) (trset_of (ft, prog, i', pos, mem))
+ \<Longrightarrow> prog f! i = Some inst"
proof -
- assume "(st i ** sg {TC i inst} ** r) (trset_of (ft, prog, i', pos, mem))"
+ assume "(st i \<and>* sg {TC i inst} \<and>* r) (trset_of (ft, prog, i', pos, mem))"
thus ?thesis
apply(unfold sep_conj_def set_ins_def sg_def trset_of.simps tpn_set_def)
by auto
qed
-lemma memD: "((tm a v) ** r) (trset_of (ft, prog, i, pos, mem)) \<Longrightarrow> mem $ a = Some v"
+lemma memD: "((tm a v) ** r) (trset_of (ft, prog, i, pos, mem)) \<Longrightarrow> mem f! a = Some v"
proof -
assume "((tm a v) ** r) (trset_of (ft, prog, i, pos, mem))"
from stimes_sgD[OF this[unfolded trset_of.simps tpn_set_def tm_def]]
- have "{TM a v} \<subseteq> {TC i inst |i inst. prog $ i = Some inst} \<union> {TAt i} \<union>
- {TPos pos} \<union> {TM i n |i n. mem $ i = Some n} \<union> {TFaults ft}" by simp
+ have "{TM a v} \<subseteq> {TC i inst |i inst. prog f! i = Some inst} \<union> {TAt i} \<union>
+ {TPos pos} \<union> {TM i n |i n. mem f! i = Some n} \<union> {TFaults ft}" by simp
thus ?thesis by auto
qed
@@ -1212,20 +1223,19 @@
lemma tmem_set_upd:
"{TM a v} \<subseteq> tmem_set mem \<Longrightarrow>
- tmem_set (mem(a $:=Some v')) = ((tmem_set mem) - {TM a v}) \<union> {TM a v'}"
+ tmem_set (mem(a f\<mapsto> Some v')) = ((tmem_set mem) - {TM a v}) \<union> {TM a v'}"
apply(unfold tpn_set_def)
apply(auto)
-apply (metis finfun_upd_apply option.inject)
-apply (metis finfun_upd_apply_other)
-by (metis finfun_upd_apply_other option.inject)
-
+apply (metis the.simps the_lookup_fmap_upd the_lookup_fmap_upd_other)
+apply (metis the_lookup_fmap_upd_other)
+by (metis option.inject the_lookup_fmap_upd_other)
lemma tmem_set_disj: "{TM a v} \<subseteq> tmem_set mem \<Longrightarrow>
{TM a v'} \<inter> (tmem_set mem - {TM a v}) = {}"
by (unfold tpn_set_def, auto)
lemma smem_upd: "((tm a v) ** r) (trset_of (f, x, y, z, mem)) \<Longrightarrow>
- ((tm a v') ** r) (trset_of (f, x, y, z, mem(a $:= Some v')))"
+ ((tm a v') ** r) (trset_of (f, x, y, z, mem(a f\<mapsto> Some v')))"
proof -
have eq_s: "(tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f - {TM a v}) =
(tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
@@ -1238,11 +1248,11 @@
from h TM_in_simp have "{TM a v} \<subseteq> tmem_set mem"
by(sep_drule stimes_sgD, auto)
from tmem_set_upd [OF this] tmem_set_disj[OF this]
- have h2: "tmem_set (mem(a $:= Some v')) = {TM a v'} \<union> (tmem_set mem - {TM a v})"
+ have h2: "tmem_set (mem(a f\<mapsto> Some v')) = {TM a v'} \<union> (tmem_set mem - {TM a v})"
"{TM a v'} \<inter> (tmem_set mem - {TM a v}) = {}" by auto
show ?thesis
proof -
- have "(tm a v' ** r) (tmem_set (mem(a $:= Some v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f)"
+ have "(tm a v' ** r) (tmem_set (mem(a f\<mapsto> Some v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f)"
proof(rule sep_conjI)
show "tm a v' ({TM a v'})" by (unfold tm_def sg_def, simp)
next
@@ -1250,13 +1260,13 @@
next
show "{TM a v'} ## tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f"
proof -
- from g have " mem $ a = Some v"
+ from g have " mem f! a = Some v"
by(sep_frule memD, simp)
thus "?thesis"
by(unfold tpn_set_def set_ins_def, auto)
qed
next
- show "tmem_set (mem(a $:= Some v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f =
+ show "tmem_set (mem(a f\<mapsto> Some v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f =
{TM a v'} + (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
by (unfold h2(1) set_ins_def eq_s, auto)
qed
@@ -1281,11 +1291,11 @@
fix ft prog cs i' mem r
assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* sg {TC i ((W0, j), W0, j)})
(trset_of (ft, prog, cs, i', mem))"
- from h have "prog $ i = Some ((W0, j), W0, j)"
+ from h have "prog f! i = Some ((W0, j), W0, j)"
apply(rule_tac r = "r \<and>* ps p \<and>* tm p v" in codeD)
by(simp add: sep_conj_ac)
from h and this have stp:
- "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, j, i', mem(i' $:= Some Bk))" (is "?x = ?y")
+ "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, j, i', mem(i' f\<mapsto> Some Bk))" (is "?x = ?y")
apply(sep_frule psD)
apply(sep_frule stD)
apply(sep_frule memD, simp)
@@ -1331,12 +1341,12 @@
fix ft prog cs i' mem r
assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* sg {TC i ((W1, ?j), W1, ?j)})
(trset_of (ft, prog, cs, i', mem))"
- from h have "prog $ i = Some ((W1, ?j), W1, ?j)"
+ from h have "prog f! i = Some ((W1, ?j), W1, ?j)"
apply(rule_tac r = "r \<and>* ps p \<and>* tm p v" in codeD)
by(simp add: sep_conj_ac)
from h and this have stp:
"tm.run 1 (ft, prog, cs, i', mem) =
- (ft, prog, ?j, i', mem(i' $:= Some Oc))" (is "?x = ?y")
+ (ft, prog, ?j, i', mem(i' f\<mapsto> Some Oc))" (is "?x = ?y")
apply(sep_frule psD)
apply(sep_frule stD)
apply(sep_frule memD, simp)
@@ -1383,7 +1393,7 @@
fix ft prog cs i' mem r
assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v2 \<and>* sg {TC i ((L, ?j), L, ?j)})
(trset_of (ft, prog, cs, i', mem))"
- from h have "prog $ i = Some ((L, ?j), L, ?j)"
+ from h have "prog f! i = Some ((L, ?j), L, ?j)"
apply(rule_tac r = "r \<and>* ps p \<and>* tm p v2" in codeD)
by(simp add: sep_conj_ac)
from h and this have stp:
@@ -1441,7 +1451,7 @@
fix ft prog cs i' mem r
assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v1 \<and>* sg {TC i ((R, ?j), R, ?j)})
(trset_of (ft, prog, cs, i', mem))"
- from h have "prog $ i = Some ((R, ?j), R, ?j)"
+ from h have "prog f! i = Some ((R, ?j), R, ?j)"
apply(rule_tac r = "r \<and>* ps p \<and>* tm p v1" in codeD)
by(simp add: sep_conj_ac)
from h and this have stp:
@@ -1497,12 +1507,12 @@
fix ft prog cs pc mem r
assume h: "(r \<and>* one p \<and>* ps p \<and>* st i \<and>* sg {TC i ((W0, ?j), W1, e)})
(trset_of (ft, prog, cs, pc, mem))"
- from h have k1: "prog $ i = Some ((W0, ?j), W1, e)"
+ from h have k1: "prog f! i = Some ((W0, ?j), W1, e)"
apply(rule_tac r = "r \<and>* one p \<and>* ps p" in codeD)
by(simp add: sep_conj_ac)
from h have k2: "pc = p"
by(sep_drule psD, simp)
- from h and this have k3: "mem $ pc = Some Oc"
+ from h and this have k3: "mem f! pc = Some Oc"
apply(unfold one_def)
by(sep_drule memD, simp)
from h k1 k2 k3 have stp:
@@ -1510,6 +1520,14 @@
apply(sep_drule stD)
apply(unfold tm.run_def)
apply(auto)
+ apply(rule fmap_eqI)
+ apply(simp)
+ apply(subgoal_tac "p \<in> fdom mem")
+ apply(simp add: insert_absorb)
+ apply(simp add: fdomIff)
+ apply(rule_tac x="Some Oc" in exI)
+ apply(auto)[1]
+ apply(simp add: fun_eq_iff)
by (metis finfun_upd_triv)
from h k2
@@ -1584,12 +1602,12 @@
fix ft prog cs pc mem r
assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* sg {TC i ((W0, ?j), W1, e)})
(trset_of (ft, prog, cs, pc, mem))"
- from h have k1: "prog $ i = Some ((W0, ?j), W1, e)"
+ from h have k1: "prog f! i = Some ((W0, ?j), W1, e)"
apply(rule_tac r = "r \<and>* zero p \<and>* ps p" in codeD)
by(simp add: sep_conj_ac)
from h have k2: "pc = p"
by(sep_drule psD, simp)
- from h and this have k3: "mem $ pc = Some Bk"
+ from h and this have k3: "mem f! pc = Some Bk"
apply(unfold zero_def)
by(sep_drule memD, simp)
from h k1 k2 k3 have stp:
@@ -1633,12 +1651,12 @@
fix ft prog cs pc mem r
assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* sg {TC i ((W0, e), W1, ?j)})
(trset_of (ft, prog, cs, pc, mem))"
- from h have k1: "prog $ i = Some ((W0, e), W1, ?j)"
+ from h have k1: "prog f! i = Some ((W0, e), W1, ?j)"
apply(rule_tac r = "r \<and>* zero p \<and>* ps p" in codeD)
by(simp add: sep_conj_ac)
from h have k2: "pc = p"
by(sep_drule psD, simp)
- from h and this have k3: "mem $ pc = Some Bk"
+ from h and this have k3: "mem f! pc = Some Bk"
apply(unfold zero_def)
by(sep_drule memD, simp)
from h k1 k2 k3 have stp:
@@ -1712,12 +1730,12 @@
fix ft prog cs pc mem r
assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p Oc \<and>* sg {TC i ((W0, e), W1, ?j)})
(trset_of (ft, prog, cs, pc, mem))"
- from h have k1: "prog $ i = Some ((W0, e), W1, ?j)"
+ from h have k1: "prog f! i = Some ((W0, e), W1, ?j)"
apply(rule_tac r = "r \<and>* tm p Oc \<and>* ps p" in codeD)
by(simp add: sep_conj_ac)
from h have k2: "pc = p"
by(sep_drule psD, simp)
- from h and this have k3: "mem $ pc = Some Oc"
+ from h and this have k3: "mem f! pc = Some Oc"
by(sep_drule memD, simp)
from h k1 k2 k3 have stp:
"tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, ?j, pc, mem)" (is "?x = ?y")
@@ -1753,18 +1771,18 @@
fix ft prog cs pos mem r
assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* <(j = i + 1)> \<and>* sg {TC i ((W0, e), W1, e)})
(trset_of (ft, prog, cs, pos, mem))"
- from h have k1: "prog $ i = Some ((W0, e), W1, e)"
+ from h have k1: "prog f! i = Some ((W0, e), W1, e)"
apply(rule_tac r = "r \<and>* <(j = i + 1)> \<and>* tm p v \<and>* ps p" in codeD)
by(simp add: sep_conj_ac)
from h have k2: "p = pos"
by(sep_drule psD, simp)
- from h k2 have k3: "mem $ pos = Some v"
+ from h k2 have k3: "mem f! pos = Some v"
by(sep_drule memD, simp)
from h k1 k2 k3 have
stp: "tm.run 1 (ft, prog, cs, pos, mem) = (ft, prog, e, pos, mem)" (is "?x = ?y")
apply(sep_drule stD)
apply(unfold tm.run_def)
- apply(cases "mem $ pos")
+ apply(cases "mem f! pos")
apply(simp)
apply(cases v)
apply(auto)
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys/Hoare_tm3.thy Tue Apr 29 15:26:48 2014 +0100
@@ -0,0 +1,5776 @@
+header {*
+ Separation logic for Turing Machines
+*}
+
+theory Hoare_tm3
+imports Hoare_gen My_block Data_slot FMap
+begin
+
+notation FMap.lookup (infixl "$" 999)
+
+ML {*
+fun pretty_terms ctxt trms =
+ Pretty.block (Pretty.commas (map (Syntax.pretty_term ctxt) trms))
+*}
+
+ML {*
+structure StepRules = Named_Thms
+ (val name = @{binding "step"}
+ val description = "Theorems for hoare rules for every step")
+*}
+
+ML {*
+structure FwdRules = Named_Thms
+ (val name = @{binding "fwd"}
+ val description = "Theorems for fwd derivation of seperation implication")
+*}
+
+setup {* StepRules.setup *}
+setup {* FwdRules.setup *}
+
+method_setup prune =
+ {* Scan.succeed (SIMPLE_METHOD' o (K (K prune_params_tac))) *}
+ "pruning parameters"
+
+lemma int_add_C:
+ "x + (y::int) = y + x"
+ by simp
+
+lemma int_add_A : "(x + y) + z = x + (y + (z::int))"
+ by simp
+
+lemma int_add_LC: "x + (y + (z::int)) = y + (x + z)"
+ by simp
+
+lemmas int_add_ac = int_add_A int_add_C int_add_LC
+
+
+section {* Operational Semantics of TM *}
+
+datatype taction = W0 | W1 | L | R
+
+type_synonym tstate = nat
+
+datatype Block = Oc | Bk
+
+(* the successor state when tape symbol is Bk or Oc, respectively *)
+type_synonym tm_inst = "(taction \<times> tstate) \<times> (taction \<times> tstate)"
+
+(* - number of faults (nat)
+ - TM program (nat \<rightharpoonup> tm_inst)
+ - current state (nat)
+ - position of head (int)
+ - tape (int \<rightharpoonup> Block)
+*)
+type_synonym tconf = "nat \<times> (nat f\<rightharpoonup> tm_inst) \<times> nat \<times> int \<times> (int f\<rightharpoonup> Block)"
+
+(* updates the position/tape according to an action *)
+fun
+ next_tape :: "taction \<Rightarrow> (int \<times> (int f\<rightharpoonup> Block)) \<Rightarrow> (int \<times> (int f\<rightharpoonup> Block))"
+where
+ "next_tape W0 (pos, m) = (pos, m(pos f\<mapsto> Bk))" |
+ "next_tape W1 (pos, m) = (pos, m(pos f\<mapsto> Oc))" |
+ "next_tape L (pos, m) = (pos - 1, m)" |
+ "next_tape R (pos, m) = (pos + 1, m)"
+
+fun tstep :: "tconf \<Rightarrow> tconf"
+ where "tstep (faults, prog, pc, pos, m) =
+ (case (prog $ pc) of
+ Some ((action0, pc0), (action1, pc1)) \<Rightarrow>
+ case (m $ pos) of
+ Some Bk \<Rightarrow> (faults, prog, pc0, next_tape action0 (pos, m)) |
+ Some Oc \<Rightarrow> (faults, prog, pc1, next_tape action1 (pos, m)) |
+ None \<Rightarrow> (faults + 1, prog, pc, pos, m)
+ | None \<Rightarrow> (faults + 1, prog, pc, pos, m))"
+
+lemma tstep_splits:
+ "(P (tstep s)) = ((\<forall> faults prog pc pos m action0 pc0 action1 pc1.
+ s = (faults, prog, pc, pos, m) \<longrightarrow>
+ prog $ pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow>
+ m $ pos = Some Bk \<longrightarrow> P (faults, prog, pc0, next_tape action0 (pos, m))) \<and>
+ (\<forall> faults prog pc pos m action0 pc0 action1 pc1.
+ s = (faults, prog, pc, pos, m) \<longrightarrow>
+ prog $ pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow>
+ m $ pos = Some Oc \<longrightarrow> P (faults, prog, pc1, next_tape action1 (pos, m))) \<and>
+ (\<forall> faults prog pc pos m action0 pc0 action1 pc1.
+ s = (faults, prog, pc, pos, m) \<longrightarrow>
+ prog $ pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow>
+ m $ pos = None \<longrightarrow> P (faults + 1, prog, pc, pos, m)) \<and>
+ (\<forall> faults prog pc pos m .
+ s = (faults, prog, pc, pos, m) \<longrightarrow>
+ prog $ pc = None \<longrightarrow> P (faults + 1, prog, pc, pos, m))
+ )"
+ by (cases s) (auto split: option.splits Block.splits)
+
+datatype tresource =
+ TM int Block (* at the position int of the tape is a Bl or Oc *)
+ | TC nat tm_inst (* at the address nat is a certain instruction *)
+ | TAt nat (* TM is at state nat*)
+ | TPos int (* head of TM is at position int *)
+ | TFaults nat (* there are nat faults *)
+
+definition "tprog_set prog = {TC i inst | i inst. prog $ i = Some inst}"
+definition "tpc_set pc = {TAt pc}"
+definition "tmem_set m = {TM i n | i n. m $ i = Some n}"
+definition "tpos_set pos = {TPos pos}"
+definition "tfaults_set faults = {TFaults faults}"
+
+lemmas tpn_set_def = tprog_set_def tpc_set_def tmem_set_def tfaults_set_def tpos_set_def
+
+fun trset_of :: "tconf \<Rightarrow> tresource set"
+ where "trset_of (faults, prog, pc, pos, m) =
+ tprog_set prog \<union> tpc_set pc \<union> tpos_set pos \<union> tmem_set m \<union> tfaults_set faults"
+
+interpretation tm: sep_exec tstep trset_of .
+
+
+
+section {* Assembly language for TMs and its program logic *}
+
+subsection {* The assembly language *}
+
+datatype tpg =
+ TInstr tm_inst
+ | TLabel nat
+ | TSeq tpg tpg
+ | TLocal "nat \<Rightarrow> tpg"
+
+notation TLocal (binder "TL " 10)
+
+abbreviation
+ tprog_instr :: "tm_inst \<Rightarrow> tpg" ("\<guillemotright> _" [61] 61)
+where "\<guillemotright> i \<equiv> TInstr i"
+
+abbreviation tprog_seq ::
+ "tpg \<Rightarrow> tpg \<Rightarrow> tpg" (infixr ";" 52)
+where "c1 ; c2 \<equiv> TSeq c1 c2"
+
+definition "sg e = (\<lambda>s. s = e)"
+
+type_synonym tassert = "tresource set \<Rightarrow> bool"
+
+abbreviation
+ t_hoare :: "tassert \<Rightarrow> tassert \<Rightarrow> tassert \<Rightarrow> bool" ("(\<lbrace>(1_)\<rbrace>/ (_)/ \<lbrace>(1_)\<rbrace>)" 50)
+where
+ "\<lbrace>p\<rbrace> c \<lbrace>q\<rbrace> == sep_exec.Hoare_gen tstep trset_of p c q"
+
+abbreviation it_hoare ::
+ "('a::sep_algebra \<Rightarrow> tresource set \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> (tresource set \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
+ ("(1_).(\<lbrace>(1_)\<rbrace>/ (_)/ \<lbrace>(1_)\<rbrace>)" 50)
+where "I. \<lbrace>P\<rbrace> c \<lbrace>Q\<rbrace> == sep_exec.IHoare tstep trset_of I P c Q"
+
+(*
+primrec tpg_len :: "tpg \<Rightarrow> nat" where
+ "tpg_len (TInstr ai) = 1" |
+ "tpg_len (TSeq p1 p2) = tpg_len p1 + tpg_len " |
+ "tpg_len (TLocal fp) = tpg_len (fp 0)" |
+ "tpg_len (TLabel l) = 0"
+*)
+
+primrec tassemble_to :: "tpg \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> tassert"
+ where
+ "tassemble_to (TInstr ai) i j = (sg ({TC i ai}) ** <(j = i + 1)>)" |
+ "tassemble_to (TSeq p1 p2) i j = (EXS j'. (tassemble_to p1 i j') ** (tassemble_to p2 j' j))" |
+ "tassemble_to (TLocal fp) i j = (EXS l. (tassemble_to (fp l) i j))" |
+ "tassemble_to (TLabel l) i j = <(i = j \<and> j = l)>"
+
+declare tassemble_to.simps [simp del]
+
+lemmas tasmp = tassemble_to.simps (2, 3, 4)
+
+abbreviation
+ tasmb_to :: "nat \<Rightarrow> tpg \<Rightarrow> nat \<Rightarrow> tassert" ("_ :[ _ ]: _" [60, 60, 60] 60)
+ where
+ "i :[ tpg ]: j \<equiv> tassemble_to tpg i j"
+
+lemma EXS_intro:
+ assumes h: "(P x) s"
+ shows "(EXS x. P(x)) s"
+ by (smt h pred_ex_def sep_conj_impl)
+
+lemma EXS_elim:
+ assumes "(EXS x. P x) s"
+ obtains x where "P x s"
+ by (metis assms pred_ex_def)
+
+lemma EXS_eq:
+ fixes x
+ assumes h: "Q (p x)"
+ and h1: "\<And> y s. \<lbrakk>p y s\<rbrakk> \<Longrightarrow> y = x"
+ shows "p x = (EXS x. p x)"
+proof
+ fix s
+ show "p x s = (EXS x. p x) s"
+ proof
+ assume "p x s"
+ thus "(EXS x. p x) s" by (auto simp:pred_ex_def)
+ next
+ assume "(EXS x. p x) s"
+ thus "p x s"
+ proof(rule EXS_elim)
+ fix y
+ assume "p y s"
+ from this[unfolded h1[OF this]] show "p x s" .
+ qed
+ qed
+qed
+
+definition "tpg_fold tpgs = foldr TSeq (butlast tpgs) (last tpgs)"
+
+lemma tpg_fold_sg:
+ "tpg_fold [tpg] = tpg"
+ by (simp add:tpg_fold_def)
+
+lemma tpg_fold_cons:
+ assumes h: "tpgs \<noteq> []"
+ shows "tpg_fold (tpg#tpgs) = (tpg; (tpg_fold tpgs))"
+ using h
+proof(induct tpgs arbitrary:tpg)
+ case (Cons tpg1 tpgs1)
+ thus ?case
+ proof(cases "tpgs1 = []")
+ case True
+ thus ?thesis by (simp add:tpg_fold_def)
+ next
+ case False
+ show ?thesis
+ proof -
+ have eq_1: "butlast (tpg # tpg1 # tpgs1) = tpg # (butlast (tpg1 # tpgs1))"
+ by simp
+ from False have eq_2: "last (tpg # tpg1 # tpgs1) = last (tpg1 # tpgs1)"
+ by simp
+ have eq_3: "foldr (op ;) (tpg # butlast (tpg1 # tpgs1)) (last (tpg1 # tpgs1)) =
+ (tpg ; (foldr (op ;) (butlast (tpg1 # tpgs1)) (last (tpg1 # tpgs1))))"
+ by simp
+ show ?thesis
+ apply (subst (1) tpg_fold_def, unfold eq_1 eq_2 eq_3)
+ by (fold tpg_fold_def, simp)
+ qed
+ qed
+qed auto
+
+lemmas tpg_fold_simps = tpg_fold_sg tpg_fold_cons
+
+lemma tpg_fold_app:
+ assumes h1: "tpgs1 \<noteq> []"
+ and h2: "tpgs2 \<noteq> []"
+ shows "i:[(tpg_fold (tpgs1 @ tpgs2))]:j = i:[(tpg_fold (tpgs1); tpg_fold tpgs2)]:j"
+ using h1 h2
+proof(induct tpgs1 arbitrary: i j tpgs2)
+ case (Cons tpg1' tpgs1')
+ thus ?case (is "?L = ?R")
+ proof(cases "tpgs1' = []")
+ case False
+ from h2 have "(tpgs1' @ tpgs2) \<noteq> []"
+ by (metis Cons.prems(2) Nil_is_append_conv)
+ have "?L = (i :[ tpg_fold (tpg1' # (tpgs1' @ tpgs2)) ]: j )" by simp
+ also have "\<dots> = (i:[(tpg1'; (tpg_fold (tpgs1' @ tpgs2)))]:j )"
+ by (simp add:tpg_fold_cons[OF `(tpgs1' @ tpgs2) \<noteq> []`])
+ also have "\<dots> = ?R"
+ proof -
+ have "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) =
+ (EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>*
+ j' :[ tpg_fold tpgs2 ]: j)"
+ proof(default+)
+ fix s
+ assume "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
+ thus "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>*
+ j' :[ tpg_fold tpgs2 ]: j) s"
+ proof(elim EXS_elim)
+ fix j'
+ assume "(i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
+ from this[unfolded Cons(1)[OF False Cons(3)] tassemble_to.simps]
+ show "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>*
+ j' :[ tpg_fold tpgs2 ]: j) s"
+ proof(elim sep_conjE EXS_elim)
+ fix x y j'a xa ya
+ assume h: "(i :[ tpg1' ]: j') x"
+ "x ## y" "s = x + y"
+ "(j' :[ tpg_fold tpgs1' ]: j'a) xa"
+ "(j'a :[ tpg_fold tpgs2 ]: j) ya"
+ " xa ## ya" "y = xa + ya"
+ show "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>*
+ j'a :[ tpg_fold tpgs1' ]: j') \<and>* j' :[ tpg_fold tpgs2 ]: j) s"
+ (is "(EXS j'. (?P j' \<and>* ?Q j')) s")
+ proof(rule EXS_intro[where x = "j'a"])
+ from `(j'a :[ tpg_fold tpgs2 ]: j) ya` have "(?Q j'a) ya" .
+ moreover have "(?P j'a) (x + xa)"
+ proof(rule EXS_intro[where x = j'])
+ have "x + xa = x + xa" by simp
+ moreover from `x ## y` `y = xa + ya` `xa ## ya`
+ have "x ## xa" by (metis sep_disj_addD)
+ moreover note `(i :[ tpg1' ]: j') x` `(j' :[ tpg_fold tpgs1' ]: j'a) xa`
+ ultimately show "(i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold tpgs1' ]: j'a) (x + xa)"
+ by (auto intro!:sep_conjI)
+ qed
+ moreover from `x##y` `y = xa + ya` `xa ## ya`
+ have "(x + xa) ## ya"
+ by (metis sep_disj_addI1 sep_disj_commuteI)
+ moreover from `s = x + y` `y = xa + ya`
+ have "s = (x + xa) + ya"
+ by (metis h(2) h(6) sep_add_assoc sep_disj_addD1 sep_disj_addD2)
+ ultimately show "(?P j'a \<and>* ?Q j'a) s"
+ by (auto intro!:sep_conjI)
+ qed
+ qed
+ qed
+ next
+ fix s
+ assume "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>*
+ j' :[ tpg_fold tpgs2 ]: j) s"
+ thus "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
+ proof(elim EXS_elim sep_conjE)
+ fix j' x y j'a xa ya
+ assume h: "(j' :[ tpg_fold tpgs2 ]: j) y"
+ "x ## y" "s = x + y" "(i :[ tpg1' ]: j'a) xa"
+ "(j'a :[ tpg_fold tpgs1' ]: j') ya" "xa ## ya" "x = xa + ya"
+ show "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
+ proof(rule EXS_intro[where x = j'a])
+ from `(i :[ tpg1' ]: j'a) xa` have "(i :[ tpg1' ]: j'a) xa" .
+ moreover have "(j'a :[ tpg_fold (tpgs1' @ tpgs2) ]: j) (ya + y)"
+ proof(unfold Cons(1)[OF False Cons(3)] tassemble_to.simps)
+ show "(EXS j'. j'a :[ tpg_fold tpgs1' ]: j' \<and>* j' :[ tpg_fold tpgs2 ]: j) (ya + y)"
+ proof(rule EXS_intro[where x = "j'"])
+ from `x ## y` `x = xa + ya` `xa ## ya`
+ have "ya ## y" by (metis sep_add_disjD)
+ moreover have "ya + y = ya + y" by simp
+ moreover note `(j'a :[ tpg_fold tpgs1' ]: j') ya`
+ `(j' :[ tpg_fold tpgs2 ]: j) y`
+ ultimately show "(j'a :[ tpg_fold tpgs1' ]: j' \<and>*
+ j' :[ tpg_fold tpgs2 ]: j) (ya + y)"
+ by (auto intro!:sep_conjI)
+ qed
+ qed
+ moreover from `s = x + y` `x = xa + ya`
+ have "s = xa + (ya + y)"
+ by (metis h(2) h(6) sep_add_assoc sep_add_disjD)
+ moreover from `xa ## ya` `x ## y` `x = xa + ya`
+ have "xa ## (ya + y)" by (metis sep_disj_addI3)
+ ultimately show "(i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
+ by (auto intro!:sep_conjI)
+ qed
+ qed
+ qed
+ thus ?thesis
+ by (simp add:tassemble_to.simps, unfold tpg_fold_cons[OF False],
+ unfold tassemble_to.simps, simp)
+ qed
+ finally show ?thesis .
+ next
+ case True
+ thus ?thesis
+ by (simp add:tpg_fold_cons[OF Cons(3)] tpg_fold_sg)
+ qed
+qed auto
+
+
+subsection {* Assertions and program logic for this assembly language *}
+
+definition "st l = sg (tpc_set l)"
+definition "ps p = sg (tpos_set p)"
+definition "tm a v = sg ({TM a v})"
+definition "one i = tm i Oc"
+definition "zero i= tm i Bk"
+definition "any i = (EXS v. tm i v)"
+
+declare trset_of.simps[simp del]
+
+lemma stimes_sgD:
+ "(sg x \<and>* q) s \<Longrightarrow> q (s - x) \<and> x \<subseteq> s"
+ apply(erule_tac sep_conjE)
+ apply(unfold set_ins_def sg_def)
+ by (metis Diff_Int Diff_cancel Diff_empty Un_Diff sup.cobounded1 sup_bot.left_neutral sup_commute)
+
+lemma stD:
+ "(st i \<and>* r) (trset_of (ft, prog, i', pos, mem)) \<Longrightarrow> i' = i"
+proof -
+ assume "(st i \<and>* r) (trset_of (ft, prog, i', pos, mem))"
+ from stimes_sgD [OF this[unfolded st_def], unfolded trset_of.simps]
+ have "tpc_set i \<subseteq> tprog_set prog \<union> tpc_set i' \<union> tpos_set pos \<union>
+ tmem_set mem \<union> tfaults_set ft" by auto
+ thus ?thesis
+ by (unfold tpn_set_def, auto)
+qed
+
+lemma psD:
+ "(ps p \<and>* r) (trset_of (ft, prog, i', pos, mem)) \<Longrightarrow> pos = p"
+proof -
+ assume "(ps p ** r) (trset_of (ft, prog, i', pos, mem))"
+ from stimes_sgD [OF this[unfolded ps_def], unfolded trset_of.simps]
+ have "tpos_set p \<subseteq> tprog_set prog \<union> tpc_set i' \<union>
+ tpos_set pos \<union> tmem_set mem \<union> tfaults_set ft"
+ by simp
+ thus ?thesis
+ by (unfold tpn_set_def, auto)
+qed
+
+lemma codeD: "(st i \<and>* sg {TC i inst} \<and>* r) (trset_of (ft, prog, i', pos, mem))
+ \<Longrightarrow> prog $ i = Some inst"
+proof -
+ assume "(st i \<and>* sg {TC i inst} \<and>* r) (trset_of (ft, prog, i', pos, mem))"
+ thus ?thesis
+ apply(unfold sep_conj_def set_ins_def sg_def trset_of.simps tpn_set_def)
+ by auto
+qed
+
+lemma memD: "((tm a v) \<and>* r) (trset_of (ft, prog, i, pos, mem)) \<Longrightarrow> mem $ a = Some v"
+proof -
+ assume "((tm a v) \<and>* r) (trset_of (ft, prog, i, pos, mem))"
+ from stimes_sgD[OF this[unfolded trset_of.simps tpn_set_def tm_def]]
+ have "{TM a v} \<subseteq> {TC i inst |i inst. prog $ i = Some inst} \<union> {TAt i} \<union>
+ {TPos pos} \<union> {TM i n |i n. mem $ i = Some n} \<union> {TFaults ft}" by simp
+ thus ?thesis by auto
+qed
+
+lemma t_hoare_seq:
+ assumes a1: "\<And> i j. \<lbrace>st i \<and>* p\<rbrace> i:[c1]:j \<lbrace>st j \<and>* q\<rbrace>"
+ and a2: "\<And> j k. \<lbrace>st j ** q\<rbrace> j:[c2]:k \<lbrace>st k ** r\<rbrace>"
+ shows "\<lbrace>st i \<and>* p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>st k \<and>* r\<rbrace>"
+proof(subst tassemble_to.simps, rule tm.code_exI)
+ fix j'
+ show "\<lbrace>st i \<and>* p\<rbrace> i:[ c1 ]:j' \<and>* j':[ c2 ]:k \<lbrace>st k \<and>* r\<rbrace>"
+ proof(rule tm.composition)
+ from a1 show "\<lbrace>st i \<and>* p\<rbrace> i:[ c1 ]:j' \<lbrace>st j' \<and>* q\<rbrace>" by auto
+ next
+ from a2 show "\<lbrace>st j' \<and>* q\<rbrace> j':[ c2 ]:k \<lbrace>st k \<and>* r\<rbrace>" by auto
+ qed
+qed
+
+
+lemma t_hoare_seq1:
+ assumes a1: "\<And>j'. \<lbrace>st i \<and>* p\<rbrace> i:[c1]:j' \<lbrace>st j' \<and>* q\<rbrace>"
+ assumes a2: "\<And>j'. \<lbrace>st j' \<and>* q\<rbrace> j':[c2]:k \<lbrace>st k' \<and>* r\<rbrace>"
+ shows "\<lbrace>st i \<and>* p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>st k' \<and>* r\<rbrace>"
+proof(subst tassemble_to.simps, rule tm.code_exI)
+ fix j'
+ show "\<lbrace>st i \<and>* p\<rbrace> i:[ c1 ]:j' \<and>* j':[ c2 ]:k \<lbrace>st k' \<and>* r\<rbrace>"
+ proof(rule tm.composition)
+ from a1 show "\<lbrace>st i \<and>* p\<rbrace> i:[ c1 ]:j' \<lbrace>st j' \<and>* q\<rbrace>" by auto
+ next
+ from a2 show " \<lbrace>st j' \<and>* q\<rbrace> j':[ c2 ]:k \<lbrace>st k' \<and>* r\<rbrace>" by auto
+ qed
+qed
+
+lemma t_hoare_seq2:
+ assumes h: "\<And>j. \<lbrace>st i ** p\<rbrace> i:[c1]:j \<lbrace>st k' \<and>* r\<rbrace>"
+ shows "\<lbrace>st i ** p\<rbrace> i:[(c1 ; c2)]:j \<lbrace>st k' ** r\<rbrace>"
+ apply (unfold tassemble_to.simps, rule tm.code_exI)
+ by (rule tm.code_extension, rule h)
+
+lemma t_hoare_local:
+ assumes h: "(\<And>l. \<lbrace>st i \<and>* p\<rbrace> i :[ c l ]: j \<lbrace>st k \<and>* q\<rbrace>)"
+ shows "\<lbrace>st i ** p\<rbrace> i:[TLocal c]:j \<lbrace>st k ** q\<rbrace>" using h
+ by (unfold tassemble_to.simps, intro tm.code_exI, simp)
+
+lemma t_hoare_label:
+ assumes "\<And>l. l = i \<Longrightarrow> \<lbrace>st l \<and>* p\<rbrace> l:[ c l ]:j \<lbrace>st k \<and>* q\<rbrace>"
+ shows "\<lbrace>st i \<and>* p\<rbrace> i:[(TLabel l; c l)]:j \<lbrace>st k \<and>* q\<rbrace>"
+using assms
+by (unfold tassemble_to.simps, intro tm.code_exI tm.code_condI, clarify, auto)
+
+primrec t_split_cmd :: "tpg \<Rightarrow> (tpg \<times> tpg option)"
+ where "t_split_cmd (\<guillemotright>inst) = (\<guillemotright>inst, None)" |
+ "t_split_cmd (TLabel l) = (TLabel l, None)" |
+ "t_split_cmd (TSeq c1 c2) = (case (t_split_cmd c2) of
+ (c21, Some c22) \<Rightarrow> (TSeq c1 c21, Some c22) |
+ (c21, None) \<Rightarrow> (c1, Some c21))" |
+ "t_split_cmd (TLocal c) = (TLocal c, None)"
+
+definition "t_last_cmd tpg = snd (t_split_cmd tpg)"
+
+declare t_last_cmd_def [simp]
+
+definition "t_blast_cmd tpg = fst (t_split_cmd tpg)"
+
+declare t_blast_cmd_def [simp]
+
+lemma "t_last_cmd (c1; c2; TLabel l) = Some (TLabel l)"
+ by simp
+
+lemma "t_blast_cmd (c1; c2; TLabel l) = (c1; c2)"
+ by simp
+
+lemma t_split_cmd_eq:
+ assumes "t_split_cmd c = (c1, Some c2)"
+ shows "i:[c]:j = i:[(c1; c2)]:j"
+ using assms
+proof(induct c arbitrary: c1 c2 i j)
+ case (TSeq cx cy)
+ from `t_split_cmd (cx ; cy) = (c1, Some c2)`
+ show ?case
+ apply (simp split:prod.splits option.splits)
+ apply (cases cy, auto split:prod.splits option.splits)
+ proof -
+ fix a
+ assume h: "t_split_cmd cy = (a, Some c2)"
+ show "i :[ (cx ; cy) ]: j = i :[ ((cx ; a) ; c2) ]: j"
+ apply (simp only: tassemble_to.simps(2) TSeq(2)[OF h] sep_conj_exists)
+ apply (simp add:sep_conj_ac)
+ by (simp add:pred_ex_def, default, auto)
+ qed
+qed auto
+
+lemma t_hoare_label_last_pre:
+ assumes h1: "t_split_cmd c = (c', Some (TLabel l))"
+ and h2: "l = j \<Longrightarrow> \<lbrace>p\<rbrace> i:[c']:j \<lbrace>q\<rbrace>"
+ shows "\<lbrace>p\<rbrace> i:[c]:j \<lbrace>q\<rbrace>"
+by (unfold t_split_cmd_eq[OF h1],
+ simp only:tassemble_to.simps sep_conj_cond,
+ intro tm.code_exI tm.code_condI, insert h2, auto)
+
+lemma t_hoare_label_last:
+ assumes h1: "t_last_cmd c = Some (TLabel l)"
+ and h2: "l = j \<Longrightarrow> \<lbrace>p\<rbrace> i:[t_blast_cmd c]:j \<lbrace>q\<rbrace>"
+ shows "\<lbrace>p\<rbrace> i:[c]:j \<lbrace>q\<rbrace>"
+proof -
+ have "t_split_cmd c = (t_blast_cmd c, t_last_cmd c)"
+ by simp
+ from t_hoare_label_last_pre[OF this[unfolded h1]] h2
+ show ?thesis by auto
+qed
+
+
+subsection {* Basic assertions for TM *}
+
+(* ones between tape position i and j *)
+function ones :: "int \<Rightarrow> int \<Rightarrow> tassert" where
+ "ones i j = (if j < i then <(i = j + 1)>
+ else (one i) \<and>* ones (i + 1) j)"
+by auto
+
+termination
+ by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto
+
+lemma ones_base_simp:
+ "j < i \<Longrightarrow> ones i j = <(i = j + 1)>"
+ by simp
+
+lemma ones_step_simp:
+ "\<not> j < i \<Longrightarrow> ones i j = ((one i) \<and>* ones (i + 1) j)"
+ by simp
+
+lemmas ones_simps = ones_base_simp ones_step_simp
+
+declare ones.simps [simp del] ones_simps [simp]
+
+lemma ones_induct [case_names Base Step]:
+ assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
+ and h2: "\<And> i j. \<lbrakk>\<not> j < i; P (i + 1) j (ones (i + 1) j)\<rbrakk> \<Longrightarrow> P i j ((one i) \<and>* ones (i + 1) j)"
+ shows "P i j (ones i j)"
+proof(induct i j rule:ones.induct)
+ fix i j
+ assume ih: "(\<not> j < i \<Longrightarrow> P (i + 1) j (ones (i + 1) j))"
+ show "P i j (ones i j)"
+ proof(cases "j < i")
+ case True
+ with h1 [OF True]
+ show ?thesis by auto
+ next
+ case False
+ from h2 [OF False] and ih[OF False]
+ have "P i j (one i \<and>* ones (i + 1) j)" by blast
+ with False show ?thesis by auto
+ qed
+qed
+
+function ones' :: "int \<Rightarrow> int \<Rightarrow> tassert" where
+ "ones' i j = (if j < i then <(i = j + 1)>
+ else ones' i (j - 1) \<and>* one j)"
+by auto
+termination by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto
+
+lemma ones_rev: "\<not> j < i \<Longrightarrow> (ones i j) = ((ones i (j - 1)) ** one j)"
+proof(induct i j rule:ones_induct)
+ case Base
+ thus ?case by auto
+next
+ case (Step i j)
+ show ?case
+ proof(cases "j < i + 1")
+ case True
+ with Step show ?thesis
+ by simp
+ next
+ case False
+ with Step show ?thesis
+ by (auto simp:sep_conj_ac)
+ qed
+qed
+
+lemma ones_rev_induct [case_names Base Step]:
+ assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
+ and h2: "\<And> i j. \<lbrakk>\<not> j < i; P i (j - 1) (ones i (j - 1))\<rbrakk> \<Longrightarrow> P i j ((ones i (j - 1)) ** one j)"
+ shows "P i j (ones i j)"
+proof(induct i j rule:ones'.induct)
+ fix i j
+ assume ih: "(\<not> j < i \<Longrightarrow> P i (j - 1) (ones i (j - 1)))"
+ show "P i j (ones i j)"
+ proof(cases "j < i")
+ case True
+ with h1 [OF True]
+ show ?thesis by auto
+ next
+ case False
+ from h2 [OF False] and ih[OF False]
+ have "P i j (ones i (j - 1) \<and>* one j)" by blast
+ with ones_rev and False
+ show ?thesis
+ by simp
+ qed
+qed
+
+function zeros :: "int \<Rightarrow> int \<Rightarrow> tassert" where
+ "zeros i j = (if j < i then <(i = j + 1)> else
+ (zero i) ** zeros (i + 1) j)"
+by auto
+termination by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto
+
+lemma zeros_base_simp: "j < i \<Longrightarrow> zeros i j = <(i = j + 1)>"
+ by simp
+
+lemma zeros_step_simp: "\<not> j < i \<Longrightarrow> zeros i j = ((zero i) ** zeros (i + 1) j)"
+ by simp
+
+declare zeros.simps [simp del]
+lemmas zeros_simps [simp] = zeros_base_simp zeros_step_simp
+
+lemma zeros_induct [case_names Base Step]:
+ assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
+ and h2: "\<And> i j. \<lbrakk>\<not> j < i; P (i + 1) j (zeros (i + 1) j)\<rbrakk> \<Longrightarrow>
+ P i j ((zero i) ** zeros (i + 1) j)"
+ shows "P i j (zeros i j)"
+proof(induct i j rule:zeros.induct)
+ fix i j
+ assume ih: "(\<not> j < i \<Longrightarrow> P (i + 1) j (zeros (i + 1) j))"
+ show "P i j (zeros i j)"
+ proof(cases "j < i")
+ case True
+ with h1 [OF True]
+ show ?thesis by auto
+ next
+ case False
+ from h2 [OF False] and ih[OF False]
+ have "P i j (zero i \<and>* zeros (i + 1) j)" by blast
+ with False show ?thesis by auto
+ qed
+qed
+
+lemma zeros_rev: "\<not> j < i \<Longrightarrow> (zeros i j) = ((zeros i (j - 1)) \<and>* zero j)"
+proof(induct i j rule:zeros_induct)
+ case (Base i j)
+ thus ?case by auto
+next
+ case (Step i j)
+ show ?case
+ proof(cases "j < i + 1")
+ case True
+ with Step show ?thesis by auto
+ next
+ case False
+ with Step show ?thesis by (auto simp:sep_conj_ac)
+ qed
+qed
+
+lemma zeros_rev_induct [case_names Base Step]:
+ assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
+ and h2: "\<And> i j. \<lbrakk>\<not> j < i; P i (j - 1) (zeros i (j - 1))\<rbrakk> \<Longrightarrow>
+ P i j ((zeros i (j - 1)) ** zero j)"
+ shows "P i j (zeros i j)"
+proof(induct i j rule:ones'.induct)
+ fix i j
+ assume ih: "(\<not> j < i \<Longrightarrow> P i (j - 1) (zeros i (j - 1)))"
+ show "P i j (zeros i j)"
+ proof(cases "j < i")
+ case True
+ with h1 [OF True]
+ show ?thesis by auto
+ next
+ case False
+ from h2 [OF False] and ih[OF False]
+ have "P i j (zeros i (j - 1) \<and>* zero j)" by blast
+ with zeros_rev and False
+ show ?thesis by simp
+ qed
+qed
+
+definition "rep i j k = ((ones i (i + (int k))) \<and>* <(j = i + int k)>)"
+
+fun reps :: "int \<Rightarrow> int \<Rightarrow> nat list\<Rightarrow> tassert"
+ where
+ "reps i j [] = <(i = j + 1)>" |
+ "reps i j [k] = (ones i (i + int k) ** <(j = i + int k)>)" |
+ "reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)"
+
+lemma reps_simp3: "ks \<noteq> [] \<Longrightarrow>
+ reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)"
+ by (cases ks, auto)
+
+definition "reps_sep_len ks = (if length ks \<le> 1 then 0 else (length ks) - 1)"
+
+definition "reps_ctnt_len ks = (\<Sum> k \<leftarrow> ks. (1 + k))"
+
+definition "reps_len ks = (reps_sep_len ks) + (reps_ctnt_len ks)"
+
+definition "splited xs ys zs = ((xs = ys @ zs) \<and> (ys \<noteq> []) \<and> (zs \<noteq> []))"
+
+lemma list_split:
+ assumes h: "k # ks = ys @ zs"
+ and h1: "ys \<noteq> []"
+ shows "(ys = [k] \<and> zs = ks) \<or> (\<exists> ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs)"
+proof(cases ys)
+ case Nil
+ with h1 show ?thesis by auto
+next
+ case (Cons y' ys')
+ with h have "k#ks = y'#(ys' @ zs)" by simp
+ hence hh: "y' = k" "ks = ys' @ zs" by auto
+ show ?thesis
+ proof(cases "ys' = []")
+ case False
+ show ?thesis
+ proof(rule disjI2)
+ show " \<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs"
+ proof(rule exI[where x = ys'])
+ from False hh Cons show "ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs" by auto
+ qed
+ qed
+ next
+ case True
+ show ?thesis
+ proof(rule disjI1)
+ from hh True Cons
+ show "ys = [k] \<and> zs = ks" by auto
+ qed
+ qed
+qed
+
+lemma splited_cons[elim_format]:
+ assumes h: "splited (k # ks) ys zs"
+ shows "(ys = [k] \<and> zs = ks) \<or> (\<exists> ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs)"
+proof -
+ from h have "k # ks = ys @ zs" "ys \<noteq> [] " unfolding splited_def by auto
+ from list_split[OF this]
+ have "ys = [k] \<and> zs = ks \<or> (\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs)" .
+ thus ?thesis
+ proof
+ assume " ys = [k] \<and> zs = ks" thus ?thesis by auto
+ next
+ assume "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs"
+ then obtain ys' where hh: "ys' \<noteq> []" "ys = k # ys'" "ks = ys' @ zs" by auto
+ show ?thesis
+ proof(rule disjI2)
+ show "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs"
+ proof(rule exI[where x = ys'])
+ from h have "zs \<noteq> []" by (unfold splited_def, simp)
+ with hh(1) hh(3)
+ have "splited ks ys' zs"
+ by (unfold splited_def, auto)
+ with hh(1) hh(2) show "ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs" by auto
+ qed
+ qed
+ qed
+qed
+
+lemma splited_cons_elim:
+ assumes h: "splited (k # ks) ys zs"
+ and h1: "\<lbrakk>ys = [k]; zs = ks\<rbrakk> \<Longrightarrow> P"
+ and h2: "\<And> ys'. \<lbrakk>ys' \<noteq> []; ys = k#ys'; splited ks ys' zs\<rbrakk> \<Longrightarrow> P"
+ shows P
+proof(rule splited_cons[OF h])
+ assume "ys = [k] \<and> zs = ks \<or> (\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs)"
+ thus P
+ proof
+ assume hh: "ys = [k] \<and> zs = ks"
+ show P
+ proof(rule h1)
+ from hh show "ys = [k]" by simp
+ next
+ from hh show "zs = ks" by simp
+ qed
+ next
+ assume "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs"
+ then obtain ys' where hh: "ys' \<noteq> []" "ys = k # ys'" "splited ks ys' zs" by auto
+ from h2[OF this]
+ show P .
+ qed
+qed
+
+lemma list_nth_expand:
+ "i < length xs \<Longrightarrow> xs = take i xs @ [xs!i] @ drop (Suc i) xs"
+ by (metis Cons_eq_appendI append_take_drop_id drop_Suc_conv_tl eq_Nil_appendI)
+
+lemma reps_len_nil: "reps_len [] = 0"
+ by (auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def)
+
+lemma reps_len_sg: "reps_len [k] = 1 + k"
+ by (auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def)
+
+lemma reps_len_cons: "ks \<noteq> [] \<Longrightarrow> (reps_len (k # ks)) = 2 + k + reps_len ks "
+proof(induct ks arbitrary:k)
+ case (Cons n ns)
+ thus ?case
+ by(cases "ns = []",
+ auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def)
+qed auto
+
+lemma reps_len_correct:
+ assumes h: "(reps i j ks) s"
+ shows "j = i + int (reps_len ks) - 1"
+ using h
+proof(induct ks arbitrary:i j s)
+ case Nil
+ thus ?case
+ by (auto simp:reps_len_nil pasrt_def)
+next
+ case (Cons n ns)
+ thus ?case
+ proof(cases "ns = []")
+ case False
+ from Cons(2)[unfolded reps_simp3[OF False]]
+ obtain s' where "(reps (i + int n + 2) j ns) s'"
+ by (auto elim!:sep_conjE)
+ from Cons.hyps[OF this]
+ show ?thesis
+ by (unfold reps_len_cons[OF False], simp)
+ next
+ case True
+ with Cons(2)
+ show ?thesis
+ by (auto simp:reps_len_sg pasrt_def)
+ qed
+qed
+
+lemma reps_len_expand:
+ shows "(EXS j. (reps i j ks)) = (reps i (i + int (reps_len ks) - 1) ks)"
+proof(default+)
+ fix s
+ assume "(EXS j. reps i j ks) s"
+ with reps_len_correct show "reps i (i + int (reps_len ks) - 1) ks s"
+ by (auto simp:pred_ex_def)
+next
+ fix s
+ assume "reps i (i + int (reps_len ks) - 1) ks s"
+ thus "(EXS j. reps i j ks) s" by (auto simp:pred_ex_def)
+qed
+
+lemma reps_len_expand1: "(EXS j. (reps i j ks \<and>* r)) = (reps i (i + int (reps_len ks) - 1) ks \<and>* r)"
+by (metis reps_len_def reps_len_expand sep.mult_commute sep_conj_exists1)
+
+lemma reps_splited:
+ assumes h: "splited xs ys zs"
+ shows "reps i j xs = (reps i (i + int (reps_len ys) - 1) ys \<and>*
+ zero (i + int (reps_len ys)) \<and>*
+ reps (i + int (reps_len ys) + 1) j zs)"
+ using h
+proof(induct xs arbitrary: i j ys zs)
+ case Nil
+ thus ?case
+ by (unfold splited_def, auto)
+next
+ case (Cons k ks)
+ from Cons(2)
+ show ?case
+ proof(rule splited_cons_elim)
+ assume h: "ys = [k]" "zs = ks"
+ with Cons(2)
+ show ?thesis
+ proof(cases "ks = []")
+ case True
+ with Cons(2) have False
+ by (simp add:splited_def, cases ys, auto)
+ thus ?thesis by auto
+ next
+ case False
+ have ss: "i + int k + 1 = i + (1 + int k)"
+ "i + int k + 2 = 2 + (i + int k)" by auto
+ show ?thesis
+ by (unfold h(1), unfold reps_simp3[OF False] reps.simps(2)
+ reps_len_sg, auto simp:sep_conj_ac,
+ unfold ss h(2), simp)
+ qed
+ next
+ fix ys'
+ assume h: "ys' \<noteq> []" "ys = k # ys'" "splited ks ys' zs"
+ hence nnks: "ks \<noteq> []"
+ by (unfold splited_def, auto)
+ have ss: "i + int k + 2 + int (reps_len ys') =
+ i + (2 + (int k + int (reps_len ys')))" by auto
+ show ?thesis
+ by (simp add: reps_simp3[OF nnks] reps_simp3[OF h(1)]
+ Cons(1)[OF h(3)] h(2)
+ reps_len_cons[OF h(1)]
+ sep_conj_ac, subst ss, simp)
+ qed
+qed
+
+
+subsection {* A theory of list extension *}
+
+definition "list_ext n xs = xs @ replicate ((Suc n) - length xs) 0"
+
+lemma list_ext_len_eq: "length (list_ext a xs) = length xs + (Suc a - length xs)"
+ by (metis length_append length_replicate list_ext_def)
+
+lemma list_ext_len: "a < length (list_ext a xs)"
+ by (unfold list_ext_len_eq, auto)
+
+lemma list_ext_lt: "a < length xs \<Longrightarrow> list_ext a xs = xs"
+ by (smt append_Nil2 list_ext_def replicate_0)
+
+lemma list_ext_lt_get:
+ assumes h: "a' < length xs"
+ shows "(list_ext a xs)!a' = xs!a'"
+proof(cases "a < length xs")
+ case True
+ with h
+ show ?thesis by (auto simp:list_ext_lt)
+next
+ case False
+ with h show ?thesis
+ apply (unfold list_ext_def)
+ by (metis nth_append)
+qed
+
+lemma list_ext_get_upd: "((list_ext a xs)[a:=v])!a = v"
+ by (metis list_ext_len nth_list_update_eq)
+
+lemma nth_app: "length xs \<le> a \<Longrightarrow> (xs @ ys)!a = ys!(a - length xs)"
+ by (metis not_less nth_append)
+
+
+lemma list_ext_tail:
+ assumes h1: "length xs \<le> a"
+ and h2: "length xs \<le> a'"
+ and h3: "a' \<le> a"
+ shows "(list_ext a xs)!a' = 0"
+proof -
+ from h1 h2
+ have "a' - length xs < length (replicate (Suc a - length xs) 0)"
+ by (metis diff_less_mono h3 le_imp_less_Suc length_replicate)
+ moreover from h1 have "replicate (Suc a - length xs) 0 \<noteq> []"
+ by (smt empty_replicate)
+ ultimately have "(replicate (Suc a - length xs) 0)!(a' - length xs) = 0"
+ by (metis length_replicate nth_replicate)
+ moreover have "(xs @ (replicate (Suc a - length xs) 0))!a' =
+ (replicate (Suc a - length xs) 0)!(a' - length xs)"
+ by (rule nth_app[OF h2])
+ ultimately show ?thesis
+ by (auto simp:list_ext_def)
+qed
+
+lemmas list_ext_simps = list_ext_lt_get list_ext_lt list_ext_len list_ext_len_eq
+
+lemma listsum_upd_suc:
+ "a < length ks \<Longrightarrow> listsum (map Suc (ks[a := Suc (ks ! a)]))= (Suc (listsum (map Suc ks)))"
+by (smt elem_le_listsum_nat
+ length_list_update list_ext_get_upd
+ list_update_overwrite listsum_update_nat map_update
+ nth_equalityI nth_list_update nth_map)
+
+lemma reps_len_suc:
+ assumes "a < length ks"
+ shows "reps_len (ks[a:=Suc(ks!a)]) = 1 + reps_len ks"
+proof(cases "length ks \<le> 1")
+ case True
+ with `a < length ks`
+ obtain k where "ks = [k]" "a = 0"
+ by (smt length_0_conv length_Suc_conv)
+ thus ?thesis
+ apply (unfold `ks = [k]` `a = 0`)
+ by (unfold reps_len_def reps_sep_len_def reps_ctnt_len_def, auto)
+next
+ case False
+ have "Suc = (op + (Suc 0))"
+ by (default, auto)
+ with listsum_upd_suc[OF `a < length ks`] False
+ show ?thesis
+ by (unfold reps_len_def reps_sep_len_def reps_ctnt_len_def, simp)
+qed
+
+lemma ks_suc_len:
+ assumes h1: "(reps i j ks) s"
+ and h2: "ks!a = v"
+ and h3: "a < length ks"
+ and h4: "(reps i j' (ks[a:=Suc v])) s'"
+ shows "j' = j + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1"
+proof -
+ from reps_len_correct[OF h1, unfolded list_ext_len_eq]
+ reps_len_correct[OF h4, unfolded list_ext_len_eq]
+ reps_len_suc[OF `a < length ks`] h2 h3
+ show ?thesis
+ by (unfold list_ext_lt[OF `a < length ks`], auto)
+qed
+
+lemma ks_ext_len:
+ assumes h1: "(reps i j ks) s"
+ and h3: "length ks \<le> a"
+ and h4: "reps i j' (list_ext a ks) s'"
+ shows "j' = j + int (reps_len (list_ext a ks)) - int (reps_len ks)"
+proof -
+ from reps_len_correct[OF h1, unfolded list_ext_len_eq]
+ and reps_len_correct[OF h4, unfolded list_ext_len_eq]
+ h3
+ show ?thesis by auto
+qed
+
+definition
+ "reps' i j ks =
+ (if ks = [] then (<(i = j + 1)>) else (reps i (j - 1) ks \<and>* zero j))"
+
+lemma reps'_expand:
+ assumes h: "ks \<noteq> []"
+ shows "(EXS j. reps' i j ks) = reps' i (i + int (reps_len ks)) ks"
+proof -
+ show ?thesis
+ proof(default+)
+ fix s
+ assume "(EXS j. reps' i j ks) s"
+ with h have "(EXS j. reps i (j - 1) ks \<and>* zero j) s"
+ by (simp add:reps'_def)
+ hence "(reps i (i + int (reps_len ks) - 1) ks \<and>* zero (i + int (reps_len ks))) s"
+ proof(elim EXS_elim)
+ fix j
+ assume "(reps i (j - 1) ks \<and>* zero j) s"
+ then obtain s1 s2 where "s = s1 + s2" "s1 ## s2" "reps i (j - 1) ks s1" "zero j s2"
+ by (auto elim!:sep_conjE)
+ from reps_len_correct[OF this(3)]
+ have "j = i + int (reps_len ks)" by auto
+ with `reps i (j - 1) ks s1` have "reps i (i + int (reps_len ks) - 1) ks s1"
+ by simp
+ moreover from `j = i + int (reps_len ks)` and `zero j s2`
+ have "zero (i + int (reps_len ks)) s2" by auto
+ ultimately show "(reps i (i + int (reps_len ks) - 1) ks \<and>* zero (i + int (reps_len ks))) s"
+ using `s = s1 + s2` `s1 ## s2` by (auto intro!:sep_conjI)
+ qed
+ thus "reps' i (i + int (reps_len ks)) ks s"
+ by (simp add:h reps'_def)
+ next
+ fix s
+ assume "reps' i (i + int (reps_len ks)) ks s"
+ thus "(EXS j. reps' i j ks) s"
+ by (auto intro!:EXS_intro)
+ qed
+qed
+
+lemma reps'_len_correct:
+ assumes h: "(reps' i j ks) s"
+ and h1: "ks \<noteq> []"
+ shows "(j = i + int (reps_len ks))"
+proof -
+ from h1 have "reps' i j ks s = (reps i (j - 1) ks \<and>* zero j) s" by (simp add:reps'_def)
+ from h[unfolded this]
+ obtain s' where "reps i (j - 1) ks s'"
+ by (auto elim!:sep_conjE)
+ from reps_len_correct[OF this]
+ show ?thesis by simp
+qed
+
+lemma reps'_append:
+ "reps' i j (ks1 @ ks2) = (EXS m. (reps' i (m - 1) ks1 \<and>* reps' m j ks2))"
+proof(cases "ks1 = []")
+ case True
+ thus ?thesis
+ by (auto simp:reps'_def pred_ex_def pasrt_def set_ins_def sep_conj_def)
+next
+ case False
+ show ?thesis
+ proof(cases "ks2 = []")
+ case False
+ from `ks1 \<noteq> []` and `ks2 \<noteq> []`
+ have "splited (ks1 @ ks2) ks1 ks2" by (auto simp:splited_def)
+ from reps_splited[OF this, of i "j - 1"]
+ have eq_1: "reps i (j - 1) (ks1 @ ks2) =
+ (reps i (i + int (reps_len ks1) - 1) ks1 \<and>*
+ zero (i + int (reps_len ks1)) \<and>*
+ reps (i + int (reps_len ks1) + 1) (j - 1) ks2)" .
+ from `ks1 \<noteq> []`
+ have eq_2: "reps' i j (ks1 @ ks2) = (reps i (j - 1) (ks1 @ ks2) \<and>* zero j)"
+ by (unfold reps'_def, simp)
+ show ?thesis
+ proof(default+)
+ fix s
+ assume "reps' i j (ks1 @ ks2) s"
+ show "(EXS m. reps' i (m - 1) ks1 \<and>* reps' m j ks2) s"
+ proof(rule EXS_intro[where x = "i + int(reps_len ks1) + 1"])
+ from `reps' i j (ks1 @ ks2) s`[unfolded eq_2 eq_1]
+ and `ks1 \<noteq> []` `ks2 \<noteq> []`
+ show "(reps' i (i + int (reps_len ks1) + 1 - 1) ks1 \<and>*
+ reps' (i + int (reps_len ks1) + 1) j ks2) s"
+ by (unfold reps'_def, simp, sep_cancel+)
+ qed
+ next
+ fix s
+ assume "(EXS m. reps' i (m - 1) ks1 \<and>* reps' m j ks2) s"
+ thus "reps' i j (ks1 @ ks2) s"
+ proof(elim EXS_elim)
+ fix m
+ assume "(reps' i (m - 1) ks1 \<and>* reps' m j ks2) s"
+ then obtain s1 s2 where h:
+ "s = s1 + s2" "s1 ## s2" "reps' i (m - 1) ks1 s1"
+ " reps' m j ks2 s2" by (auto elim!:sep_conjE)
+ from reps'_len_correct[OF this(3) `ks1 \<noteq> []`]
+ have eq_m: "m = i + int (reps_len ks1) + 1" by simp
+ have "((reps i (i + int (reps_len ks1) - 1) ks1 \<and>* zero (i + int (reps_len ks1))) \<and>*
+ ((reps (i + int (reps_len ks1) + 1) (j - 1) ks2) \<and>* zero j)) s"
+ (is "(?P \<and>* ?Q) s")
+ proof(rule sep_conjI)
+ from h(3) eq_m `ks1 \<noteq> []` show "?P s1"
+ by (simp add:reps'_def)
+ next
+ from h(4) eq_m `ks2 \<noteq> []` show "?Q s2"
+ by (simp add:reps'_def)
+ next
+ from h(2) show "s1 ## s2" .
+ next
+ from h(1) show "s = s1 + s2" .
+ qed
+ thus "reps' i j (ks1 @ ks2) s"
+ by (unfold eq_2 eq_1, auto simp:sep_conj_ac)
+ qed
+ qed
+ next
+ case True
+ have "-1 + j = j - 1" by auto
+ with `ks1 \<noteq> []` True
+ show ?thesis
+ apply (auto simp:reps'_def pred_ex_def pasrt_def)
+ apply (unfold `-1 + j = j - 1`)
+ by (fold sep_empty_def, simp only:sep_conj_empty)
+ qed
+qed
+
+lemma reps'_sg:
+ "reps' i j [k] =
+ (<(j = i + int k + 1)> \<and>* ones i (i + int k) \<and>* zero j)"
+ apply (unfold reps'_def, default, auto simp:sep_conj_ac)
+ by (sep_cancel+, simp add:pasrt_def)+
+
+
+section {* Basic macros for TM *}
+
+definition "write_zero = (TL exit. \<guillemotright>((W0, exit), (W0, exit)); TLabel exit)"
+
+lemma st_upd:
+ assumes pre: "(st i' ** r) (trset_of (f, x, i, y, z))"
+ shows "(st i'' ** r) (trset_of (f, x, i'', y, z))"
+proof -
+ from stimes_sgD[OF pre[unfolded st_def], unfolded trset_of.simps, unfolded stD[OF pre]]
+ have "r (tprog_set x \<union> tpc_set i' \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f - tpc_set i')"
+ by blast
+ moreover have
+ "(tprog_set x \<union> tpc_set i' \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f - tpc_set i') =
+ (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)"
+ by (unfold tpn_set_def, auto)
+ ultimately have r_rest: "r (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)"
+ by auto
+ show ?thesis
+ proof(rule sep_conjI[where Q = r, OF _ r_rest])
+ show "st i'' (tpc_set i'')"
+ by (unfold st_def sg_def, simp)
+ next
+ show "tpc_set i'' ## tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f"
+ by (unfold tpn_set_def sep_disj_set_def, auto)
+ next
+ show "trset_of (f, x, i'', y, z) =
+ tpc_set i'' + (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)"
+ by (unfold trset_of.simps plus_set_def, auto)
+ qed
+qed
+
+lemma pos_upd:
+ assumes pre: "(ps i ** r) (trset_of (f, x, y, i', z))"
+ shows "(ps j ** r) (trset_of (f, x, y, j, z))"
+proof -
+ from stimes_sgD[OF pre[unfolded ps_def], unfolded trset_of.simps, unfolded psD[OF pre]]
+ have "r (tprog_set x \<union> tpc_set y \<union> tpos_set i \<union> tmem_set z \<union>
+ tfaults_set f - tpos_set i)" (is "r ?xs")
+ by blast
+ moreover have
+ "?xs = tprog_set x \<union> tpc_set y \<union> tmem_set z \<union> tfaults_set f"
+ by (unfold tpn_set_def, auto)
+ ultimately have r_rest: "r \<dots>"
+ by auto
+ show ?thesis
+ proof(rule sep_conjI[where Q = r, OF _ r_rest])
+ show "ps j (tpos_set j)"
+ by (unfold ps_def sg_def, simp)
+ next
+ show "tpos_set j ## tprog_set x \<union> tpc_set y \<union> tmem_set z \<union> tfaults_set f"
+ by (unfold tpn_set_def sep_disj_set_def, auto)
+ next
+ show "trset_of (f, x, y, j, z) =
+ tpos_set j + (tprog_set x \<union> tpc_set y \<union> tmem_set z \<union> tfaults_set f)"
+ by (unfold trset_of.simps plus_set_def, auto)
+ qed
+qed
+
+lemma TM_in_simp: "({TM a v} \<subseteq>
+ tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f) =
+ ({TM a v} \<subseteq> tmem_set mem)"
+ by (unfold tpn_set_def, auto)
+
+lemma tmem_set_upd:
+ "{TM a v} \<subseteq> tmem_set mem \<Longrightarrow>
+ tmem_set (mem(a f\<mapsto> v')) = ((tmem_set mem) - {TM a v}) \<union> {TM a v'}"
+apply(unfold tpn_set_def)
+apply(auto)
+apply (metis the.simps the_lookup_fmap_upd the_lookup_fmap_upd_other)
+apply (metis the_lookup_fmap_upd_other)
+by (metis option.inject the_lookup_fmap_upd_other)
+
+lemma tmem_set_disj: "{TM a v} \<subseteq> tmem_set mem \<Longrightarrow>
+ {TM a v'} \<inter> (tmem_set mem - {TM a v}) = {}"
+ by (unfold tpn_set_def, auto)
+
+lemma smem_upd: "((tm a v) ** r) (trset_of (f, x, y, z, mem)) \<Longrightarrow>
+ ((tm a v') ** r) (trset_of (f, x, y, z, mem(a f\<mapsto> v')))"
+proof -
+ have eq_s: "(tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f - {TM a v}) =
+ (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
+ by (unfold tpn_set_def, auto)
+ assume g: "(tm a v \<and>* r) (trset_of (f, x, y, z, mem))"
+ from this[unfolded trset_of.simps tm_def]
+ have h: "(sg {TM a v} \<and>* r) (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f)" .
+ hence h0: "r (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
+ by(sep_drule stimes_sgD, clarify, unfold eq_s, auto)
+ from h TM_in_simp have "{TM a v} \<subseteq> tmem_set mem"
+ by(sep_drule stimes_sgD, auto)
+ from tmem_set_upd [OF this] tmem_set_disj[OF this]
+ have h2: "tmem_set (mem(a f\<mapsto> v')) = {TM a v'} \<union> (tmem_set mem - {TM a v})"
+ "{TM a v'} \<inter> (tmem_set mem - {TM a v}) = {}" by auto
+ show ?thesis
+ proof -
+ have "(tm a v' ** r) (tmem_set (mem(a f\<mapsto> v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f)"
+ proof(rule sep_conjI)
+ show "tm a v' ({TM a v'})" by (unfold tm_def sg_def, simp)
+ next
+ from h0 show "r (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)" .
+ next
+ show "{TM a v'} ## tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f"
+ proof -
+ from g have " mem $ a = Some v"
+ by(sep_frule memD, simp)
+ thus "?thesis"
+ by(unfold tpn_set_def set_ins_def, auto)
+ qed
+ next
+ show "tmem_set (mem(a f\<mapsto> v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f =
+ {TM a v'} + (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
+ by (unfold h2(1) set_ins_def eq_s, auto)
+ qed
+ thus ?thesis
+ apply (unfold trset_of.simps)
+ by (metis sup_commute sup_left_commute)
+ qed
+qed
+
+lemma hoare_write_zero:
+ "\<lbrace>st i ** ps p ** tm p v\<rbrace>
+ i:[write_zero]:j
+ \<lbrace>st j ** ps p ** tm p Bk\<rbrace>"
+proof(unfold write_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp, simp)
+ show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace> i :[ \<guillemotright> ((W0, j), W0, j) ]: j \<lbrace>st j \<and>* ps p \<and>* tm p Bk\<rbrace>"
+ proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+ intro tm.code_condI, simp)
+ assume eq_j: "j = Suc i"
+ show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace> sg {TC i ((W0, Suc i), W0, Suc i)}
+ \<lbrace>st (Suc i) \<and>* ps p \<and>* tm p Bk\<rbrace>"
+ proof(fold eq_j, unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+ fix ft prog cs i' mem r
+ assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* sg {TC i ((W0, j), W0, j)})
+ (trset_of (ft, prog, cs, i', mem))"
+ from h have "prog $ i = Some ((W0, j), W0, j)"
+ apply(rule_tac r = "r \<and>* ps p \<and>* tm p v" in codeD)
+ by(simp add: sep_conj_ac)
+ from h and this have stp:
+ "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, j, i', mem(i' f\<mapsto> Bk))" (is "?x = ?y")
+ apply(sep_frule psD)
+ apply(sep_frule stD)
+ apply(sep_frule memD, simp)
+ by(cases v, unfold tm.run_def, auto)
+ from h have "i' = p"
+ by(sep_drule psD, simp)
+ with h
+ have "(r \<and>* ps p \<and>* st j \<and>* tm p Bk \<and>* sg {TC i ((W0, j), W0, j)}) (trset_of ?x)"
+ apply(unfold stp)
+ apply(sep_drule pos_upd, sep_drule st_upd, sep_drule smem_upd)
+ apply(auto simp: sep_conj_ac)
+ done
+ thus "\<exists>k. (r \<and>* ps p \<and>* st j \<and>* tm p Bk \<and>* sg {TC i ((W0, j), W0, j)})
+ (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
+ apply (rule_tac x = 0 in exI)
+ by auto
+ qed
+ qed
+qed
+
+lemma hoare_write_zero_gen[step]:
+ assumes "p = q"
+ shows "\<lbrace>st i ** ps p ** tm q v\<rbrace>
+ i:[write_zero]:j
+ \<lbrace>st j ** ps p ** tm q Bk\<rbrace>"
+ by (unfold assms, rule hoare_write_zero)
+
+definition "write_one = (TL exit. \<guillemotright>((W1, exit), (W1, exit)); TLabel exit)"
+
+lemma hoare_write_one:
+ "\<lbrace>st i ** ps p ** tm p v\<rbrace>
+ i:[write_one]:j
+ \<lbrace>st j ** ps p ** tm p Oc\<rbrace>"
+proof(unfold write_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
+ fix l
+ show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace> i :[ \<guillemotright> ((W1, j), W1, j) ]: j \<lbrace>st j \<and>* ps p \<and>* tm p Oc\<rbrace>"
+ proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+ rule_tac tm.code_condI, simp add: sep_conj_ac)
+ let ?j = "Suc i"
+ show "\<lbrace>ps p \<and>* st i \<and>* tm p v\<rbrace> sg {TC i ((W1, ?j), W1, ?j)}
+ \<lbrace>ps p \<and>* st ?j \<and>* tm p Oc\<rbrace>"
+ proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+ fix ft prog cs i' mem r
+ assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* sg {TC i ((W1, ?j), W1, ?j)})
+ (trset_of (ft, prog, cs, i', mem))"
+ from h have "prog $ i = Some ((W1, ?j), W1, ?j)"
+ apply(rule_tac r = "r \<and>* ps p \<and>* tm p v" in codeD)
+ by(simp add: sep_conj_ac)
+ from h and this have stp:
+ "tm.run 1 (ft, prog, cs, i', mem) =
+ (ft, prog, ?j, i', mem(i' f\<mapsto> Oc))" (is "?x = ?y")
+ apply(sep_frule psD)
+ apply(sep_frule stD)
+ apply(sep_frule memD, simp)
+ by(cases v, unfold tm.run_def, auto)
+ from h have "i' = p"
+ by(sep_drule psD, simp)
+ with h
+ have "(r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W1, ?j), W1, ?j)}) (trset_of ?x)"
+ apply(unfold stp)
+ apply(sep_drule pos_upd, sep_drule st_upd, sep_drule smem_upd)
+ apply(auto simp: sep_conj_ac)
+ done
+ thus "\<exists>k. (r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W1, ?j), W1, ?j)})
+ (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
+ apply (rule_tac x = 0 in exI)
+ by auto
+ qed
+ qed
+qed
+
+lemma hoare_write_one_gen[step]:
+ assumes "p = q"
+ shows "\<lbrace>st i ** ps p ** tm q v\<rbrace>
+ i:[write_one]:j
+ \<lbrace>st j ** ps p ** tm q Oc\<rbrace>"
+ by (unfold assms, rule hoare_write_one)
+
+definition "move_left = (TL exit . \<guillemotright>((L, exit), (L, exit)); TLabel exit)"
+
+lemma hoare_move_left:
+ "\<lbrace>st i ** ps p ** tm p v2\<rbrace>
+ i:[move_left]:j
+ \<lbrace>st j ** ps (p - 1) ** tm p v2\<rbrace>"
+proof(unfold move_left_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
+ fix l
+ show "\<lbrace>st i \<and>* ps p \<and>* tm p v2\<rbrace> i :[ \<guillemotright> ((L, l), L, l) ]: l
+ \<lbrace>st l \<and>* ps (p - 1) \<and>* tm p v2\<rbrace>"
+ proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+ intro tm.code_condI, simp add: sep_conj_ac)
+ let ?j = "Suc i"
+ show "\<lbrace>ps p \<and>* st i \<and>* tm p v2\<rbrace> sg {TC i ((L, ?j), L, ?j)}
+ \<lbrace>st ?j \<and>* tm p v2 \<and>* ps (p - 1)\<rbrace>"
+ proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+ fix ft prog cs i' mem r
+ assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v2 \<and>* sg {TC i ((L, ?j), L, ?j)})
+ (trset_of (ft, prog, cs, i', mem))"
+ from h have "prog $ i = Some ((L, ?j), L, ?j)"
+ apply(rule_tac r = "r \<and>* ps p \<and>* tm p v2" in codeD)
+ by(simp add: sep_conj_ac)
+ from h and this have stp:
+ "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, ?j, i' - 1, mem)" (is "?x = ?y")
+ apply(sep_frule psD)
+ apply(sep_frule stD)
+ apply(sep_frule memD, simp)
+ apply(unfold tm.run_def, case_tac v2, auto)
+ done
+ from h have "i' = p"
+ by(sep_drule psD, simp)
+ with h
+ have "(r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)})
+ (trset_of ?x)"
+ apply(unfold stp)
+ apply(sep_drule pos_upd, sep_drule st_upd, simp)
+ proof -
+ assume "(st ?j \<and>* ps (p - 1) \<and>* r \<and>* tm p v2 \<and>* sg {TC i ((L, ?j), L, ?j)})
+ (trset_of (ft, prog, ?j, p - 1, mem))"
+ thus "(r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)})
+ (trset_of (ft, prog, ?j, p - 1, mem))"
+ by(simp add: sep_conj_ac)
+ qed
+ thus "\<exists>k. (r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)})
+ (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
+ apply (rule_tac x = 0 in exI)
+ by auto
+ qed
+ qed
+qed
+
+lemma hoare_move_left_gen[step]:
+ assumes "p = q"
+ shows "\<lbrace>st i ** ps p ** tm q v2\<rbrace>
+ i:[move_left]:j
+ \<lbrace>st j ** ps (p - 1) ** tm q v2\<rbrace>"
+ by (unfold assms, rule hoare_move_left)
+
+definition "move_right = (TL exit . \<guillemotright>((R, exit), (R, exit)); TLabel exit)"
+
+lemma hoare_move_right:
+ "\<lbrace>st i ** ps p ** tm p v1 \<rbrace>
+ i:[move_right]:j
+ \<lbrace>st j ** ps (p + 1) ** tm p v1 \<rbrace>"
+proof(unfold move_right_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
+ fix l
+ show "\<lbrace>st i \<and>* ps p \<and>* tm p v1\<rbrace> i :[ \<guillemotright> ((R, l), R, l) ]: l
+ \<lbrace>st l \<and>* ps (p + 1) \<and>* tm p v1\<rbrace>"
+ proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+ intro tm.code_condI, simp add: sep_conj_ac)
+ let ?j = "Suc i"
+ show "\<lbrace>ps p \<and>* st i \<and>* tm p v1\<rbrace> sg {TC i ((R, ?j), R, ?j)}
+ \<lbrace>st ?j \<and>* tm p v1 \<and>* ps (p + 1)\<rbrace>"
+ proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+ fix ft prog cs i' mem r
+ assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v1 \<and>* sg {TC i ((R, ?j), R, ?j)})
+ (trset_of (ft, prog, cs, i', mem))"
+ from h have "prog $ i = Some ((R, ?j), R, ?j)"
+ apply(rule_tac r = "r \<and>* ps p \<and>* tm p v1" in codeD)
+ by(simp add: sep_conj_ac)
+ from h and this have stp:
+ "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, ?j, i'+ 1, mem)" (is "?x = ?y")
+ apply(sep_frule psD)
+ apply(sep_frule stD)
+ apply(sep_frule memD, simp)
+ apply(unfold tm.run_def, case_tac v1, auto)
+ done
+ from h have "i' = p"
+ by(sep_drule psD, simp)
+ with h
+ have "(r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>*
+ sg {TC i ((R, ?j), R, ?j)}) (trset_of ?x)"
+ apply(unfold stp)
+ apply(sep_drule pos_upd, sep_drule st_upd, simp)
+ proof -
+ assume "(st ?j \<and>* ps (p + 1) \<and>* r \<and>* tm p v1 \<and>* sg {TC i ((R, ?j), R, ?j)})
+ (trset_of (ft, prog, ?j, p + 1, mem))"
+ thus "(r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>* sg {TC i ((R, ?j), R, ?j)})
+ (trset_of (ft, prog, ?j, p + 1, mem))"
+ by (simp add: sep_conj_ac)
+ qed
+ thus "\<exists>k. (r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>* sg {TC i ((R, ?j), R, ?j)})
+ (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
+ apply (rule_tac x = 0 in exI)
+ by auto
+ qed
+ qed
+qed
+
+lemma hoare_move_right_gen[step]:
+ assumes "p = q"
+ shows "\<lbrace>st i ** ps p ** tm q v1 \<rbrace>
+ i:[move_right]:j
+ \<lbrace>st j ** ps (p + 1) ** tm q v1 \<rbrace>"
+ by (unfold assms, rule hoare_move_right)
+
+definition "if_one e = (TL exit . \<guillemotright>((W0, exit), (W1, e)); TLabel exit)"
+
+lemma hoare_if_one_true:
+ "\<lbrace>st i ** ps p ** one p\<rbrace>
+ i:[if_one e]:j
+ \<lbrace>st e ** ps p ** one p\<rbrace>"
+proof(unfold if_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
+ fix l
+ show " \<lbrace>st i \<and>* ps p \<and>* one p\<rbrace> i :[ \<guillemotright> ((W0, l), W1, e) ]: l \<lbrace>st e \<and>* ps p \<and>* one p\<rbrace>"
+ proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+ intro tm.code_condI, simp add: sep_conj_ac)
+ let ?j = "Suc i"
+ show "\<lbrace>one p \<and>* ps p \<and>* st i\<rbrace> sg {TC i ((W0, ?j), W1, e)} \<lbrace>one p \<and>* ps p \<and>* st e\<rbrace>"
+ proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+ fix ft prog cs pc mem r
+ assume h: "(r \<and>* one p \<and>* ps p \<and>* st i \<and>* sg {TC i ((W0, ?j), W1, e)})
+ (trset_of (ft, prog, cs, pc, mem))"
+ from h have k1: "prog $ i = Some ((W0, ?j), W1, e)"
+ apply(rule_tac r = "r \<and>* one p \<and>* ps p" in codeD)
+ by(simp add: sep_conj_ac)
+ from h have k2: "pc = p"
+ by(sep_drule psD, simp)
+ from h and this have k3: "mem $ pc = Some Oc"
+ apply(unfold one_def)
+ by(sep_drule memD, simp)
+ from h k1 k2 k3 have stp:
+ "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, e, pc, mem)" (is "?x = ?y")
+ apply(sep_drule stD)
+ apply(unfold tm.run_def)
+ apply(auto)
+ thm fmap_eqI
+ apply(rule fmap_eqI)
+ apply(simp)
+ apply(subgoal_tac "p \<in> fdom mem")
+ apply(simp add: insert_absorb)
+ apply(simp add: fdomIff)
+ by (metis the_lookup_fmap_upd the_lookup_fmap_upd_other)
+ from h k2
+ have "(r \<and>* one p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, ?j), W1, e)}) (trset_of ?x)"
+ apply(unfold stp)
+ by(sep_drule st_upd, simp add: sep_conj_ac)
+ thus "\<exists>k.(r \<and>* one p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, ?j), W1, e)})
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
+ apply (rule_tac x = 0 in exI)
+ by auto
+ qed
+ qed
+qed
+
+text {*
+ The following problematic lemma is not provable now
+ lemma hoare_self: "\<lbrace>p\<rbrace> i :[ap]: j \<lbrace>p\<rbrace>"
+ apply(simp add: tm.Hoare_gen_def, clarify)
+ apply(rule_tac x = 0 in exI, simp add: tm.run_def)
+ done
+*}
+
+lemma hoare_if_one_true_gen[step]:
+ assumes "p = q"
+ shows
+ "\<lbrace>st i ** ps p ** one q\<rbrace>
+ i:[if_one e]:j
+ \<lbrace>st e ** ps p ** one q\<rbrace>"
+ by (unfold assms, rule hoare_if_one_true)
+
+lemma hoare_if_one_true1:
+ "\<lbrace>st i ** ps p ** one p\<rbrace>
+ i:[(if_one e; c)]:j
+ \<lbrace>st e ** ps p ** one p\<rbrace>"
+proof(unfold tassemble_to.simps, rule tm.code_exI,
+ simp add: sep_conj_ac tm.Hoare_gen_def, clarify)
+ fix j' ft prog cs pos mem r
+ assume h: "(r \<and>* one p \<and>* ps p \<and>* st i \<and>* j' :[ c ]: j \<and>* i :[ if_one e ]: j')
+ (trset_of (ft, prog, cs, pos, mem))"
+ from tm.frame_rule[OF hoare_if_one_true]
+ have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* one p \<and>* r\<rbrace> i :[ if_one e ]: j' \<lbrace>st e \<and>* ps p \<and>* one p \<and>* r\<rbrace>"
+ by(simp add: sep_conj_ac)
+ from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h
+ have "\<exists> k. (r \<and>* one p \<and>* ps p \<and>* st e \<and>* i :[ if_one e ]: j' \<and>* j' :[ c ]: j)
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+ by(auto simp: sep_conj_ac)
+ thus "\<exists>k. (r \<and>* one p \<and>* ps p \<and>* st e \<and>* j' :[ c ]: j \<and>* i :[ if_one e ]: j')
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+ by(simp add: sep_conj_ac)
+qed
+
+lemma hoare_if_one_true1_gen[step]:
+ assumes "p = q"
+ shows
+ "\<lbrace>st i ** ps p ** one q\<rbrace>
+ i:[(if_one e; c)]:j
+ \<lbrace>st e ** ps p ** one q\<rbrace>"
+ by (unfold assms, rule hoare_if_one_true1)
+
+lemma hoare_if_one_false:
+ "\<lbrace>st i ** ps p ** zero p\<rbrace>
+ i:[if_one e]:j
+ \<lbrace>st j ** ps p ** zero p\<rbrace>"
+proof(unfold if_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
+ show "\<lbrace>st i \<and>* ps p \<and>* zero p\<rbrace> i :[ (\<guillemotright> ((W0, j), W1, e)) ]: j
+ \<lbrace>st j \<and>* ps p \<and>* zero p\<rbrace>"
+ proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+ intro tm.code_condI, simp add: sep_conj_ac)
+ let ?j = "Suc i"
+ show "\<lbrace>ps p \<and>* st i \<and>* zero p\<rbrace> sg {TC i ((W0, ?j), W1, e)} \<lbrace>ps p \<and>* zero p \<and>* st ?j \<rbrace>"
+ proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+ fix ft prog cs pc mem r
+ assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* sg {TC i ((W0, ?j), W1, e)})
+ (trset_of (ft, prog, cs, pc, mem))"
+ from h have k1: "prog $ i = Some ((W0, ?j), W1, e)"
+ apply(rule_tac r = "r \<and>* zero p \<and>* ps p" in codeD)
+ by(simp add: sep_conj_ac)
+ from h have k2: "pc = p"
+ by(sep_drule psD, simp)
+ from h and this have k3: "mem $ pc = Some Bk"
+ apply(unfold zero_def)
+ by(sep_drule memD, simp)
+ from h k1 k2 k3 have stp:
+ "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, ?j, pc, mem)" (is "?x = ?y")
+ apply(sep_drule stD)
+ apply(unfold tm.run_def)
+ apply(auto)
+ apply(rule fmap_eqI)
+ apply(simp)
+ apply(subgoal_tac "p \<in> fdom mem")
+ apply(simp add: insert_absorb)
+ apply(simp add: fdomIff)
+ by (metis the_lookup_fmap_upd the_lookup_fmap_upd_other)
+ from h k2
+ have "(r \<and>* zero p \<and>* ps p \<and>* st ?j \<and>* sg {TC i ((W0, ?j), W1, e)}) (trset_of ?x)"
+ apply (unfold stp)
+ by (sep_drule st_upd[where i''="?j"], auto simp:sep_conj_ac)
+ thus "\<exists>k. (r \<and>* ps p \<and>* zero p \<and>* st ?j \<and>* sg {TC i ((W0, ?j), W1, e)})
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
+ by(auto simp: sep_conj_ac)
+ qed
+ qed
+qed
+
+lemma hoare_if_one_false_gen[step]:
+ assumes "p = q"
+ shows "\<lbrace>st i ** ps p ** zero q\<rbrace>
+ i:[if_one e]:j
+ \<lbrace>st j ** ps p ** zero q\<rbrace>"
+ by (unfold assms, rule hoare_if_one_false)
+
+definition "if_zero e = (TL exit . \<guillemotright>((W0, e), (W1, exit)); TLabel exit)"
+
+lemma hoare_if_zero_true:
+ "\<lbrace>st i ** ps p ** zero p\<rbrace>
+ i:[if_zero e]:j
+ \<lbrace>st e ** ps p ** zero p\<rbrace>"
+proof(unfold if_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
+ fix l
+ show "\<lbrace>st i \<and>* ps p \<and>* zero p\<rbrace> i :[ \<guillemotright> ((W0, e), W1, l) ]: l \<lbrace>st e \<and>* ps p \<and>* zero p\<rbrace>"
+ proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+ intro tm.code_condI, simp add: sep_conj_ac)
+ let ?j = "Suc i"
+ show "\<lbrace>ps p \<and>* st i \<and>* zero p\<rbrace> sg {TC i ((W0, e), W1, ?j)} \<lbrace>ps p \<and>* st e \<and>* zero p\<rbrace>"
+ proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+ fix ft prog cs pc mem r
+ assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* sg {TC i ((W0, e), W1, ?j)})
+ (trset_of (ft, prog, cs, pc, mem))"
+ from h have k1: "prog $ i = Some ((W0, e), W1, ?j)"
+ apply(rule_tac r = "r \<and>* zero p \<and>* ps p" in codeD)
+ by(simp add: sep_conj_ac)
+ from h have k2: "pc = p"
+ by(sep_drule psD, simp)
+ from h and this have k3: "mem $ pc = Some Bk"
+ apply(unfold zero_def)
+ by(sep_drule memD, simp)
+ from h k1 k2 k3 have stp:
+ "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, e, pc, mem)" (is "?x = ?y")
+ apply(sep_drule stD)
+ apply(unfold tm.run_def)
+ apply(auto)
+ apply(rule fmap_eqI)
+ apply(simp)
+ apply(subgoal_tac "p \<in> fdom mem")
+ apply(simp add: insert_absorb)
+ apply(simp add: fdomIff)
+ by (metis the_lookup_fmap_upd the_lookup_fmap_upd_other)
+ from h k2
+ have "(r \<and>* zero p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, e), W1, ?j)}) (trset_of ?x)"
+ apply(unfold stp)
+ by(sep_drule st_upd, simp add: sep_conj_ac)
+ thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* zero p \<and>* sg {TC i ((W0, e), W1, ?j)})
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
+ by(auto simp: sep_conj_ac)
+ qed
+ qed
+qed
+
+lemma hoare_if_zero_true_gen[step]:
+ assumes "p = q"
+ shows
+ "\<lbrace>st i ** ps p ** zero q\<rbrace>
+ i:[if_zero e]:j
+ \<lbrace>st e ** ps p ** zero q\<rbrace>"
+ by (unfold assms, rule hoare_if_zero_true)
+
+lemma hoare_if_zero_true1:
+ "\<lbrace>st i ** ps p ** zero p\<rbrace>
+ i:[(if_zero e; c)]:j
+ \<lbrace>st e ** ps p ** zero p\<rbrace>"
+ proof(unfold tassemble_to.simps, rule tm.code_exI, simp add: sep_conj_ac
+ tm.Hoare_gen_def, clarify)
+ fix j' ft prog cs pos mem r
+ assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* j' :[ c ]: j \<and>* i :[ if_zero e ]: j')
+ (trset_of (ft, prog, cs, pos, mem))"
+ from tm.frame_rule[OF hoare_if_zero_true]
+ have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* zero p \<and>* r\<rbrace> i :[ if_zero e ]: j' \<lbrace>st e \<and>* ps p \<and>* zero p \<and>* r\<rbrace>"
+ by(simp add: sep_conj_ac)
+ from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h
+ have "\<exists> k. (r \<and>* zero p \<and>* ps p \<and>* st e \<and>* i :[ if_zero e ]: j' \<and>* j' :[ c ]: j)
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+ by(auto simp: sep_conj_ac)
+ thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* zero p \<and>* j' :[ c ]: j \<and>* i :[ if_zero e ]: j')
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+ by(simp add: sep_conj_ac)
+qed
+
+lemma hoare_if_zero_true1_gen[step]:
+ assumes "p = q"
+ shows
+ "\<lbrace>st i ** ps p ** zero q\<rbrace>
+ i:[(if_zero e; c)]:j
+ \<lbrace>st e ** ps p ** zero q\<rbrace>"
+ by (unfold assms, rule hoare_if_zero_true1)
+
+lemma hoare_if_zero_false:
+ "\<lbrace>st i ** ps p ** tm p Oc\<rbrace>
+ i:[if_zero e]:j
+ \<lbrace>st j ** ps p ** tm p Oc\<rbrace>"
+proof(unfold if_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp, simp)
+ fix l
+ show "\<lbrace>st i \<and>* ps p \<and>* tm p Oc\<rbrace> i :[ \<guillemotright> ((W0, e), W1, l) ]: l
+ \<lbrace>st l \<and>* ps p \<and>* tm p Oc\<rbrace>"
+ proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+ intro tm.code_condI, simp add: sep_conj_ac)
+ let ?j = "Suc i"
+ show "\<lbrace>ps p \<and>* st i \<and>* tm p Oc\<rbrace> sg {TC i ((W0, e), W1, ?j)}
+ \<lbrace>ps p \<and>* st ?j \<and>* tm p Oc\<rbrace>"
+ proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+ fix ft prog cs pc mem r
+ assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p Oc \<and>* sg {TC i ((W0, e), W1, ?j)})
+ (trset_of (ft, prog, cs, pc, mem))"
+ from h have k1: "prog $ i = Some ((W0, e), W1, ?j)"
+ apply(rule_tac r = "r \<and>* tm p Oc \<and>* ps p" in codeD)
+ by(simp add: sep_conj_ac)
+ from h have k2: "pc = p"
+ by(sep_drule psD, simp)
+ from h and this have k3: "mem $ pc = Some Oc"
+ by(sep_drule memD, simp)
+ from h k1 k2 k3 have stp:
+ "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, ?j, pc, mem)" (is "?x = ?y")
+ apply(sep_drule stD)
+ apply(unfold tm.run_def)
+ apply(auto)
+ apply(rule fmap_eqI)
+ apply(simp)
+ apply(subgoal_tac "p \<in> fdom mem")
+ apply(simp add: insert_absorb)
+ apply(simp add: fdomIff)
+ by (metis the_lookup_fmap_upd the_lookup_fmap_upd_other)
+ from h k2
+ have "(r \<and>* tm p Oc \<and>* ps p \<and>* st ?j \<and>* sg {TC i ((W0, e), W1, ?j)}) (trset_of ?x)"
+ apply(unfold stp)
+ by(sep_drule st_upd, simp add: sep_conj_ac)
+ thus "\<exists>k. (r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W0, e), W1, ?j)})
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
+ by(auto simp: sep_conj_ac)
+ qed
+ qed
+qed
+
+lemma hoare_if_zero_false_gen[step]:
+ assumes "p = q"
+ shows
+ "\<lbrace>st i ** ps p ** tm q Oc\<rbrace>
+ i:[if_zero e]:j
+ \<lbrace>st j ** ps p ** tm q Oc\<rbrace>"
+ by (unfold assms, rule hoare_if_zero_false)
+
+
+definition "jmp e = \<guillemotright>((W0, e), (W1, e))"
+
+lemma hoare_jmp:
+ "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace> i:[jmp e]:j \<lbrace>st e \<and>* ps p \<and>* tm p v\<rbrace>"
+proof(unfold jmp_def tm.Hoare_gen_def tassemble_to.simps sep_conj_ac, clarify)
+ fix ft prog cs pos mem r
+ assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* <(j = i + 1)> \<and>* sg {TC i ((W0, e), W1, e)})
+ (trset_of (ft, prog, cs, pos, mem))"
+ from h have k1: "prog $ i = Some ((W0, e), W1, e)"
+ apply(rule_tac r = "r \<and>* <(j = i + 1)> \<and>* tm p v \<and>* ps p" in codeD)
+ by(simp add: sep_conj_ac)
+ from h have k2: "p = pos"
+ by(sep_drule psD, simp)
+ from h k2 have k3: "mem $ pos = Some v"
+ by(sep_drule memD, simp)
+ from h k1 k2 k3 have
+ stp: "tm.run 1 (ft, prog, cs, pos, mem) = (ft, prog, e, pos, mem)" (is "?x = ?y")
+ apply(sep_drule stD)
+ apply(unfold tm.run_def)
+ apply(cases "mem $ pos")
+ apply(simp)
+ apply(cases v)
+ apply(auto)
+ apply(rule fmap_eqI)
+ apply(simp)
+ apply(subgoal_tac "pos \<in> fdom mem")
+ apply(simp add: insert_absorb)
+ apply(simp add: fdomIff)
+ apply(metis the_lookup_fmap_upd the_lookup_fmap_upd_other)
+ apply(rule fmap_eqI)
+ apply(simp)
+ apply(subgoal_tac "pos \<in> fdom mem")
+ apply(simp add: insert_absorb)
+ apply(simp add: fdomIff)
+ apply(metis the_lookup_fmap_upd the_lookup_fmap_upd_other)
+ done
+ from h k2
+ have "(r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* <(j = i + 1)> \<and>*
+ sg {TC i ((W0, e), W1, e)}) (trset_of ?x)"
+ apply(unfold stp)
+ by(sep_drule st_upd, simp add: sep_conj_ac)
+ thus "\<exists> k. (r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* <(j = i + 1)> \<and>* sg {TC i ((W0, e), W1, e)})
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+ apply (rule_tac x = 0 in exI)
+ by auto
+qed
+
+lemma hoare_jmp_gen[step]:
+ assumes "p = q"
+ shows "\<lbrace>st i \<and>* ps p \<and>* tm q v\<rbrace> i:[jmp e]:j \<lbrace>st e \<and>* ps p \<and>* tm q v\<rbrace>"
+ by (unfold assms, rule hoare_jmp)
+
+lemma hoare_jmp1:
+ "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace>
+ i:[(jmp e; c)]:j
+ \<lbrace>st e \<and>* ps p \<and>* tm p v\<rbrace>"
+proof(unfold tassemble_to.simps, rule tm.code_exI, simp
+ add: sep_conj_ac tm.Hoare_gen_def, clarify)
+ fix j' ft prog cs pos mem r
+ assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* j' :[ c ]: j \<and>* i :[ jmp e ]: j')
+ (trset_of (ft, prog, cs, pos, mem))"
+ from tm.frame_rule[OF hoare_jmp]
+ have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* tm p v \<and>* r\<rbrace> i :[ jmp e ]: j' \<lbrace>st e \<and>* ps p \<and>* tm p v \<and>* r\<rbrace>"
+ by(simp add: sep_conj_ac)
+ from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h
+ have "\<exists> k. (r \<and>* tm p v \<and>* ps p \<and>* st e \<and>* i :[ jmp e ]: j' \<and>* j' :[ c ]: j)
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+ by(auto simp: sep_conj_ac)
+ thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* j' :[ c ]: j \<and>* i :[ jmp e ]: j')
+ (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+ by(simp add: sep_conj_ac)
+qed
+
+
+lemma hoare_jmp1_gen[step]:
+ assumes "p = q"
+ shows "\<lbrace>st i \<and>* ps p \<and>* tm q v\<rbrace>
+ i:[(jmp e; c)]:j
+ \<lbrace>st e \<and>* ps p \<and>* tm q v\<rbrace>"
+ by (unfold assms, rule hoare_jmp1)
+
+
+lemma condI:
+ assumes h1: b
+ and h2: "b \<Longrightarrow> p s"
+ shows "(<b> \<and>* p) s"
+ by (metis (full_types) cond_true_eq1 h1 h2)
+
+lemma condE:
+ assumes "(<b> \<and>* p) s"
+ obtains "b" and "p s"
+proof(atomize_elim)
+ from condD[OF assms]
+ show "b \<and> p s" .
+qed
+
+
+section {* Tactics *}
+
+ML {*
+ val trace_step = Attrib.setup_config_bool @{binding trace_step} (K false)
+ val trace_fwd = Attrib.setup_config_bool @{binding trace_fwd} (K false)
+*}
+
+
+ML {*
+ val tracing = (fn ctxt => fn str =>
+ if (Config.get ctxt trace_step) then tracing str else ())
+ fun not_pred p = fn s => not (p s)
+ fun break_sep_conj (Const (@{const_name sep_conj},_) $ t1 $ t2 $ _) =
+ (break_sep_conj t1) @ (break_sep_conj t2)
+ | break_sep_conj (Const (@{const_name sep_conj},_) $ t1 $ t2) =
+ (break_sep_conj t1) @ (break_sep_conj t2)
+ (* dig through eta exanded terms: *)
+ | break_sep_conj (Abs (_, _, t $ Bound 0)) = break_sep_conj t
+ | break_sep_conj t = [t];
+
+ val empty_env = (Vartab.empty, Vartab.empty)
+
+ fun match_env ctxt pat trm env =
+ Pattern.match (ctxt |> Proof_Context.theory_of) (pat, trm) env
+
+ fun match ctxt pat trm = match_env ctxt pat trm empty_env;
+
+ val inst = Envir.subst_term;
+
+ fun term_of_thm thm = thm |> prop_of |> HOLogic.dest_Trueprop
+
+ fun get_cmd ctxt code =
+ let val pat = term_of @{cpat "_:[(?cmd)]:_"}
+ val pat1 = term_of @{cpat "?cmd::tpg"}
+ val env = match ctxt pat code
+ in inst env pat1 end
+
+ fun is_seq_term (Const (@{const_name TSeq}, _) $ _ $ _) = true
+ | is_seq_term _ = false
+
+ fun get_hcmd (Const (@{const_name TSeq}, _) $ hcmd $ _) = hcmd
+ | get_hcmd hcmd = hcmd
+
+ fun last [a] = a |
+ last (a::b) = last b
+
+ fun but_last [a] = [] |
+ but_last (a::b) = a::(but_last b)
+
+ fun foldr f [] = (fn x => x) |
+ foldr f (x :: xs) = (f x) o (foldr f xs)
+
+ fun concat [] = [] |
+ concat (x :: xs) = x @ concat xs
+
+ fun match_any ctxt pats tm =
+ fold
+ (fn pat => fn b => (b orelse Pattern.matches
+ (ctxt |> Proof_Context.theory_of) (pat, tm)))
+ pats false
+
+ fun is_ps_term (Const (@{const_name ps}, _) $ _) = true
+ | is_ps_term _ = false
+
+ fun string_of_term ctxt t = t |> Syntax.pretty_term ctxt |> Pretty.str_of
+ fun string_of_cterm ctxt ct = ct |> term_of |> string_of_term ctxt
+ fun pterm ctxt t =
+ t |> string_of_term ctxt |> tracing ctxt
+ fun pcterm ctxt ct = ct |> string_of_cterm ctxt |> tracing ctxt
+ fun string_for_term ctxt t =
+ Print_Mode.setmp (filter (curry (op =) Symbol.xsymbolsN)
+ (print_mode_value ())) (Syntax.string_of_term ctxt) t
+ |> String.translate (fn c => if Char.isPrint c then str c else "")
+ |> Sledgehammer_Util.simplify_spaces
+ fun string_for_cterm ctxt ct = ct |> term_of |> string_for_term ctxt
+ fun attemp tac = fn i => fn st => (tac i st) handle exn => Seq.empty
+ fun try_tac tac = fn i => fn st => (tac i st) handle exn => (Seq.single st)
+ (* aux end *)
+*}
+
+ML {* (* Functions specific to Hoare triples *)
+ fun get_pre ctxt t =
+ let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"}
+ val env = match ctxt pat t
+ in inst env (term_of @{cpat "?P::tresource set \<Rightarrow> bool"}) end
+
+ fun can_process ctxt t = ((get_pre ctxt t; true) handle _ => false)
+
+ fun get_post ctxt t =
+ let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"}
+ val env = match ctxt pat t
+ in inst env (term_of @{cpat "?Q::tresource set \<Rightarrow> bool"}) end;
+
+ fun get_mid ctxt t =
+ let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"}
+ val env = match ctxt pat t
+ in inst env (term_of @{cpat "?c::tresource set \<Rightarrow> bool"}) end;
+
+ fun is_pc_term (Const (@{const_name st}, _) $ _) = true
+ | is_pc_term _ = false
+
+ fun mk_pc_term x =
+ Const (@{const_name st}, @{typ "nat \<Rightarrow> tresource set \<Rightarrow> bool"}) $ Free (x, @{typ "nat"})
+
+ val sconj_term = term_of @{cterm "sep_conj::tassert \<Rightarrow> tassert \<Rightarrow> tassert"}
+
+ fun mk_ps_term x =
+ Const (@{const_name ps}, @{typ "int \<Rightarrow> tresource set \<Rightarrow> bool"}) $ Free (x, @{typ "int"})
+
+ fun atomic tac = ((SOLVED' tac) ORELSE' (K all_tac))
+
+ fun map_simpset f = Context.proof_map (Simplifier.map_ss f)
+
+ fun pure_sep_conj_ac_tac ctxt =
+ (auto_tac (map_simpset (fn ss => ss addsimps @{thms sep_conj_ac}) ctxt)
+ |> SELECT_GOAL)
+
+
+ fun potential_facts ctxt prop = Facts.could_unify (Proof_Context.facts_of ctxt)
+ ((Term.strip_all_body prop) |> Logic.strip_imp_concl);
+
+ fun some_fact_tac ctxt = SUBGOAL (fn (goal, i) =>
+ (Method.insert_tac (potential_facts ctxt goal) i) THEN
+ (pure_sep_conj_ac_tac ctxt i));
+
+ fun sep_conj_ac_tac ctxt =
+ (SOLVED' (auto_tac (ctxt |> map_simpset (fn ss => ss addsimps @{thms sep_conj_ac}))
+ |> SELECT_GOAL)) ORELSE' (atomic (some_fact_tac ctxt))
+*}
+
+ML {*
+type HoareTriple = {
+ binding: binding,
+ can_process: Proof.context -> term -> bool,
+ get_pre: Proof.context -> term -> term,
+ get_mid: Proof.context -> term -> term,
+ get_post: Proof.context -> term -> term,
+ is_pc_term: term -> bool,
+ mk_pc_term: string -> term,
+ sconj_term: term,
+ sep_conj_ac_tac: Proof.context -> int -> tactic,
+ hoare_seq1: thm,
+ hoare_seq2: thm,
+ pre_stren: thm,
+ post_weaken: thm,
+ frame_rule: thm
+}
+
+ val tm_triple = {binding = @{binding "tm_triple"},
+ can_process = can_process,
+ get_pre = get_pre,
+ get_mid = get_mid,
+ get_post = get_post,
+ is_pc_term = is_pc_term,
+ mk_pc_term = mk_pc_term,
+ sconj_term = sconj_term,
+ sep_conj_ac_tac = sep_conj_ac_tac,
+ hoare_seq1 = @{thm t_hoare_seq1},
+ hoare_seq2 = @{thm t_hoare_seq2},
+ pre_stren = @{thm tm.pre_stren},
+ post_weaken = @{thm tm.post_weaken},
+ frame_rule = @{thm tm.frame_rule}
+ }:HoareTriple
+*}
+
+ML {*
+ val _ = data_slot "HoareTriples" "HoareTriple list" "[]"
+*}
+
+ML {*
+ val _ = HoareTriples_store [tm_triple]
+*}
+
+ML {* (* aux1 functions *)
+
+fun focus_params t ctxt =
+ let
+ val (xs, Ts) =
+ split_list (Term.variant_frees t (Term.strip_all_vars t)); (*as they are printed :-*)
+ (* val (xs', ctxt') = variant_fixes xs ctxt; *)
+ (* val ps = xs' ~~ Ts; *)
+ val ps = xs ~~ Ts
+ val (_, ctxt'') = ctxt |> Variable.add_fixes xs
+ in ((xs, ps), ctxt'') end
+
+fun focus_concl ctxt t =
+ let
+ val ((xs, ps), ctxt') = focus_params t ctxt
+ val t' = Term.subst_bounds (rev (map Free ps), Term.strip_all_body t);
+ in (t' |> Logic.strip_imp_concl, ctxt') end
+
+ fun get_concl ctxt (i, state) =
+ nth (Thm.prems_of state) (i - 1)
+ |> focus_concl ctxt |> (fn (x, _) => x |> HOLogic.dest_Trueprop)
+ (* aux1 end *)
+*}
+
+ML {*
+ fun indexing xs = upto (0, length xs - 1) ~~ xs
+ fun select_idxs idxs ps =
+ map_index (fn (i, e) => if (member (op =) idxs i) then [e] else []) ps |> flat
+ fun select_out_idxs idxs ps =
+ map_index (fn (i, e) => if (member (op =) idxs i) then [] else [e]) ps |> flat
+ fun match_pres ctxt mf env ps qs =
+ let fun sel_match mf env [] qs = [(env, [])]
+ | sel_match mf env (p::ps) qs =
+ let val pm = map (fn (i, q) => [(i,
+ let val _ = tracing ctxt "Matching:"
+ val _ = [p, q] |>
+ (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+ val r = mf p q env
+ in r end)]
+ handle _ => (
+ let val _ = tracing ctxt "Failed matching:"
+ val _ = [p, q] |>
+ (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+ in [] end)) qs |> flat
+ val r = pm |> map (fn (i, env') =>
+ let val qs' = filter_out (fn (j, q) => j = i) qs
+ in sel_match mf env' ps qs' |>
+ map (fn (env'', idxs) => (env'', i::idxs)) end)
+ |> flat
+ in r end
+ in sel_match mf env ps (indexing qs) end
+
+ fun provable tac ctxt goal =
+ let
+ val _ = tracing ctxt "Provable trying to prove:"
+ val _ = [goal] |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+ in
+ (Goal.prove ctxt [] [] goal (fn {context, ...} => tac context 1); true)
+ handle exn => false
+ end
+ fun make_sense tac ctxt thm_assms env =
+ thm_assms |> map (inst env) |> forall (provable tac ctxt)
+*}
+
+ML {*
+ fun triple_for ctxt goal =
+ filter (fn trpl => (#can_process trpl) ctxt goal) (HoareTriples.get (Proof_Context.theory_of ctxt)) |> hd
+
+ fun step_terms_for thm goal ctxt =
+ let
+ val _ = tracing ctxt "This is the new version of step_terms_for!"
+ val _ = tracing ctxt "Tring to find triple processor: TP"
+ val TP = triple_for ctxt goal
+ val _ = #binding TP |> Binding.name_of |> tracing ctxt
+ fun mk_sep_conj tms = foldr (fn tm => fn rtm =>
+ ((#sconj_term TP)$tm$rtm)) (but_last tms) (last tms)
+ val thm_concl = thm |> prop_of
+ |> Logic.strip_imp_concl |> HOLogic.dest_Trueprop
+ val thm_assms = thm |> prop_of
+ |> Logic.strip_imp_prems
+ val cmd_pat = thm_concl |> #get_mid TP ctxt |> get_cmd ctxt
+ val cmd = goal |> #get_mid TP ctxt |> get_cmd ctxt
+ val _ = tracing ctxt "matching command ... "
+ val _ = tracing ctxt "cmd_pat = "
+ val _ = pterm ctxt cmd_pat
+ val (hcmd, env1, is_last) = (cmd, match ctxt cmd_pat cmd, true)
+ handle exn => (cmd |> get_hcmd, match ctxt cmd_pat (cmd |> get_hcmd), false)
+ val _ = tracing ctxt "hcmd ="
+ val _ = pterm ctxt hcmd
+ val _ = tracing ctxt "match command succeed! "
+ val _ = tracing ctxt "pres ="
+ val pres = goal |> #get_pre TP ctxt |> break_sep_conj
+ val _ = pres |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+ val _ = tracing ctxt "pre_pats ="
+ val pre_pats = thm_concl |> #get_pre TP ctxt |> inst env1 |> break_sep_conj
+ val _ = pre_pats |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+ val _ = tracing ctxt "post_pats ="
+ val post_pats = thm_concl |> #get_post TP ctxt |> inst env1 |> break_sep_conj
+ val _ = post_pats |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+ val _ = tracing ctxt "Calculating sols"
+ val sols = match_pres ctxt (match_env ctxt) env1 pre_pats pres
+ val _ = tracing ctxt "End calculating sols, sols ="
+ val _ = tracing ctxt (@{make_string} sols)
+ val _ = tracing ctxt "Calulating env2 and idxs"
+ val (env2, idxs) = filter (fn (env, idxs) => make_sense (#sep_conj_ac_tac TP)
+ ctxt thm_assms env) sols |> hd
+ val _ = tracing ctxt "End calculating env2 and idxs"
+ val _ = tracing ctxt "mterms ="
+ val mterms = select_idxs idxs pres |> map (inst env2)
+ val _ = mterms |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+ val _ = tracing ctxt "nmterms = "
+ val nmterms = select_out_idxs idxs pres |> map (inst env2)
+ val _ = nmterms |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+ val pre_cond = pre_pats |> map (inst env2) |> mk_sep_conj
+ val post_cond = post_pats |> map (inst env2) |> mk_sep_conj
+ val post_cond_npc =
+ post_cond |> break_sep_conj |> filter (not_pred (#is_pc_term TP))
+ |> (fn x => x @ nmterms) |> mk_sep_conj |> cterm_of (Proof_Context.theory_of ctxt)
+ fun mk_frame cond rest =
+ if rest = [] then cond else ((#sconj_term TP)$ cond) $ (mk_sep_conj rest)
+ val pre_cond_frame = mk_frame pre_cond nmterms |> cterm_of (Proof_Context.theory_of ctxt)
+ fun post_cond_frame j' = post_cond |> break_sep_conj |> filter (not_pred (#is_pc_term TP))
+ |> (fn x => [#mk_pc_term TP j']@x) |> mk_sep_conj
+ |> (fn x => mk_frame x nmterms)
+ |> cterm_of (Proof_Context.theory_of ctxt)
+ val need_frame = (nmterms <> [])
+ in
+ (post_cond_npc,
+ pre_cond_frame,
+ post_cond_frame, need_frame, is_last)
+ end
+*}
+
+ML {*
+ fun step_tac ctxt thm i state =
+ let
+ val _ = tracing ctxt "This is the new version of step_tac"
+ val (goal, ctxt) = nth (Thm.prems_of state) (i - 1)
+ |> focus_concl ctxt
+ |> (apfst HOLogic.dest_Trueprop)
+ val _ = tracing ctxt "step_tac: goal = "
+ val _ = goal |> pterm ctxt
+ val _ = tracing ctxt "Start to calculate intermediate terms ... "
+ val (post_cond_npc, pre_cond_frame, post_cond_frame, need_frame, is_last)
+ = step_terms_for thm goal ctxt
+ val _ = tracing ctxt "Tring to find triple processor: TP"
+ val TP = triple_for ctxt goal
+ val _ = #binding TP |> Binding.name_of |> tracing ctxt
+ fun mk_sep_conj tms = foldr (fn tm => fn rtm =>
+ ((#sconj_term TP)$tm$rtm)) (but_last tms) (last tms)
+ val _ = tracing ctxt "Calculate intermediate terms finished! "
+ val post_cond_npc_str = post_cond_npc |> string_for_cterm ctxt
+ val pre_cond_frame_str = pre_cond_frame |> string_for_cterm ctxt
+ val _ = tracing ctxt "step_tac: post_cond_npc = "
+ val _ = post_cond_npc |> pcterm ctxt
+ val _ = tracing ctxt "step_tac: pre_cond_frame = "
+ val _ = pre_cond_frame |> pcterm ctxt
+ fun tac1 i state =
+ if is_last then (K all_tac) i state else
+ res_inst_tac ctxt [(("q", 0), post_cond_npc_str)]
+ (#hoare_seq1 TP) i state
+ fun tac2 i state = res_inst_tac ctxt [(("p", 0), pre_cond_frame_str)]
+ (#pre_stren TP) i state
+ fun foc_tac post_cond_frame ctxt i state =
+ let
+ val goal = get_concl ctxt (i, state)
+ val pc_term = goal |> #get_post TP ctxt |> break_sep_conj
+ |> filter (#is_pc_term TP) |> hd
+ val (_$Free(j', _)) = pc_term
+ val psd = post_cond_frame j'
+ val str_psd = psd |> string_for_cterm ctxt
+ val _ = tracing ctxt "foc_tac: psd = "
+ val _ = psd |> pcterm ctxt
+ in
+ res_inst_tac ctxt [(("q", 0), str_psd)]
+ (#post_weaken TP) i state
+ end
+ val frame_tac = if need_frame then (rtac (#frame_rule TP)) else (K all_tac)
+ val print_tac = if (Config.get ctxt trace_step) then Tactical.print_tac else (K all_tac)
+ val tac = (tac1 THEN' (K (print_tac "tac1 success"))) THEN'
+ (tac2 THEN' (K (print_tac "tac2 success"))) THEN'
+ ((foc_tac post_cond_frame ctxt) THEN' (K (print_tac "foc_tac success"))) THEN'
+ (frame_tac THEN' (K (print_tac "frame_tac success"))) THEN'
+ (((rtac thm) THEN_ALL_NEW (#sep_conj_ac_tac TP ctxt)) THEN' (K (print_tac "rtac thm success"))) THEN'
+ (K (ALLGOALS (atomic (#sep_conj_ac_tac TP ctxt)))) THEN'
+ (* (#sep_conj_ac_tac TP ctxt) THEN' (#sep_conj_ac_tac TP ctxt) THEN' *)
+ (K prune_params_tac)
+ in
+ tac i state
+ end
+
+ fun unfold_cell_tac ctxt = (Local_Defs.unfold_tac ctxt @{thms one_def zero_def})
+ fun fold_cell_tac ctxt = (Local_Defs.fold_tac ctxt @{thms one_def zero_def})
+*}
+
+ML {*
+ fun sg_step_tac thms ctxt =
+ let val sg_step_tac' = (map (fn thm => attemp (step_tac ctxt thm)) thms)
+ (* @ [attemp (goto_tac ctxt)] *)
+ |> FIRST'
+ val sg_step_tac'' = (K (unfold_cell_tac ctxt)) THEN' sg_step_tac' THEN' (K (fold_cell_tac ctxt))
+ in
+ sg_step_tac' ORELSE' sg_step_tac''
+ end
+ fun steps_tac thms ctxt i = REPEAT (sg_step_tac thms ctxt i) THEN (prune_params_tac)
+*}
+
+method_setup hstep = {*
+ Attrib.thms >> (fn thms => fn ctxt =>
+ (SIMPLE_METHOD' (fn i =>
+ sg_step_tac (thms@(StepRules.get ctxt)) ctxt i)))
+ *}
+ "One step symbolic execution using step theorems."
+
+method_setup hsteps = {*
+ Attrib.thms >> (fn thms => fn ctxt =>
+ (SIMPLE_METHOD' (fn i =>
+ steps_tac (thms@(StepRules.get ctxt)) ctxt i)))
+ *}
+ "Sequential symbolic execution using step theorems."
+
+
+ML {*
+ fun goto_tac ctxt thm i state =
+ let
+ val (goal, ctxt) = nth (Thm.prems_of state) (i - 1)
+ |> focus_concl ctxt |> (apfst HOLogic.dest_Trueprop)
+ val _ = tracing ctxt "goto_tac: goal = "
+ val _ = goal |> string_of_term ctxt |> tracing ctxt
+ val (post_cond_npc, pre_cond_frame, post_cond_frame, need_frame, is_last)
+ = step_terms_for thm goal ctxt
+ val _ = tracing ctxt "Tring to find triple processor: TP"
+ val TP = triple_for ctxt goal
+ val _ = #binding TP |> Binding.name_of |> tracing ctxt
+ val _ = tracing ctxt "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
+ val post_cond_npc_str = post_cond_npc |> string_for_cterm ctxt
+ val pre_cond_frame_str = pre_cond_frame |> string_for_cterm ctxt
+ val _ = tracing ctxt "goto_tac: post_cond_npc = "
+ val _ = post_cond_npc_str |> tracing ctxt
+ val _ = tracing ctxt "goto_tac: pre_cond_frame = "
+ val _ = pre_cond_frame_str |> tracing ctxt
+ fun tac1 i state =
+ if is_last then (K all_tac) i state else
+ res_inst_tac ctxt []
+ (#hoare_seq2 TP) i state
+ fun tac2 i state = res_inst_tac ctxt [(("p", 0), pre_cond_frame_str)]
+ (#pre_stren TP) i state
+ fun foc_tac post_cond_frame ctxt i state =
+ let
+ val goal = get_concl ctxt (i, state)
+ val pc_term = goal |> #get_post TP ctxt |> break_sep_conj
+ |> filter (#is_pc_term TP) |> hd
+ val (_$Free(j', _)) = pc_term
+ val psd = post_cond_frame j'
+ val str_psd = psd |> string_for_cterm ctxt
+ val _ = tracing ctxt "goto_tac: psd = "
+ val _ = str_psd |> tracing ctxt
+ in
+ res_inst_tac ctxt [(("q", 0), str_psd)]
+ (#post_weaken TP) i state
+ end
+ val frame_tac = if need_frame then (rtac (#frame_rule TP)) else (K all_tac)
+ val _ = tracing ctxt "goto_tac: starting to apply tacs"
+ val print_tac = if (Config.get ctxt trace_step) then Tactical.print_tac else (K all_tac)
+ val tac = (tac1 THEN' (K (print_tac "tac1 success"))) THEN'
+ (tac2 THEN' (K (print_tac "tac2 success"))) THEN'
+ ((foc_tac post_cond_frame ctxt) THEN' (K (print_tac "foc_tac success"))) THEN'
+ (frame_tac THEN' (K (print_tac "frame_tac success"))) THEN'
+ ((((rtac thm) THEN_ALL_NEW (#sep_conj_ac_tac TP ctxt))) THEN'
+ (K (print_tac "rtac success"))
+ ) THEN'
+ (K (ALLGOALS (atomic (#sep_conj_ac_tac TP ctxt)))) THEN'
+ (K prune_params_tac)
+ in
+ tac i state
+ end
+*}
+
+ML {*
+ fun sg_goto_tac thms ctxt =
+ let val sg_goto_tac' = (map (fn thm => attemp (goto_tac ctxt thm)) thms)
+ |> FIRST'
+ val sg_goto_tac'' = (K (unfold_cell_tac ctxt)) THEN' sg_goto_tac' THEN' (K (fold_cell_tac ctxt))
+ in
+ sg_goto_tac' ORELSE' sg_goto_tac''
+ end
+ fun gotos_tac thms ctxt i = REPEAT (sg_goto_tac thms ctxt i) THEN (prune_params_tac)
+*}
+
+method_setup hgoto = {*
+ Attrib.thms >> (fn thms => fn ctxt =>
+ (SIMPLE_METHOD' (fn i =>
+ sg_goto_tac (thms@(StepRules.get ctxt)) ctxt i)))
+ *}
+ "One step symbolic execution using goto theorems."
+
+subsection {* Tactic for forward reasoning *}
+
+ML {*
+fun mk_msel_rule ctxt conclusion idx term =
+let
+ val cjt_count = term |> break_sep_conj |> length
+ fun variants nctxt names = fold_map Name.variant names nctxt;
+
+ val (state, nctxt0) = Name.variant "s" (Variable.names_of ctxt);
+
+ fun sep_conj_prop cjts =
+ FunApp.fun_app_free
+ (FunApp.fun_app_foldr SepConj.sep_conj_term cjts) state
+ |> HOLogic.mk_Trueprop;
+
+ (* concatenate string and string of an int *)
+ fun conc_str_int str int = str ^ Int.toString int;
+
+ (* make the conjunct names *)
+ val (cjts, _) = ListExtra.range 1 cjt_count
+ |> map (conc_str_int "a") |> variants nctxt0;
+
+ fun skel_sep_conj names (Const (@{const_name sep_conj}, _) $ t1 $ t2 $ y) =
+ (let val nm1 = take (length (break_sep_conj t1)) names
+ val nm2 = drop (length (break_sep_conj t1)) names
+ val t1' = skel_sep_conj nm1 t1
+ val t2' = skel_sep_conj nm2 t2
+ in (SepConj.sep_conj_term $ t1' $ t2' $ y) end)
+ | skel_sep_conj names (Const (@{const_name sep_conj}, _) $ t1 $ t2) =
+ (let val nm1 = take (length (break_sep_conj t1)) names
+ val nm2 = drop (length (break_sep_conj t1)) names
+ val t1' = skel_sep_conj nm1 t1
+ val t2' = skel_sep_conj nm2 t2
+ in (SepConj.sep_conj_term $ t1' $ t2') end)
+ | skel_sep_conj names (Abs (x, y, t $ Bound 0)) =
+ let val t' = (skel_sep_conj names t)
+ val ty' = t' |> type_of |> domain_type
+ in (Abs (x, ty', (t' $ Bound 0))) end
+ | skel_sep_conj names t = Free (hd names, SepConj.sep_conj_term |> type_of |> domain_type);
+ val _ = tracing ctxt "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
+ val oskel = skel_sep_conj cjts term;
+ val _ = tracing ctxt "yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy"
+ val ttt = oskel |> type_of
+ val _ = tracing ctxt "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
+ val orig = FunApp.fun_app_free oskel state |> HOLogic.mk_Trueprop
+ val _ = tracing ctxt "uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu"
+ val is_selected = member (fn (x, y) => x = y) idx
+ val all_idx = ListExtra.range 0 cjt_count
+ val selected_idx = idx
+ val unselected_idx = filter_out is_selected all_idx
+ val selected = map (nth cjts) selected_idx
+ val unselected = map (nth cjts) unselected_idx
+
+ fun fun_app_foldr f [a,b] = FunApp.fun_app_free (FunApp.fun_app_free f a) b
+ | fun_app_foldr f [a] = Free (a, SepConj.sep_conj_term |> type_of |> domain_type)
+ | fun_app_foldr f (x::xs) = (FunApp.fun_app_free f x) $ (fun_app_foldr f xs)
+ | fun_app_foldr _ _ = raise Fail "fun_app_foldr";
+
+ val reordered_skel =
+ if unselected = [] then (fun_app_foldr SepConj.sep_conj_term selected)
+ else (SepConj.sep_conj_term $ (fun_app_foldr SepConj.sep_conj_term selected)
+ $ (fun_app_foldr SepConj.sep_conj_term unselected))
+
+ val reordered = FunApp.fun_app_free reordered_skel state |> HOLogic.mk_Trueprop
+ val goal = Logic.mk_implies
+ (if conclusion then (orig, reordered) else (reordered, orig));
+ val rule =
+ Goal.prove ctxt [] [] goal (fn _ =>
+ auto_tac (ctxt |> map_simpset (fn ss => ss addsimps @{thms sep_conj_ac})))
+ |> Drule.export_without_context
+in
+ rule
+end
+*}
+
+lemma fwd_rule:
+ assumes "\<And> s . U s \<longrightarrow> V s"
+ shows "(U ** RR) s \<Longrightarrow> (V ** RR) s"
+ by (metis assms sep_globalise)
+
+ML {*
+ fun sg_sg_fwd_tac ctxt thm pos i state =
+ let
+
+ val tracing = (fn str =>
+ if (Config.get ctxt trace_fwd) then Output.tracing str else ())
+ fun pterm t =
+ t |> string_of_term ctxt |> tracing
+ fun pcterm ct = ct |> string_of_cterm ctxt |> tracing
+
+ fun atm thm =
+ let
+ (* val thm = thm |> Drule.forall_intr_vars *)
+ val res = thm |> cprop_of |> Object_Logic.atomize
+ val res' = Raw_Simplifier.rewrite_rule [res] thm
+ in res' end
+
+ fun find_idx ctxt pats terms =
+ let val result =
+ map (fn pat => (find_index (fn trm => ((match ctxt pat trm; true)
+ handle _ => false)) terms)) pats
+ in (assert_all (fn x => x >= 0) result (K "match of precondition failed"));
+ result
+ end
+
+ val goal = nth (Drule.cprems_of state) (i - 1) |> term_of
+ val _ = tracing "goal = "
+ val _ = goal |> pterm
+
+ val ctxt_orig = ctxt
+
+ val ((ps, goal), ctxt) = Variable.focus goal ctxt_orig
+
+ val prems = goal |> Logic.strip_imp_prems
+
+ val cprem = nth prems (pos - 1)
+ val (_ $ (the_prem $ _)) = cprem
+ val cjts = the_prem |> break_sep_conj
+ val thm_prems = thm |> cprems_of |> hd |> Thm.dest_arg |> Thm.dest_fun
+ val thm_assms = thm |> cprems_of |> tl |> map term_of
+ val thm_cjts = thm_prems |> term_of |> break_sep_conj
+ val thm_trm = thm |> prop_of
+
+ val _ = tracing "cjts = "
+ val _ = cjts |> map pterm
+ val _ = tracing "thm_cjts = "
+ val _ = thm_cjts |> map pterm
+
+ val _ = tracing "Calculating sols"
+ val sols = match_pres ctxt (match_env ctxt) empty_env thm_cjts cjts
+ val _ = tracing "End calculating sols, sols ="
+ val _ = tracing (@{make_string} sols)
+ val _ = tracing "Calulating env2 and idxs"
+ val (env2, idx) = filter (fn (env, idxs) => make_sense sep_conj_ac_tac ctxt thm_assms env) sols |> hd
+ val ([thm'_trm], ctxt') = thm_trm |> inst env2 |> single
+ |> (fn trms => Variable.import_terms true trms ctxt)
+ val thm'_prem = Logic.strip_imp_prems thm'_trm |> hd
+ val thm'_concl = Logic.strip_imp_concl thm'_trm
+ val thm'_prem = (Goal.prove ctxt' [] [thm'_prem] thm'_concl
+ (fn {context, prems = [prem]} =>
+ (rtac (prem RS thm) THEN_ALL_NEW (sep_conj_ac_tac ctxt)) 1))
+ val [thm'] = Variable.export ctxt' ctxt_orig [thm'_prem]
+ val trans_rule =
+ mk_msel_rule ctxt true idx the_prem
+ val _ = tracing "trans_rule = "
+ val _ = trans_rule |> cprop_of |> pcterm
+ val app_rule =
+ if (length cjts = length thm_cjts) then thm' else
+ ((thm' |> atm) RS @{thm fwd_rule})
+ val _ = tracing "app_rule = "
+ val _ = app_rule |> cprop_of |> pcterm
+ val print_tac = if (Config.get ctxt trace_fwd) then Tactical.print_tac else (K all_tac)
+ val the_tac = (dtac trans_rule THEN' (K (print_tac "dtac1 success"))) THEN'
+ ((dtac app_rule THEN' (K (print_tac "dtac2 success"))))
+in
+ (the_tac i state) handle _ => no_tac state
+end
+*}
+
+ML {*
+ fun sg_fwd_tac ctxt thm i state =
+ let
+ val goal = nth (Drule.cprems_of state) (i - 1)
+ val prems = goal |> term_of |> Term.strip_all_body |> Logic.strip_imp_prems
+ val posx = ListExtra.range 1 (length prems)
+ in
+ ((map (fn pos => attemp (sg_sg_fwd_tac ctxt thm pos)) posx) |> FIRST') i state
+ end
+
+ fun fwd_tac ctxt thms i state =
+ ((map (fn thm => sg_fwd_tac ctxt thm) thms) |> FIRST') i state
+*}
+
+method_setup fwd = {*
+ Attrib.thms >> (fn thms => fn ctxt =>
+ (SIMPLE_METHOD' (fn i =>
+ fwd_tac ctxt (thms@(FwdRules.get ctxt)) i)))
+ *}
+ "Forward derivation of separation implication"
+
+text {* Testing the fwd tactic *}
+
+lemma ones_abs:
+ assumes "(ones u v \<and>* ones w x) s" "w = v + 1"
+ shows "ones u x s"
+ using assms(1) unfolding assms(2)
+proof(induct u v arbitrary: x s rule:ones_induct)
+ case (Base i j x s)
+ thus ?case by (auto elim!:condE)
+next
+ case (Step i j x s)
+ hence h: "\<And> x s. (ones (i + 1) j \<and>* ones (j + 1) x) s \<longrightarrow> ones (i + 1) x s"
+ by metis
+ hence "(ones (i + 1) x \<and>* one i) s"
+ by (rule fwd_rule, insert Step(3), auto simp:sep_conj_ac)
+ thus ?case
+ by (smt condD ones.simps sep_conj_commute)
+qed
+
+lemma one_abs: "(one m) s \<Longrightarrow> (ones m m) s"
+ by (smt cond_true_eq2 ones.simps)
+
+lemma ones_reps_abs:
+ assumes "ones m n s"
+ "m \<le> n"
+ shows "(reps m n [nat (n - m)]) s"
+ using assms
+ by simp
+
+lemma reps_reps'_abs:
+ assumes "(reps m n xs \<and>* zero u) s" "u = n + 1" "xs \<noteq> []"
+ shows "(reps' m u xs) s"
+ unfolding assms using assms
+ by (unfold reps'_def, simp)
+
+lemma reps'_abs:
+ assumes "(reps' m n xs \<and>* reps' u v ys) s" "u = n + 1"
+ shows "(reps' m v (xs @ ys)) s"
+ apply (unfold reps'_append, rule_tac x = u in EXS_intro)
+ by (insert assms, simp)
+
+lemmas abs_ones = one_abs ones_abs
+
+lemmas abs_reps' = ones_reps_abs reps_reps'_abs reps'_abs
+
+
+section {* Modular TM programming and verification *}
+
+definition "right_until_zero =
+ (TL start exit.
+ TLabel start;
+ if_zero exit;
+ move_right;
+ jmp start;
+ TLabel exit
+ )"
+
+lemma ones_false [simp]: "j < i - 1 \<Longrightarrow> (ones i j) = sep_false"
+ by (simp add:pasrt_def)
+
+lemma hoare_right_until_zero:
+ "\<lbrace>st i ** ps u ** ones u (v - 1) ** zero v \<rbrace>
+ i:[right_until_zero]:j
+ \<lbrace>st j ** ps v ** ones u (v - 1) ** zero v \<rbrace>"
+proof(unfold right_until_zero_def,
+ intro t_hoare_local t_hoare_label, clarify,
+ rule t_hoare_label_last, simp, simp)
+ fix la
+ let ?body = "i :[ (if_zero la ; move_right ; jmp i) ]: la"
+ let ?j = la
+ show "\<lbrace>st i \<and>* ps u \<and>* ones u (v - 1) \<and>* zero v\<rbrace> ?body
+ \<lbrace>st ?j \<and>* ps v \<and>* ones u (v - 1) \<and>* zero v\<rbrace>" (is "?P u (v - 1) (ones u (v - 1))")
+ proof(induct "u" "v - 1" rule:ones_induct)
+ case (Base k)
+ moreover have "\<lbrace>st i \<and>* ps v \<and>* zero v\<rbrace> ?body
+ \<lbrace>st ?j \<and>* ps v \<and>* zero v\<rbrace>" by hsteps
+ ultimately show ?case by (auto intro!:tm.pre_condI simp:sep_conj_cond)
+ next
+ case (Step k)
+ moreover have "\<lbrace>st i \<and>* ps k \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace>
+ i :[ (if_zero ?j ; move_right ; jmp i) ]: ?j
+ \<lbrace>st ?j \<and>* ps v \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace>"
+ proof -
+ have s1: "\<lbrace>st i \<and>* ps k \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace>
+ ?body
+ \<lbrace>st i \<and>* ps (k + 1) \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace>"
+ proof(cases "k + 1 \<ge> v")
+ case True
+ with Step(1) have "v = k + 1" by arith
+ thus ?thesis
+ apply(simp add: one_def)
+ by hsteps
+ next
+ case False
+ hence eq_ones: "ones (k + 1) (v - 1) =
+ (one (k + 1) \<and>* ones ((k + 1) + 1) (v - 1))"
+ by simp
+ show ?thesis
+ apply(simp only: eq_ones)
+ by hsteps
+ qed
+ note Step(2)[step]
+ have s2: "\<lbrace>st i \<and>* ps (k + 1) \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>* ps v \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace>"
+ by hsteps
+ from tm.sequencing [OF s1 s2, step]
+ show ?thesis
+ by (auto simp:sep_conj_ac)
+ qed
+ ultimately show ?case by simp
+ qed
+qed
+
+lemma hoare_right_until_zero_gen[step]:
+ assumes "u = v" "w = x - 1"
+ shows "\<lbrace>st i ** ps u ** ones v w ** zero x \<rbrace>
+ i:[right_until_zero]:j
+ \<lbrace>st j ** ps x ** ones v w ** zero x \<rbrace>"
+ by (unfold assms, rule hoare_right_until_zero)
+
+definition "left_until_zero =
+ (TL start exit.
+ TLabel start;
+ if_zero exit;
+ move_left;
+ jmp start;
+ TLabel exit
+ )"
+
+lemma hoare_left_until_zero:
+ "\<lbrace>st i ** ps v ** zero u ** ones (u + 1) v \<rbrace>
+ i:[left_until_zero]:j
+ \<lbrace>st j ** ps u ** zero u ** ones (u + 1) v \<rbrace>"
+proof(unfold left_until_zero_def,
+ intro t_hoare_local t_hoare_label, clarify,
+ rule t_hoare_label_last, simp+)
+ fix la
+ let ?body = "i :[ (if_zero la ; move_left ; jmp i) ]: la"
+ let ?j = la
+ show "\<lbrace>st i \<and>* ps v \<and>* zero u \<and>* ones (u + 1) v\<rbrace> ?body
+ \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) v\<rbrace>"
+ proof(induct "u+1" v rule:ones_rev_induct)
+ case (Base k)
+ thus ?case
+ by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hstep)
+ next
+ case (Step k)
+ have "\<lbrace>st i \<and>* ps k \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>"
+ proof(rule tm.sequencing[where q =
+ "st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k"])
+ show "\<lbrace>st i \<and>* ps k \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>
+ ?body
+ \<lbrace>st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>"
+ proof(induct "u + 1" "k - 1" rule:ones_rev_induct)
+ case Base with Step(1) have "k = u + 1" by arith
+ thus ?thesis
+ by (simp, hsteps)
+ next
+ case Step
+ show ?thesis
+ apply (unfold ones_rev[OF Step(1)], simp)
+ apply (unfold one_def)
+ by hsteps
+ qed
+ next
+ note Step(2) [step]
+ show "\<lbrace>st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>" by hsteps
+ qed
+ thus ?case by (unfold ones_rev[OF Step(1)], simp)
+ qed
+qed
+
+lemma hoare_left_until_zero_gen[step]:
+ assumes "u = x" "w = v + 1"
+ shows "\<lbrace>st i ** ps u ** zero v ** ones w x \<rbrace>
+ i:[left_until_zero]:j
+ \<lbrace>st j ** ps v ** zero v ** ones w x \<rbrace>"
+ by (unfold assms, rule hoare_left_until_zero)
+
+definition "right_until_one =
+ (TL start exit.
+ TLabel start;
+ if_one exit;
+ move_right;
+ jmp start;
+ TLabel exit
+ )"
+
+lemma hoare_right_until_one:
+ "\<lbrace>st i ** ps u ** zeros u (v - 1) ** one v \<rbrace>
+ i:[right_until_one]:j
+ \<lbrace>st j ** ps v ** zeros u (v - 1) ** one v \<rbrace>"
+proof(unfold right_until_one_def,
+ intro t_hoare_local t_hoare_label, clarify,
+ rule t_hoare_label_last, simp+)
+ fix la
+ let ?body = "i :[ (if_one la ; move_right ; jmp i) ]: la"
+ let ?j = la
+ show "\<lbrace>st i \<and>* ps u \<and>* zeros u (v - 1) \<and>* one v\<rbrace> ?body
+ \<lbrace>st ?j \<and>* ps v \<and>* zeros u (v - 1) \<and>* one v\<rbrace>"
+ proof(induct u "v - 1" rule:zeros_induct)
+ case (Base k)
+ thus ?case
+ by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hsteps)
+ next
+ case (Step k)
+ have "\<lbrace>st i \<and>* ps k \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>* ps v \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>"
+ proof(rule tm.sequencing[where q =
+ "st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v"])
+ show "\<lbrace>st i \<and>* ps k \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>
+ ?body
+ \<lbrace>st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>"
+ proof(induct "k + 1" "v - 1" rule:zeros_induct)
+ case Base
+ with Step(1) have eq_v: "k + 1 = v" by arith
+ from Base show ?thesis
+ apply (simp add:sep_conj_cond, intro tm.pre_condI, simp)
+ apply (hstep, clarsimp)
+ by hsteps
+ next
+ case Step
+ thus ?thesis
+ by (simp, hsteps)
+ qed
+ next
+ note Step(2)[step]
+ show "\<lbrace>st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>* ps v \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>"
+ by hsteps
+ qed
+ thus ?case by (auto simp: sep_conj_ac Step(1))
+ qed
+qed
+
+lemma hoare_right_until_one_gen[step]:
+ assumes "u = v" "w = x - 1"
+ shows
+ "\<lbrace>st i ** ps u ** zeros v w ** one x \<rbrace>
+ i:[right_until_one]:j
+ \<lbrace>st j ** ps x ** zeros v w ** one x \<rbrace>"
+ by (unfold assms, rule hoare_right_until_one)
+
+definition "left_until_one =
+ (TL start exit.
+ TLabel start;
+ if_one exit;
+ move_left;
+ jmp start;
+ TLabel exit
+ )"
+
+lemma hoare_left_until_one:
+ "\<lbrace>st i ** ps v ** one u ** zeros (u + 1) v \<rbrace>
+ i:[left_until_one]:j
+ \<lbrace>st j ** ps u ** one u ** zeros (u + 1) v \<rbrace>"
+proof(unfold left_until_one_def,
+ intro t_hoare_local t_hoare_label, clarify,
+ rule t_hoare_label_last, simp+)
+ fix la
+ let ?body = "i :[ (if_one la ; move_left ; jmp i) ]: la"
+ let ?j = la
+ show "\<lbrace>st i \<and>* ps v \<and>* one u \<and>* zeros (u + 1) v\<rbrace> ?body
+ \<lbrace>st ?j \<and>* ps u \<and>* one u \<and>* zeros (u + 1) v\<rbrace>"
+ proof(induct u v rule: ones'.induct)
+ fix ia ja
+ assume h: "\<not> ja < ia \<Longrightarrow>
+ \<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace> ?body
+ \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace>"
+ show "\<lbrace>st i \<and>* ps ja \<and>* one ia \<and>* zeros (ia + 1) ja\<rbrace> ?body
+ \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) ja\<rbrace>"
+ proof(cases "ja < ia")
+ case False
+ note lt = False
+ from h[OF this] have [step]:
+ "\<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace> ?body
+ \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace>" .
+ show ?thesis
+ proof(cases "ja = ia")
+ case True
+ moreover
+ have "\<lbrace>st i \<and>* ps ja \<and>* one ja\<rbrace> ?body \<lbrace>st ?j \<and>* ps ja \<and>* one ja\<rbrace>"
+ by hsteps
+ ultimately show ?thesis by auto
+ next
+ case False
+ with lt have k1: "ia < ja" by auto
+ from zeros_rev[of "ja" "ia + 1"] this
+ have eq_zeros: "zeros (ia + 1) ja = (zeros (ia + 1) (ja - 1) \<and>* zero ja)"
+ by simp
+ have s1: "\<lbrace>st i \<and>* ps ja \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>
+ ?body
+ \<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>"
+ proof(cases "ia + 1 \<ge> ja")
+ case True
+ from k1 True have "ja = ia + 1" by arith
+ moreover have "\<lbrace>st i \<and>* ps (ia + 1) \<and>* one (ia + 1 - 1) \<and>* zero (ia + 1)\<rbrace>
+ i :[ (if_one ?j ; move_left ; jmp i) ]: ?j
+ \<lbrace>st i \<and>* ps (ia + 1 - 1) \<and>* one (ia + 1 - 1) \<and>* zero (ia + 1)\<rbrace>"
+ by (hsteps)
+ ultimately show ?thesis
+ by (simp)
+ next
+ case False
+ from zeros_rev[of "ja - 1" "ia + 1"] False
+ have k: "zeros (ia + 1) (ja - 1) =
+ (zeros (ia + 1) (ja - 1 - 1) \<and>* zero (ja - 1))"
+ by auto
+ show ?thesis
+ apply (unfold k, simp)
+ by hsteps
+ qed
+ have s2: "\<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>"
+ by hsteps
+ from tm.sequencing[OF s1 s2, step]
+ show ?thesis
+ apply (unfold eq_zeros)
+ by hstep
+ qed (* ccc *)
+ next
+ case True
+ thus ?thesis by (auto intro:tm.hoare_sep_false)
+ qed
+ qed
+qed
+
+lemma hoare_left_until_one_gen[step]:
+ assumes "u = x" "w = v + 1"
+ shows "\<lbrace>st i ** ps u ** one v ** zeros w x \<rbrace>
+ i:[left_until_one]:j
+ \<lbrace>st j ** ps v ** one v ** zeros w x \<rbrace>"
+ by (unfold assms, rule hoare_left_until_one)
+
+definition "left_until_double_zero =
+ (TL start exit.
+ TLabel start;
+ if_zero exit;
+ left_until_zero;
+ move_left;
+ if_one start;
+ TLabel exit)"
+
+declare ones.simps[simp del]
+
+lemma reps_simps3: "ks \<noteq> [] \<Longrightarrow>
+ reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)"
+by(case_tac ks, simp, simp add: reps.simps)
+
+lemma cond_eqI:
+ assumes h: "b \<Longrightarrow> r = s"
+ shows "(<b> ** r) = (<b> ** s)"
+proof(cases b)
+ case True
+ from h[OF this] show ?thesis by simp
+next
+ case False
+ thus ?thesis
+ by (unfold sep_conj_def set_ins_def pasrt_def, auto)
+qed
+
+lemma reps_rev: "ks \<noteq> []
+ \<Longrightarrow> reps i j (ks @ [k]) = (reps i (j - int (k + 1) - 1 ) ks \<and>*
+ zero (j - int (k + 1)) \<and>* ones (j - int k) j)"
+proof(induct ks arbitrary: i j)
+ case Nil
+ thus ?case by simp
+next
+ case (Cons a ks)
+ show ?case
+ proof(cases "ks = []")
+ case True
+ thus ?thesis
+ proof -
+ have eq_cond: "(j = i + int a + 2 + int k) = (-2 + (j - int k) = i + int a)" by auto
+ have "(<(-2 + (j - int k) = i + int a)> \<and>*
+ one i \<and>* ones (i + 1) (i + int a) \<and>*
+ zero (i + int a + 1) \<and>* one (i + int a + 2) \<and>* ones (3 + (i + int a)) (i + int a + 2 + int k))
+ =
+ (<(-2 + (j - int k) = i + int a)> \<and>* one i \<and>* ones (i + 1) (i + int a) \<and>*
+ zero (j - (1 + int k)) \<and>* one (j - int k) \<and>* ones (j - int k + 1) j)"
+ (is "(<?X> \<and>* ?L) = (<?X> \<and>* ?R)")
+ proof(rule cond_eqI)
+ assume h: "-2 + (j - int k) = i + int a"
+ hence eqs: "i + int a + 1 = j - (1 + int k)"
+ "i + int a + 2 = j - int k"
+ "3 + (i + int a) = j - int k + 1"
+ "(i + int a + 2 + int k) = j"
+ by auto
+ show "?L = ?R"
+ by (unfold eqs, auto simp:sep_conj_ac)
+ qed
+ with True
+ show ?thesis
+ apply (simp del:ones_simps reps.simps)
+ apply (simp add:sep_conj_cond eq_cond)
+ by (auto simp:sep_conj_ac)
+ qed
+ next
+ case False
+ from Cons(1)[OF False, of "i + int a + 2" j] this
+ show ?thesis
+ by(simp add: reps_simps3 sep_conj_ac)
+ qed
+qed
+
+lemma hoare_if_one_reps:
+ assumes nn: "ks \<noteq> []"
+ shows "\<lbrace>st i ** ps v ** reps u v ks\<rbrace>
+ i:[if_one e]:j
+ \<lbrace>st e ** ps v ** reps u v ks\<rbrace>"
+proof(rule rev_exhaust[of ks])
+ assume "ks = []" with nn show ?thesis by simp
+next
+ fix y ys
+ assume eq_ks: "ks = ys @ [y]"
+ show " \<lbrace>st i \<and>* ps v \<and>* reps u v ks\<rbrace> i :[ if_one e ]: j \<lbrace>st e \<and>* ps v \<and>* reps u v ks\<rbrace>"
+ proof(cases "ys = []")
+ case False
+ have "\<lbrace>st i \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace> i :[ if_one e ]: j \<lbrace>st e \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>"
+ apply(unfold reps_rev[OF False], simp del:ones_simps add:ones_rev)
+ by hstep
+ thus ?thesis
+ by (simp add:eq_ks)
+ next
+ case True
+ with eq_ks
+ show ?thesis
+ apply (simp del:ones_simps add:ones_rev sep_conj_cond, intro tm.pre_condI, simp)
+ by hstep
+ qed
+qed
+
+lemma hoare_if_one_reps_gen[step]:
+ assumes nn: "ks \<noteq> []" "u = w"
+ shows "\<lbrace>st i ** ps u ** reps v w ks\<rbrace>
+ i:[if_one e]:j
+ \<lbrace>st e ** ps u ** reps v w ks\<rbrace>"
+ by (unfold `u = w`, rule hoare_if_one_reps[OF `ks \<noteq> []`])
+
+lemma hoare_if_zero_ones_false[step]:
+ assumes "\<not> w < u" "v = w"
+ shows "\<lbrace>st i \<and>* ps v \<and>* ones u w\<rbrace>
+ i :[if_zero e]: j
+ \<lbrace>st j \<and>* ps v \<and>* ones u w\<rbrace>"
+ by (unfold `v = w` ones_rev[OF `\<not> w < u`], hstep)
+
+lemma hoare_left_until_double_zero_nil[step]:
+ assumes "u = v"
+ shows "\<lbrace>st i ** ps u ** zero v\<rbrace>
+ i:[left_until_double_zero]:j
+ \<lbrace>st j ** ps u ** zero v\<rbrace>"
+ apply (unfold `u = v` left_until_double_zero_def,
+ intro t_hoare_local t_hoare_label, clarsimp,
+ rule t_hoare_label_last, simp+)
+ by (hsteps)
+
+lemma hoare_if_zero_reps_false:
+ assumes nn: "ks \<noteq> []"
+ shows "\<lbrace>st i ** ps v ** reps u v ks\<rbrace>
+ i:[if_zero e]:j
+ \<lbrace>st j ** ps v ** reps u v ks\<rbrace>"
+proof(rule rev_exhaust[of ks])
+ assume "ks = []" with nn show ?thesis by simp
+next
+ fix y ys
+ assume eq_ks: "ks = ys @ [y]"
+ show " \<lbrace>st i \<and>* ps v \<and>* reps u v ks\<rbrace> i :[ if_zero e ]: j \<lbrace>st j \<and>* ps v \<and>* reps u v ks\<rbrace>"
+ proof(cases "ys = []")
+ case False
+ have "\<lbrace>st i \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace> i :[ if_zero e ]: j \<lbrace>st j \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>"
+ apply(unfold reps_rev[OF False], simp del:ones_simps add:ones_rev)
+ by hstep
+ thus ?thesis
+ by (simp add:eq_ks)
+ next
+ case True
+ with eq_ks
+ show ?thesis
+ apply (simp del:ones_simps add:ones_rev sep_conj_cond, intro tm.pre_condI, simp)
+ by hstep
+ qed
+qed
+
+lemma hoare_if_zero_reps_false_gen[step]:
+ assumes "ks \<noteq> []" "u = w"
+ shows "\<lbrace>st i ** ps u ** reps v w ks\<rbrace>
+ i:[if_zero e]:j
+ \<lbrace>st j ** ps u ** reps v w ks\<rbrace>"
+ by (unfold `u = w`, rule hoare_if_zero_reps_false[OF `ks \<noteq> []`])
+
+
+lemma hoare_if_zero_reps_false1:
+ assumes nn: "ks \<noteq> []"
+ shows "\<lbrace>st i ** ps u ** reps u v ks\<rbrace>
+ i:[if_zero e]:j
+ \<lbrace>st j ** ps u ** reps u v ks\<rbrace>"
+proof -
+ from nn obtain y ys where eq_ys: "ks = y#ys"
+ by (metis neq_Nil_conv)
+ show ?thesis
+ apply (unfold eq_ys)
+ by (case_tac ys, (simp, hsteps)+)
+qed
+
+lemma hoare_if_zero_reps_false1_gen[step]:
+ assumes nn: "ks \<noteq> []"
+ and h: "u = w"
+ shows "\<lbrace>st i ** ps u ** reps w v ks\<rbrace>
+ i:[if_zero e]:j
+ \<lbrace>st j ** ps u ** reps w v ks\<rbrace>"
+ by (unfold h, rule hoare_if_zero_reps_false1[OF `ks \<noteq> []`])
+
+lemma hoare_left_until_double_zero:
+ assumes h: "ks \<noteq> []"
+ shows "\<lbrace>st i ** ps v ** zero u ** zero (u + 1) ** reps (u+2) v ks\<rbrace>
+ i:[left_until_double_zero]:j
+ \<lbrace>st j ** ps u ** zero u ** zero (u + 1) ** reps (u+2) v ks\<rbrace>"
+proof(unfold left_until_double_zero_def,
+ intro t_hoare_local t_hoare_label, clarsimp,
+ rule t_hoare_label_last, simp+)
+ fix la
+ let ?body = "i :[ (if_zero la ; left_until_zero ; move_left ; if_one i) ]: j"
+ let ?j = j
+ show "\<lbrace>st i \<and>* ps v \<and>* zero u \<and>* zero (u + 1) \<and>* reps (u + 2) v ks\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* zero (u + 1) \<and>* reps (u + 2) v ks\<rbrace>"
+ using h
+ proof(induct ks arbitrary: v rule:rev_induct)
+ case Nil
+ with h show ?case by auto
+ next
+ case (snoc k ks)
+ show ?case
+ proof(cases "ks = []")
+ case True
+ have eq_ones:
+ "ones (u + 2) (u + 2 + int k) = (ones (u + 2) (u + 1 + int k) \<and>* one (u + 2 + int k))"
+ by (smt ones_rev)
+ have eq_ones': "(one (u + 2) \<and>* ones (3 + u) (u + 2 + int k)) =
+ (one (u + 2 + int k) \<and>* ones (u + 2) (u + 1 + int k))"
+ by (smt eq_ones ones.simps sep.mult_commute)
+ thus ?thesis
+ apply (insert True, simp del:ones_simps add:sep_conj_cond)
+ apply (rule tm.pre_condI, simp del:ones_simps, unfold eq_ones)
+ apply hsteps
+ apply (rule_tac p = "st j' \<and>* ps (u + 2 + int k) \<and>* zero u \<and>*
+ zero (u + 1) \<and>* ones (u + 2) (u + 2 + int k)"
+ in tm.pre_stren)
+ by (hsteps)
+ next
+ case False
+ from False have spt: "splited (ks @ [k]) ks [k]" by (unfold splited_def, auto)
+ show ?thesis
+ apply (unfold reps_splited[OF spt], simp del:ones_simps add:sep_conj_cond)
+ apply (rule tm.pre_condI, simp del:ones_simps)
+ apply (rule_tac q = "st i \<and>*
+ ps (1 + (u + int (reps_len ks))) \<and>*
+ zero u \<and>*
+ zero (u + 1) \<and>*
+ reps (u + 2) (1 + (u + int (reps_len ks))) ks \<and>*
+ zero (u + 2 + int (reps_len ks)) \<and>*
+ ones (3 + (u + int (reps_len ks))) (3 + (u + int (reps_len ks)) + int k)" in
+ tm.sequencing)
+ apply hsteps[1]
+ by (hstep snoc(1))
+ qed
+ qed
+qed
+
+lemma hoare_left_until_double_zero_gen[step]:
+ assumes h1: "ks \<noteq> []"
+ and h: "u = y" "w = v + 1" "x = v + 2"
+ shows "\<lbrace>st i ** ps u ** zero v ** zero w ** reps x y ks\<rbrace>
+ i:[left_until_double_zero]:j
+ \<lbrace>st j ** ps v ** zero v ** zero w ** reps x y ks\<rbrace>"
+ by (unfold h, rule hoare_left_until_double_zero[OF h1])
+
+lemma hoare_jmp_reps1:
+ assumes "ks \<noteq> []"
+ shows "\<lbrace> st i \<and>* ps u \<and>* reps u v ks\<rbrace>
+ i:[jmp e]:j
+ \<lbrace> st e \<and>* ps u \<and>* reps u v ks\<rbrace>"
+proof -
+ from assms obtain k ks' where Cons:"ks = k#ks'"
+ by (metis neq_Nil_conv)
+ thus ?thesis
+ proof(cases "ks' = []")
+ case True with Cons
+ show ?thesis
+ apply(simp add:sep_conj_cond reps.simps, intro tm.pre_condI, simp add:ones_simps)
+ by (hgoto hoare_jmp_gen)
+ next
+ case False
+ show ?thesis
+ apply (unfold `ks = k#ks'` reps_simp3[OF False], simp add:ones_simps)
+ by (hgoto hoare_jmp[where p = u])
+ qed
+qed
+
+lemma hoare_jmp_reps1_gen[step]:
+ assumes "ks \<noteq> []" "u = v"
+ shows "\<lbrace> st i \<and>* ps u \<and>* reps v w ks\<rbrace>
+ i:[jmp e]:j
+ \<lbrace> st e \<and>* ps u \<and>* reps v w ks\<rbrace>"
+ by (unfold assms, rule hoare_jmp_reps1[OF `ks \<noteq> []`])
+
+lemma hoare_jmp_reps:
+ "\<lbrace> st i \<and>* ps u \<and>* reps u v ks \<and>* tm (v + 1) x \<rbrace>
+ i:[(jmp e; c)]:j
+ \<lbrace> st e \<and>* ps u \<and>* reps u v ks \<and>* tm (v + 1) x \<rbrace>"
+proof(cases "ks")
+ case Nil
+ thus ?thesis
+ by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hsteps)
+next
+ case (Cons k ks')
+ thus ?thesis
+ proof(cases "ks' = []")
+ case True with Cons
+ show ?thesis
+ apply(simp add:sep_conj_cond, intro tm.pre_condI, simp)
+ by (hgoto hoare_jmp[where p = u])
+ next
+ case False
+ show ?thesis
+ apply (unfold `ks = k#ks'` reps_simp3[OF False], simp)
+ by (hgoto hoare_jmp[where p = u])
+ qed
+qed
+
+definition "shift_right =
+ (TL start exit.
+ TLabel start;
+ if_zero exit;
+ write_zero;
+ move_right;
+ right_until_zero;
+ write_one;
+ move_right;
+ jmp start;
+ TLabel exit
+ )"
+
+lemma hoare_shift_right_cons:
+ assumes h: "ks \<noteq> []"
+ shows "\<lbrace>st i \<and>* ps u ** reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace>
+ i:[shift_right]:j
+ \<lbrace>st j ** ps (v + 2) ** zero u ** reps (u + 1) (v + 1) ks ** zero (v + 2) \<rbrace>"
+proof(unfold shift_right_def, intro t_hoare_local t_hoare_label, clarify,
+ rule t_hoare_label_last, auto)
+ fix la
+ have eq_ones: "\<And> u k. (one (u + int k + 1) \<and>* ones (u + 1) (u + int k)) =
+ (one (u + 1) \<and>* ones (2 + u) (u + 1 + int k))"
+ by (smt cond_true_eq2 ones.simps ones_rev sep.mult_assoc sep.mult_commute
+ sep.mult_left_commute sep_conj_assoc sep_conj_commute
+ sep_conj_cond1 sep_conj_cond2 sep_conj_cond3 sep_conj_left_commute
+ sep_conj_trivial_strip2)
+ show "\<lbrace>st i \<and>* ps u \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>
+ i :[ (if_zero la ;
+ write_zero ; move_right ; right_until_zero ; write_one ; move_right ; jmp i) ]: la
+ \<lbrace>st la \<and>* ps (v + 2) \<and>* zero u \<and>* reps (u + 1) (v + 1) ks \<and>* zero (v + 2)\<rbrace>"
+ using h
+ proof(induct ks arbitrary:i u v)
+ case (Cons k ks)
+ thus ?case
+ proof(cases "ks = []")
+ let ?j = la
+ case True
+ let ?body = "i :[ (if_zero ?j ;
+ write_zero ;
+ move_right ;
+ right_until_zero ;
+ write_one ; move_right ; jmp i) ]: ?j"
+ have first_interation:
+ "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>*
+ zero (u + int k + 2)\<rbrace>
+ ?body
+ \<lbrace>st i \<and>*
+ ps (u + int k + 2) \<and>*
+ one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero u \<and>* zero (u + int k + 2)\<rbrace>"
+ apply (hsteps)
+ by (simp add:sep_conj_ac, sep_cancel+, smt)
+ hence "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>*
+ zero (u + int k + 2)\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>* ps (u + int k + 2) \<and>* zero u \<and>* one (u + 1) \<and>*
+ ones (2 + u) (u + 1 + int k) \<and>* zero (u + int k + 2)\<rbrace>"
+ proof(rule tm.sequencing)
+ show "\<lbrace>st i \<and>*
+ ps (u + int k + 2) \<and>*
+ one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero u \<and>* zero (u + int k + 2)\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>*
+ ps (u + int k + 2) \<and>*
+ zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>* zero (u + int k + 2)\<rbrace>"
+ apply (hgoto hoare_if_zero_true_gen)
+ by (simp add:sep_conj_ac eq_ones)
+ qed
+ with True
+ show ?thesis
+ by (simp, simp only:sep_conj_cond, intro tm.pre_condI, auto simp:sep_conj_ac)
+ next
+ case False
+ let ?j = la
+ let ?body = "i :[ (if_zero ?j ;
+ write_zero ;
+ move_right ; right_until_zero ;
+ write_one ; move_right ; jmp i) ]: ?j"
+ have eq_ones':
+ "(one (u + int k + 1) \<and>*
+ ones (u + 1) (u + int k) \<and>*
+ zero u \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2))
+ =
+ (zero u \<and>*
+ ones (u + 1) (u + int k) \<and>*
+ one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2))"
+ by (simp add:eq_ones sep_conj_ac)
+ have "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>*
+ reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>
+ ?body
+ \<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero u \<and>* ones (u + 1) (u + int k) \<and>*
+ one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
+ apply (hsteps)
+ by (auto simp:sep_conj_ac, sep_cancel+, smt)
+ hence "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>*
+ reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>* ps (v + 2) \<and>* zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>*
+ zero (2 + (u + int k)) \<and>* reps (3 + (u + int k)) (v + 1) ks \<and>* zero (v + 2)\<rbrace>"
+ proof(rule tm.sequencing)
+ have eq_ones':
+ "\<And> u k. (one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 2)) =
+ (one (u + 1) \<and>* zero (2 + (u + int k)) \<and>* ones (2 + u) (u + 1 + int k))"
+ by (smt eq_ones sep.mult_assoc sep_conj_commute)
+ show "\<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero u \<and>*
+ ones (u + 1) (u + int k) \<and>* one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>*
+ zero (v + 1) \<and>* zero (v + 2)\<rbrace>
+ ?body
+ \<lbrace>st ?j \<and>* ps (v + 2) \<and>* zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>*
+ zero (2 + (u + int k)) \<and>* reps (3 + (u + int k)) (v + 1) ks \<and>* zero (v + 2)\<rbrace>"
+ apply (hsteps Cons.hyps)
+ by (simp add:sep_conj_ac eq_ones, sep_cancel+, smt)
+ qed
+ thus ?thesis
+ by (unfold reps_simp3[OF False], auto simp:sep_conj_ac)
+ qed
+ qed auto
+qed
+
+lemma hoare_shift_right_cons_gen[step]:
+ assumes h: "ks \<noteq> []"
+ and h1: "u = v" "x = w + 1" "y = w + 2"
+ shows "\<lbrace>st i \<and>* ps u ** reps v w ks \<and>* zero x \<and>* zero y \<rbrace>
+ i:[shift_right]:j
+ \<lbrace>st j ** ps y ** zero v ** reps (v + 1) x ks ** zero y\<rbrace>"
+ by (unfold h1, rule hoare_shift_right_cons[OF h])
+
+lemma shift_right_nil [step]:
+ assumes "u = v"
+ shows
+ "\<lbrace> st i \<and>* ps u \<and>* zero v \<rbrace>
+ i:[shift_right]:j
+ \<lbrace> st j \<and>* ps u \<and>* zero v \<rbrace>"
+ by (unfold assms shift_right_def, intro t_hoare_local t_hoare_label, clarify,
+ rule t_hoare_label_last, simp+, hstep)
+
+
+text {*
+ @{text "clear_until_zero"} is useful to implement @{text "drag"}.
+*}
+
+definition "clear_until_zero =
+ (TL start exit.
+ TLabel start;
+ if_zero exit;
+ write_zero;
+ move_right;
+ jmp start;
+ TLabel exit)"
+
+lemma hoare_clear_until_zero[step]:
+ "\<lbrace>st i ** ps u ** ones u v ** zero (v + 1)\<rbrace>
+ i :[clear_until_zero]: j
+ \<lbrace>st j ** ps (v + 1) ** zeros u v ** zero (v + 1)\<rbrace> "
+proof(unfold clear_until_zero_def, intro t_hoare_local, rule t_hoare_label,
+ rule t_hoare_label_last, simp+)
+ let ?body = "i :[ (if_zero j ; write_zero ; move_right ; jmp i) ]: j"
+ show "\<lbrace>st i \<and>* ps u \<and>* ones u v \<and>* zero (v + 1)\<rbrace> ?body
+ \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros u v \<and>* zero (v + 1)\<rbrace>"
+ proof(induct u v rule: zeros.induct)
+ fix ia ja
+ assume h: "\<not> ja < ia \<Longrightarrow>
+ \<lbrace>st i \<and>* ps (ia + 1) \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace> ?body
+ \<lbrace>st j \<and>* ps (ja + 1) \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>"
+ show "\<lbrace>st i \<and>* ps ia \<and>* ones ia ja \<and>* zero (ja + 1)\<rbrace> ?body
+ \<lbrace>st j \<and>* ps (ja + 1) \<and>* zeros ia ja \<and>* zero (ja + 1)\<rbrace>"
+ proof(cases "ja < ia")
+ case True
+ thus ?thesis
+ by (simp add: ones.simps zeros.simps sep_conj_ac, simp only:sep_conj_cond,
+ intro tm.pre_condI, simp, hsteps)
+ next
+ case False
+ note h[OF False, step]
+ from False have ones_eq: "ones ia ja = (one ia \<and>* ones (ia + 1) ja)"
+ by(simp add: ones.simps)
+ from False have zeros_eq: "zeros ia ja = (zero ia \<and>* zeros (ia + 1) ja)"
+ by(simp add: zeros.simps)
+ have s1: "\<lbrace>st i \<and>* ps ia \<and>* one ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace> ?body
+ \<lbrace>st i \<and>* ps (ia + 1) \<and>* zero ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>"
+ proof(cases "ja < ia + 1")
+ case True
+ from True False have "ja = ia" by auto
+ thus ?thesis
+ apply(simp add: ones.simps)
+ by (hsteps)
+ next
+ case False
+ from False have "ones (ia + 1) ja = (one (ia + 1) \<and>* ones (ia + 1 + 1) ja)"
+ by(simp add: ones.simps)
+ thus ?thesis
+ by (simp, hsteps)
+ qed
+ have s2: "\<lbrace>st i \<and>* ps (ia + 1) \<and>* zero ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>
+ ?body
+ \<lbrace>st j \<and>* ps (ja + 1) \<and>* zero ia \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>"
+ by hsteps
+ from tm.sequencing[OF s1 s2] have
+ "\<lbrace>st i \<and>* ps ia \<and>* one ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace> ?body
+ \<lbrace>st j \<and>* ps (ja + 1) \<and>* zero ia \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>" .
+ thus ?thesis
+ unfolding ones_eq zeros_eq by(simp add: sep_conj_ac)
+ qed
+ qed
+qed
+
+lemma hoare_clear_until_zero_gen[step]:
+ assumes "u = v" "x = w + 1"
+ shows "\<lbrace>st i ** ps u ** ones v w ** zero x\<rbrace>
+ i :[clear_until_zero]: j
+ \<lbrace>st j ** ps x ** zeros v w ** zero x\<rbrace>"
+ by (unfold assms, rule hoare_clear_until_zero)
+
+definition "shift_left =
+ (TL start exit.
+ TLabel start;
+ if_zero exit;
+ move_left;
+ write_one;
+ right_until_zero;
+ move_left;
+ write_zero;
+ move_right;
+ move_right;
+ jmp start;
+ TLabel exit)
+ "
+
+declare ones_simps[simp del]
+
+lemma hoare_move_left_reps[step]:
+ assumes "ks \<noteq> []" "u = v"
+ shows
+ "\<lbrace>st i ** ps u ** reps v w ks\<rbrace>
+ i:[move_left]:j
+ \<lbrace>st j ** ps (u - 1) ** reps v w ks\<rbrace>"
+proof -
+ from `ks \<noteq> []` obtain y ys where eq_ks: "ks = y#ys"
+ by (metis neq_Nil_conv)
+ show ?thesis
+ apply (unfold assms eq_ks)
+ apply (case_tac ys, simp)
+ my_block
+ have "(ones v (v + int y)) = (one v \<and>* ones (v + 1) (v + int y))"
+ by (smt ones_step_simp)
+ my_block_end
+ apply (unfold this, hsteps)
+ by (simp add:this, hsteps)
+qed
+
+lemma hoare_shift_left_cons:
+ assumes h: "ks \<noteq> []"
+ shows "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace>
+ i:[shift_left]:j
+ \<lbrace>st j \<and>* ps (v + 2) \<and>* reps (u - 1) (v - 1) ks \<and>* zero v \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace>"
+proof(unfold shift_left_def, intro t_hoare_local t_hoare_label, clarify,
+ rule t_hoare_label_last, simp+, clarify, prune)
+ show " \<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>
+ i :[ (if_zero j ;
+ move_left ;
+ write_one ;
+ right_until_zero ;
+ move_left ; write_zero ;
+ move_right ; move_right ; jmp i) ]: j
+ \<lbrace>st j \<and>* ps (v + 2) \<and>* reps (u - 1) (v - 1) ks \<and>* zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
+ using h
+ proof(induct ks arbitrary:i u v x)
+ case (Cons k ks)
+ thus ?case
+ proof(cases "ks = []")
+ let ?body = "i :[ (if_zero j ; move_left ; write_one ; right_until_zero ;
+ move_left ; write_zero ; move_right ; move_right ; jmp i) ]: j"
+ case True
+ have "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* (one u \<and>* ones (u + 1) (u + int k)) \<and>*
+ zero (u + int k + 1) \<and>* zero (u + int k + 2)\<rbrace>
+ ?body
+ \<lbrace>st j \<and>* ps (u + int k + 2) \<and>* (one (u - 1) \<and>* ones u (u - 1 + int k)) \<and>*
+ zero (u + int k) \<and>* zero (u + int k + 1) \<and>* zero (u + int k + 2)\<rbrace>"
+ apply(rule tm.sequencing [where q = "st i \<and>* ps (u + int k + 2) \<and>*
+ (one (u - 1) \<and>* ones u (u - 1 + int k)) \<and>*
+ zero (u + int k) \<and>* zero (u + int k + 1) \<and>* zero (u + int k + 2)"])
+ apply (hsteps)
+ apply (rule_tac p = "st j' \<and>* ps (u - 1) \<and>* ones (u - 1) (u + int k) \<and>*
+ zero (u + int k + 1) \<and>* zero (u + int k + 2)"
+ in tm.pre_stren)
+ apply (hsteps)
+ my_block
+ have "(ones (u - 1) (u + int k)) = (ones (u - 1) (u + int k - 1) \<and>* one (u + int k))"
+ by (smt ones_rev)
+ my_block_end
+ apply (unfold this)
+ apply hsteps
+ apply (simp add:sep_conj_ac, sep_cancel+)
+ apply (smt ones.simps sep.mult_assoc sep_conj_commuteI)
+ apply (simp add:sep_conj_ac)+
+ apply (sep_cancel+)
+ apply (smt ones.simps sep.mult_left_commute sep_conj_commuteI this)
+ by hstep
+ with True show ?thesis
+ by (simp add:ones_simps, simp only:sep_conj_cond, intro tm.pre_condI, simp)
+ next
+ case False
+ let ?body = "i :[ (if_zero j ; move_left ; write_one ;right_until_zero ; move_left ;
+ write_zero ; move_right ; move_right ; jmp i) ]: j"
+ have "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>*
+ zero (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>
+ ?body
+ \<lbrace>st j \<and>* ps (v + 2) \<and>* one (u - 1) \<and>* ones u (u - 1 + int k) \<and>*
+ zero (u + int k) \<and>* reps (1 + (u + int k)) (v - 1) ks \<and>*
+ zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
+ apply (rule tm.sequencing[where q = "st i \<and>* ps (u + int k + 2) \<and>*
+ zero (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>*
+ zero (v + 2) \<and>* one (u - 1) \<and>* ones u (u - 1 + int k) \<and>* zero (u + int k)"])
+ apply (hsteps)
+ apply (rule_tac p = "st j' \<and>* ps (u - 1) \<and>*
+ ones (u - 1) (u + int k) \<and>*
+ zero (u + int k + 1) \<and>*
+ reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)
+ " in tm.pre_stren)
+ apply hsteps
+ my_block
+ have "(ones (u - 1) (u + int k)) =
+ (ones (u - 1) (u + int k - 1) \<and>* one (u + int k))"
+ by (smt ones_rev)
+ my_block_end
+ apply (unfold this)
+ apply (hsteps)
+ apply (sep_cancel+)
+ apply (smt ones.simps sep.mult_assoc sep_conj_commuteI)
+ apply (sep_cancel+)
+ apply (smt ones.simps this)
+ my_block
+ have eq_u: "1 + (u + int k) = u + int k + 1" by simp
+ from Cons.hyps[OF `ks \<noteq> []`, of i "u + int k + 2" Bk v, folded zero_def]
+ have "\<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero (u + int k + 1) \<and>*
+ reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>
+ ?body
+ \<lbrace>st j \<and>* ps (v + 2) \<and>* reps (1 + (u + int k)) (v - 1) ks \<and>*
+ zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
+ by (simp add:eq_u)
+ my_block_end my_note hh[step] = this
+ by hsteps
+ thus ?thesis
+ by (unfold reps_simp3[OF False], auto simp:sep_conj_ac ones_simps)
+ qed
+ qed auto
+qed
+
+lemma hoare_shift_left_cons_gen[step]:
+ assumes h: "ks \<noteq> []"
+ "v = u - 1" "w = u" "y = x + 1" "z = x + 2"
+ shows "\<lbrace>st i \<and>* ps u \<and>* tm v vv \<and>* reps w x ks \<and>* tm y Bk \<and>* tm z Bk\<rbrace>
+ i:[shift_left]:j
+ \<lbrace>st j \<and>* ps z \<and>* reps v (x - 1) ks \<and>* zero x \<and>* zero y \<and>* zero z \<rbrace>"
+ by (unfold assms, fold zero_def, rule hoare_shift_left_cons[OF `ks \<noteq> []`])
+
+definition "bone c1 c2 = (TL exit l_one.
+ if_one l_one;
+ (c1;
+ jmp exit);
+ TLabel l_one;
+ c2;
+ TLabel exit
+ )"
+
+lemma hoare_bone_1_out:
+ assumes h:
+ "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+ i:[c1]:j
+ \<lbrace>st e \<and>* q \<rbrace>
+ "
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+ i:[(bone c1 c2)]:j
+ \<lbrace>st e \<and>* q \<rbrace>
+ "
+apply (unfold bone_def, intro t_hoare_local)
+apply hsteps
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+by (rule h)
+
+lemma hoare_bone_1:
+ assumes h:
+ "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+ i:[c1]:j
+ \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
+ "
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+ i:[(bone c1 c2)]:j
+ \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
+ "
+proof -
+ note h[step]
+ show ?thesis
+ apply (unfold bone_def, intro t_hoare_local)
+ apply (rule t_hoare_label_last, auto)
+ apply hsteps
+ apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+ by hsteps
+qed
+
+lemma hoare_bone_2:
+ assumes h:
+ "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+ i:[c2]:j
+ \<lbrace>st j \<and>* q \<rbrace>
+ "
+ shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+ i:[(bone c1 c2)]:j
+ \<lbrace>st j \<and>* q \<rbrace>
+ "
+apply (unfold bone_def, intro t_hoare_local)
+apply (rule_tac q = "st la \<and>* ps u \<and>* one u \<and>* p" in tm.sequencing)
+apply hsteps
+apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
+apply (subst tassemble_to.simps(2), intro tm.code_exI)
+apply (subst tassemble_to.simps(4), intro tm.code_condI, simp)
+apply (subst tassemble_to.simps(2), intro tm.code_exI)
+apply (subst tassemble_to.simps(4), simp add:sep_conj_cond, rule tm.code_condI, simp)
+by (rule h)
+
+lemma hoare_bone_2_out:
+ assumes h:
+ "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+ i:[c2]:j
+ \<lbrace>st e \<and>* q \<rbrace>
+ "
+ shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+ i:[(bone c1 c2)]:j
+ \<lbrace>st e \<and>* q \<rbrace>
+ "
+apply (unfold bone_def, intro t_hoare_local)
+apply (rule_tac q = "st la \<and>* ps u \<and>* one u \<and>* p" in tm.sequencing)
+apply hsteps
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
+apply (subst tassemble_to.simps(2), intro tm.code_exI)
+apply (subst tassemble_to.simps(4), rule tm.code_condI, simp)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+by (rule h)
+
+definition "bzero c1 c2 = (TL exit l_zero.
+ if_zero l_zero;
+ (c1;
+ jmp exit);
+ TLabel l_zero;
+ c2;
+ TLabel exit
+ )"
+
+lemma hoare_bzero_1:
+ assumes h[step]:
+ "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+ i:[c1]:j
+ \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
+ "
+ shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+ i:[(bzero c1 c2)]:j
+ \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
+ "
+apply (unfold bzero_def, intro t_hoare_local)
+apply hsteps
+apply (rule_tac c = " ((c1 ; jmp l) ; TLabel la ; c2 ; TLabel l)" in t_hoare_label_last, auto)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension)
+by hsteps
+
+lemma hoare_bzero_1_out:
+ assumes h[step]:
+ "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+ i:[c1]:j
+ \<lbrace>st e \<and>* q \<rbrace>
+ "
+ shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+ i:[(bzero c1 c2)]:j
+ \<lbrace>st e \<and>* q \<rbrace>
+ "
+apply (unfold bzero_def, intro t_hoare_local)
+apply hsteps
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+by (rule h)
+
+lemma hoare_bzero_2:
+ assumes h:
+ "\<And> i j. \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+ i:[c2]:j
+ \<lbrace>st j \<and>* q \<rbrace>
+ "
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+ i:[(bzero c1 c2)]:j
+ \<lbrace>st j \<and>* q \<rbrace>
+ "
+ apply (unfold bzero_def, intro t_hoare_local)
+ apply (rule_tac q = "st la \<and>* ps u \<and>* zero u \<and>* p" in tm.sequencing)
+ apply hsteps
+ apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
+ apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
+ apply (subst tassemble_to.simps(2), intro tm.code_exI)
+ apply (subst tassemble_to.simps(4))
+ apply (rule tm.code_condI, simp)
+ apply (subst tassemble_to.simps(2))
+ apply (rule tm.code_exI)
+ apply (subst tassemble_to.simps(4), simp add:sep_conj_cond)
+ apply (rule tm.code_condI, simp)
+ by (rule h)
+
+lemma hoare_bzero_2_out:
+ assumes h:
+ "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+ i:[c2]:j
+ \<lbrace>st e \<and>* q \<rbrace>
+ "
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p\<rbrace>
+ i:[(bzero c1 c2)]:j
+ \<lbrace>st e \<and>* q \<rbrace>
+ "
+apply (unfold bzero_def, intro t_hoare_local)
+apply (rule_tac q = "st la \<and>* ps u \<and>* zero u \<and>* p" in tm.sequencing)
+apply hsteps
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
+apply (subst tassemble_to.simps(2), intro tm.code_exI)
+apply (subst tassemble_to.simps(4), rule tm.code_condI, simp)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+by (rule h)
+
+definition "skip_or_set = bone (write_one; move_right; move_right)
+ (right_until_zero; move_right)"
+
+lemma reps_len_split:
+ assumes "xs \<noteq> []" "ys \<noteq> []"
+ shows "reps_len (xs @ ys) = reps_len xs + reps_len ys + 1"
+ using assms
+proof(induct xs arbitrary:ys)
+ case (Cons x1 xs1)
+ show ?case
+ proof(cases "xs1 = []")
+ case True
+ thus ?thesis
+ by (simp add:reps_len_cons[OF `ys \<noteq> []`] reps_len_sg)
+ next
+ case False
+ hence " xs1 @ ys \<noteq> []" by simp
+ thus ?thesis
+ apply (simp add:reps_len_cons[OF `xs1@ys \<noteq> []`] reps_len_cons[OF `xs1 \<noteq> []`])
+ by (simp add: Cons.hyps[OF `xs1 \<noteq> []` `ys \<noteq> []`])
+ qed
+qed auto
+
+lemma hoare_skip_or_set_set:
+ "\<lbrace> st i \<and>* ps u \<and>* zero u \<and>* zero (u + 1) \<and>* tm (u + 2) x\<rbrace>
+ i:[skip_or_set]:j
+ \<lbrace> st j \<and>* ps (u + 2) \<and>* one u \<and>* zero (u + 1) \<and>* tm (u + 2) x\<rbrace>"
+ apply(unfold skip_or_set_def)
+ apply(rule_tac q = "st j \<and>* ps (u + 2) \<and>* tm (u + 2) x \<and>* one u \<and>* zero (u + 1)"
+ in tm.post_weaken)
+ apply(rule hoare_bone_1)
+ apply hsteps
+ by (auto simp:sep_conj_ac, sep_cancel+, smt)
+
+lemma hoare_skip_or_set_set_gen[step]:
+ assumes "u = v" "w = v + 1" "x = v + 2"
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero v \<and>* zero w \<and>* tm x xv\<rbrace>
+ i:[skip_or_set]:j
+ \<lbrace>st j \<and>* ps x \<and>* one v \<and>* zero w \<and>* tm x xv\<rbrace>"
+ by (unfold assms, rule hoare_skip_or_set_set)
+
+lemma hoare_skip_or_set_skip:
+ "\<lbrace> st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>
+ i:[skip_or_set]:j
+ \<lbrace> st j \<and>* ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>"
+proof -
+ show ?thesis
+ apply(unfold skip_or_set_def, unfold reps.simps, simp add:sep_conj_cond)
+ apply(rule tm.pre_condI, simp)
+ apply(rule_tac p = "st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>*
+ zero (u + int k + 1)"
+ in tm.pre_stren)
+ apply (rule_tac q = "st j \<and>* ps (u + int k + 2) \<and>*
+ one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1)
+ " in tm.post_weaken)
+ apply (rule hoare_bone_2)
+ apply (rule_tac p = " st i \<and>* ps u \<and>* ones u (u + int k) \<and>* zero (u + int k + 1)
+ " in tm.pre_stren)
+ apply hsteps
+ apply (simp add:sep_conj_ac, sep_cancel+, auto simp:sep_conj_ac ones_simps)
+ by (sep_cancel+, smt)
+ qed
+
+lemma hoare_skip_or_set_skip_gen[step]:
+ assumes "u = v" "x = w + 1"
+ shows "\<lbrace> st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>
+ i:[skip_or_set]:j
+ \<lbrace> st j \<and>* ps (w + 2) \<and>* reps v w [k] \<and>* zero x\<rbrace>"
+ by (unfold assms, rule hoare_skip_or_set_skip)
+
+
+definition "if_reps_z e = (move_right;
+ bone (move_left; jmp e) (move_left)
+ )"
+
+lemma hoare_if_reps_z_true:
+ assumes h: "k = 0"
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>
+ i:[if_reps_z e]:j
+ \<lbrace>st e \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>"
+ apply (unfold reps.simps, simp add:sep_conj_cond)
+ apply (rule tm.pre_condI, simp add:h)
+ apply (unfold if_reps_z_def)
+ apply (simp add:ones_simps)
+ apply (hsteps)
+ apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* zero (u + 1) \<and>* one u" in tm.pre_stren)
+ apply (rule hoare_bone_1_out)
+ by (hsteps)
+
+lemma hoare_if_reps_z_true_gen[step]:
+ assumes "k = 0" "u = v" "x = w + 1"
+ shows "\<lbrace>st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>
+ i:[if_reps_z e]:j
+ \<lbrace>st e \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>"
+ by (unfold assms, rule hoare_if_reps_z_true, simp)
+
+lemma hoare_if_reps_z_false:
+ assumes h: "k \<noteq> 0"
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* reps u v [k]\<rbrace>
+ i:[if_reps_z e]:j
+ \<lbrace>st j \<and>* ps u \<and>* reps u v [k]\<rbrace>"
+proof -
+ from h obtain k' where "k = Suc k'" by (metis not0_implies_Suc)
+ show ?thesis
+ apply (unfold `k = Suc k'`)
+ apply (simp add:sep_conj_cond, rule tm.pre_condI, simp)
+ apply (unfold if_reps_z_def)
+ apply (simp add:ones_simps)
+ apply hsteps
+ apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* one (u + 1) \<and>* one u \<and>*
+ ones (2 + u) (u + (1 + int k'))" in tm.pre_stren)
+ apply (rule_tac hoare_bone_2)
+ by (hsteps)
+qed
+
+lemma hoare_if_reps_z_false_gen[step]:
+ assumes h: "k \<noteq> 0" "u = v"
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* reps v w [k]\<rbrace>
+ i:[if_reps_z e]:j
+ \<lbrace>st j \<and>* ps u \<and>* reps v w [k]\<rbrace>"
+ by (unfold assms, rule hoare_if_reps_z_false[OF `k \<noteq> 0`])
+
+definition "if_reps_nz e = (move_right;
+ bzero (move_left; jmp e) (move_left)
+ )"
+
+lemma EXS_postI:
+ assumes "\<lbrace>P\<rbrace>
+ c
+ \<lbrace>Q x\<rbrace>"
+ shows "\<lbrace>P\<rbrace>
+ c
+ \<lbrace>EXS x. Q x\<rbrace>"
+by (metis EXS_intro assms tm.hoare_adjust)
+
+lemma hoare_if_reps_nz_true:
+ assumes h: "k \<noteq> 0"
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* reps u v [k]\<rbrace>
+ i:[if_reps_nz e]:j
+ \<lbrace>st e \<and>* ps u \<and>* reps u v [k]\<rbrace>"
+proof -
+ from h obtain k' where "k = Suc k'" by (metis not0_implies_Suc)
+ show ?thesis
+ apply (unfold `k = Suc k'`)
+ apply (unfold reps.simps, simp add:sep_conj_cond, rule tm.pre_condI, simp)
+ apply (unfold if_reps_nz_def)
+ apply (simp add:ones_simps)
+ apply hsteps
+ apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* one (u + 1) \<and>* one u \<and>*
+ ones (2 + u) (u + (1 + int k'))" in tm.pre_stren)
+ apply (rule hoare_bzero_1_out)
+ by hsteps
+qed
+
+
+lemma hoare_if_reps_nz_true_gen[step]:
+ assumes h: "k \<noteq> 0" "u = v"
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* reps v w [k]\<rbrace>
+ i:[if_reps_nz e]:j
+ \<lbrace>st e \<and>* ps u \<and>* reps v w [k]\<rbrace>"
+ by (unfold assms, rule hoare_if_reps_nz_true[OF `k\<noteq> 0`])
+
+lemma hoare_if_reps_nz_false:
+ assumes h: "k = 0"
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>
+ i:[if_reps_nz e]:j
+ \<lbrace>st j \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>"
+ apply (simp add:h sep_conj_cond)
+ apply (rule tm.pre_condI, simp)
+ apply (unfold if_reps_nz_def)
+ apply (simp add:ones_simps)
+ apply (hsteps)
+ apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* zero (u + 1) \<and>* one u" in tm.pre_stren)
+ apply (rule hoare_bzero_2)
+ by (hsteps)
+
+lemma hoare_if_reps_nz_false_gen[step]:
+ assumes h: "k = 0" "u = v" "x = w + 1"
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>
+ i:[if_reps_nz e]:j
+ \<lbrace>st j \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>"
+ by (unfold assms, rule hoare_if_reps_nz_false, simp)
+
+definition "skip_or_sets n = tpg_fold (replicate n skip_or_set)"
+
+
+
+lemma hoare_skip_or_sets_set:
+ shows "\<lbrace>st i \<and>* ps u \<and>* zeros u (u + int (reps_len (replicate (Suc n) 0))) \<and>*
+ tm (u + int (reps_len (replicate (Suc n) 0)) + 1) x\<rbrace>
+ i:[skip_or_sets (Suc n)]:j
+ \<lbrace>st j \<and>* ps (u + int (reps_len (replicate (Suc n) 0)) + 1) \<and>*
+ reps' u (u + int (reps_len (replicate (Suc n) 0))) (replicate (Suc n) 0) \<and>*
+ tm (u + int (reps_len (replicate (Suc n) 0)) + 1) x \<rbrace>"
+proof(induct n arbitrary:i j u x)
+ case 0
+ from 0 show ?case
+ apply (simp add:reps'_def reps_len_def reps_ctnt_len_def reps_sep_len_def reps.simps)
+ apply (unfold skip_or_sets_def, simp add:tpg_fold_sg)
+ apply hsteps
+ by (auto simp:sep_conj_ac, smt cond_true_eq2 ones.simps sep_conj_left_commute)
+next
+ case (Suc n)
+ { fix n
+ have "listsum (replicate n (Suc 0)) = n"
+ by (induct n, auto)
+ } note eq_sum = this
+ have eq_len: "\<And>n. n \<noteq> 0 \<Longrightarrow> reps_len (replicate (Suc n) 0) = reps_len (replicate n 0) + 2"
+ by (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def)
+ have eq_zero: "\<And> u v. (zeros u (u + int (v + 2))) =
+ (zeros u (u + (int v)) \<and>* zero (u + (int v) + 1) \<and>* zero (u + (int v) + 2))"
+ by (smt sep.mult_assoc zeros_rev)
+ hence eq_z:
+ "zeros u (u + int (reps_len (replicate (Suc (Suc n)) 0))) =
+ (zeros u (u + int (reps_len (replicate (Suc n) 0))) \<and>*
+ zero ((u + int (reps_len (replicate (Suc n) 0))) + 1) \<and>*
+ zero ((u + int (reps_len (replicate (Suc n) 0))) + 2))
+ " by (simp only:eq_len)
+ have hh: "\<And>x. (replicate (Suc (Suc n)) x) = (replicate (Suc n) x) @ [x]"
+ by (metis replicate_Suc replicate_append_same)
+ have hhh: "replicate (Suc n) skip_or_set \<noteq> []" "[skip_or_set] \<noteq> []" by auto
+ have eq_code:
+ "(i :[ skip_or_sets (Suc (Suc n)) ]: j) =
+ (i :[ (skip_or_sets (Suc n); skip_or_set) ]: j)"
+ proof(unfold skip_or_sets_def)
+ show "i :[ tpg_fold (replicate (Suc (Suc n)) skip_or_set) ]: j =
+ i :[ (tpg_fold (replicate (Suc n) skip_or_set) ; skip_or_set) ]: j"
+ apply (insert tpg_fold_app[OF hhh, of i j], unfold hh)
+ by (simp only:tpg_fold_sg)
+ qed
+ have "Suc n \<noteq> 0" by simp
+ show ?case
+ apply (unfold eq_z eq_code)
+ apply (hstep Suc(1))
+ apply (unfold eq_len[OF `Suc n \<noteq> 0`])
+ apply hstep
+ apply (auto simp:sep_conj_ac)[1]
+ apply (sep_cancel+, prune)
+ apply (fwd abs_ones)
+ apply ((fwd abs_reps')+, simp add:int_add_ac)
+ by (metis replicate_append_same)
+ qed
+
+lemma hoare_skip_or_sets_set_gen[step]:
+ assumes h: "p2 = p1"
+ "p3 = p1 + int (reps_len (replicate (Suc n) 0))"
+ "p4 = p3 + 1"
+ shows "\<lbrace>st i \<and>* ps p1 \<and>* zeros p2 p3 \<and>* tm p4 x\<rbrace>
+ i:[skip_or_sets (Suc n)]:j
+ \<lbrace>st j \<and>* ps p4 \<and>* reps' p2 p3 (replicate (Suc n) 0) \<and>* tm p4 x\<rbrace>"
+ apply (unfold h)
+ by (rule hoare_skip_or_sets_set)
+
+declare reps.simps[simp del]
+
+lemma hoare_skip_or_sets_skip:
+ assumes h: "n < length ks"
+ shows "\<lbrace>st i \<and>* ps u \<and>* reps' u v (take n ks) \<and>* reps' (v + 1) w [ks!n] \<rbrace>
+ i:[skip_or_sets (Suc n)]:j
+ \<lbrace>st j \<and>* ps (w+1) \<and>* reps' u v (take n ks) \<and>* reps' (v + 1) w [ks!n]\<rbrace>"
+ using h
+proof(induct n arbitrary: i j u v w ks)
+ case 0
+ show ?case
+ apply (subst (1 5) reps'_def, simp add:sep_conj_cond, intro tm.pre_condI, simp)
+ apply (unfold skip_or_sets_def, simp add:tpg_fold_sg)
+ apply (unfold reps'_def, simp del:reps.simps)
+ apply hsteps
+ by (sep_cancel+, smt+)
+next
+ case (Suc n)
+ from `Suc n < length ks` have "n < length ks" by auto
+ note h = Suc(1) [OF this]
+ show ?case
+ my_block
+ from `Suc n < length ks`
+ have eq_take: "take (Suc n) ks = take n ks @ [ks!n]"
+ by (metis not_less_eq not_less_iff_gr_or_eq take_Suc_conv_app_nth)
+ my_block_end
+ apply (unfold this)
+ apply (subst reps'_append, simp add:sep_conj_exists, rule tm.precond_exI)
+ my_block
+ have "(i :[ skip_or_sets (Suc (Suc n)) ]: j) =
+ (i :[ (skip_or_sets (Suc n); skip_or_set )]: j)"
+ proof -
+ have eq_rep:
+ "(replicate (Suc (Suc n)) skip_or_set) = ((replicate (Suc n) skip_or_set) @ [skip_or_set])"
+ by (metis replicate_Suc replicate_append_same)
+ have "replicate (Suc n) skip_or_set \<noteq> []" "[skip_or_set] \<noteq> []" by auto
+ from tpg_fold_app[OF this]
+ show ?thesis
+ by (unfold skip_or_sets_def eq_rep, simp del:replicate.simps add:tpg_fold_sg)
+ qed
+ my_block_end
+ apply (unfold this)
+ my_block
+ fix i j m
+ have "\<lbrace>st i \<and>* ps u \<and>* (reps' u (m - 1) (take n ks) \<and>* reps' m v [ks ! n])\<rbrace>
+ i :[ (skip_or_sets (Suc n)) ]: j
+ \<lbrace>st j \<and>* ps (v + 1) \<and>* (reps' u (m - 1) (take n ks) \<and>* reps' m v [ks ! n])\<rbrace>"
+ apply (rule h[THEN tm.hoare_adjust])
+ by (sep_cancel+, auto)
+ my_block_end my_note h_c1 = this
+ my_block
+ fix j' j m
+ have "\<lbrace>st j' \<and>* ps (v + 1) \<and>* reps' (v + 1) w [ks ! Suc n]\<rbrace>
+ j' :[ skip_or_set ]: j
+ \<lbrace>st j \<and>* ps (w + 1) \<and>* reps' (v + 1) w [ks ! Suc n]\<rbrace>"
+ apply (unfold reps'_def, simp)
+ apply (rule hoare_skip_or_set_skip[THEN tm.hoare_adjust])
+ by (sep_cancel+, smt)+
+ my_block_end
+ apply (hstep h_c1 this)+
+ by ((fwd abs_reps'), simp, sep_cancel+)
+qed
+
+lemma hoare_skip_or_sets_skip_gen[step]:
+ assumes h: "n < length ks" "u = v" "x = w + 1"
+ shows "\<lbrace>st i \<and>* ps u \<and>* reps' v w (take n ks) \<and>* reps' x y [ks!n] \<rbrace>
+ i:[skip_or_sets (Suc n)]:j
+ \<lbrace>st j \<and>* ps (y+1) \<and>* reps' v w (take n ks) \<and>* reps' x y [ks!n]\<rbrace>"
+ by (unfold assms, rule hoare_skip_or_sets_skip[OF `n < length ks`])
+
+lemma fam_conj_interv_simp:
+ "(fam_conj {(ia::int)<..} p) = ((p (ia + 1)) \<and>* fam_conj {ia + 1 <..} p)"
+by (smt Collect_cong fam_conj_insert_simp greaterThan_def
+ greaterThan_eq_iff greaterThan_iff insertI1
+ insert_compr lessThan_iff mem_Collect_eq)
+
+lemma zeros_fam_conj:
+ assumes "u \<le> v"
+ shows "(zeros u v \<and>* fam_conj {v<..} zero) = fam_conj {u - 1<..} zero"
+proof -
+ have "{u - 1<..v} ## {v <..}" by (auto simp:set_ins_def)
+ from fam_conj_disj_simp[OF this, symmetric]
+ have "(fam_conj {u - 1<..v} zero \<and>* fam_conj {v<..} zero) = fam_conj ({u - 1<..v} + {v<..}) zero" .
+ moreover
+ from `u \<le> v` have eq_set: "{u - 1 <..} = {u - 1 <..v} + {v <..}" by (auto simp:set_ins_def)
+ moreover have "fam_conj {u - 1<..v} zero = zeros u v"
+ proof -
+ have "({u - 1<..v}) = ({u .. v})" by auto
+ moreover {
+ fix u v
+ assume "u \<le> (v::int)"
+ hence "fam_conj {u .. v} zero = zeros u v"
+ proof(induct rule:ones_induct)
+ case (Base i j)
+ thus ?case by auto
+ next
+ case (Step i j)
+ thus ?case
+ proof(cases "i = j")
+ case True
+ show ?thesis
+ by (unfold True, simp add:fam_conj_simps)
+ next
+ case False
+ with `i \<le> j` have hh: "i + 1 \<le> j" by auto
+ hence eq_set: "{i..j} = (insert i {i + 1 .. j})"
+ by (smt simp_from_to)
+ have "i \<notin> {i + 1 .. j}" by simp
+ from fam_conj_insert_simp[OF this, folded eq_set]
+ have "fam_conj {i..j} zero = (zero i \<and>* fam_conj {i + 1..j} zero)" .
+ with Step(2)[OF hh] Step
+ show ?thesis by simp
+ qed
+ qed
+ }
+ moreover note this[OF `u \<le> v`]
+ ultimately show ?thesis by simp
+ qed
+ ultimately show ?thesis by smt
+qed
+
+declare replicate.simps [simp del]
+
+lemma hoare_skip_or_sets_comb:
+ assumes "length ks \<le> n"
+ shows "\<lbrace>st i \<and>* ps u \<and>* reps u v ks \<and>* fam_conj {v<..} zero\<rbrace>
+ i:[skip_or_sets (Suc n)]:j
+ \<lbrace>st j \<and>* ps ((v + int (reps_len (list_ext n ks)) - int (reps_len ks))+ 2) \<and>*
+ reps' u (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) (list_ext n ks) \<and>*
+ fam_conj {(v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1)<..} zero \<rbrace>"
+proof(cases "ks = []")
+ case True
+ show ?thesis
+ apply (subst True, simp only:reps.simps sep_conj_cond)
+ apply (rule tm.pre_condI, simp)
+ apply (rule_tac p = "st i \<and>* ps (v + 1) \<and>*
+ zeros (v + 1) (v + 1 + int (reps_len (replicate (Suc n) 0))) \<and>*
+ tm (v + 2 + int (reps_len (replicate (Suc n) 0))) Bk \<and>*
+ fam_conj {(v + 2 + int (reps_len (replicate (Suc n) 0)))<..} zero
+ " in tm.pre_stren)
+ apply hsteps
+ apply (auto simp:sep_conj_ac)[1]
+ apply (auto simp:sep_conj_ac)[2]
+ my_block
+ from True have "(list_ext n ks) = (replicate (Suc n) 0)"
+ by (metis append_Nil diff_zero list.size(3) list_ext_def)
+ my_block_end my_note le_red = this
+ my_block
+ from True have "(reps_len ks) = 0"
+ by (metis reps_len_nil)
+ my_block_end
+ apply (unfold this le_red, simp)
+ my_block
+ have "v + 2 + int (reps_len (replicate (Suc n) 0)) =
+ v + int (reps_len (replicate (Suc n) 0)) + 2" by smt
+ my_block_end my_note eq_len = this
+ apply (unfold this)
+ apply (sep_cancel+)
+ apply (fold zero_def)
+ apply (subst fam_conj_interv_simp, simp)
+ apply (simp only:int_add_ac)
+ apply (simp only:sep_conj_ac, sep_cancel+)
+ my_block
+ have "v + 1 \<le> (2 + (v + int (reps_len (replicate (Suc n) 0))))" by simp
+ from zeros_fam_conj[OF this]
+ have "(fam_conj {v<..} zero) = (zeros (v + 1) (2 + (v + int (reps_len (replicate (Suc n) 0)))) \<and>*
+ fam_conj {2 + (v + int (reps_len (replicate (Suc n) 0)))<..} zero)"
+ by simp
+ my_block_end
+ apply (subst (asm) this, simp only:int_add_ac, sep_cancel+)
+ by (smt cond_true_eq2 sep.mult_assoc sep.mult_commute
+ sep.mult_left_commute sep_conj_assoc sep_conj_commute
+ sep_conj_left_commute zeros.simps zeros_rev)
+next
+ case False
+ show ?thesis
+ my_block
+ have "(i:[skip_or_sets (Suc n)]:j) =
+ (i:[(skip_or_sets (length ks); skip_or_sets (Suc n - length ks))]:j)"
+ apply (unfold skip_or_sets_def)
+ my_block
+ have "(replicate (Suc n) skip_or_set) =
+ (replicate (length ks) skip_or_set @ (replicate (Suc n - length ks) skip_or_set))"
+ by (smt assms replicate_add)
+ my_block_end
+ apply (unfold this, rule tpg_fold_app, simp add:False)
+ by (insert `length ks \<le> n`, simp)
+ my_block_end
+ apply (unfold this)
+ my_block
+ from False have "length ks = (Suc (length ks - 1))" by simp
+ my_block_end
+ apply (subst (1) this)
+ my_block
+ from False
+ have "(reps u v ks \<and>* fam_conj {v<..} zero) =
+ (reps' u (v + 1) ks \<and>* fam_conj {v+1<..} zero)"
+ apply (unfold reps'_def, simp)
+ by (subst fam_conj_interv_simp, simp add:sep_conj_ac)
+ my_block_end
+ apply (unfold this)
+ my_block
+ fix i j
+ have "\<lbrace>st i \<and>* ps u \<and>* reps' u (v + 1) ks \<rbrace>
+ i :[ skip_or_sets (Suc (length ks - 1))]: j
+ \<lbrace>st j \<and>* ps (v + 2) \<and>* reps' u (v + 1) ks \<rbrace>"
+ my_block
+ have "ks = take (length ks - 1) ks @ [ks!(length ks - 1)]"
+ by (smt False drop_0 drop_eq_Nil id_take_nth_drop)
+ my_block_end my_note eq_ks = this
+ apply (subst (1) this)
+ apply (unfold reps'_append, simp add:sep_conj_exists, rule tm.precond_exI)
+ my_block
+ from False have "(length ks - Suc 0) < length ks"
+ by (smt `length ks = Suc (length ks - 1)`)
+ my_block_end
+ apply hsteps
+ apply (subst eq_ks, unfold reps'_append, simp only:sep_conj_exists)
+ by (rule_tac x = m in EXS_intro, simp add:sep_conj_ac, sep_cancel+, smt)
+ my_block_end
+ apply (hstep this)
+ my_block
+ fix u n
+ have "(fam_conj {u <..} zero) =
+ (zeros (u + 1) (u + int n + 1) \<and>* tm (u + int n + 2) Bk \<and>* fam_conj {(u + int n + 2)<..} zero)"
+ my_block
+ have "u + 1 \<le> (u + int n + 2)" by auto
+ from zeros_fam_conj[OF this, symmetric]
+ have "fam_conj {u<..} zero = (zeros (u + 1) (u + int n + 2) \<and>* fam_conj {u + int n + 2<..} zero)"
+ by simp
+ my_block_end
+ apply (subst this)
+ my_block
+ have "(zeros (u + 1) (u + int n + 2)) =
+ ((zeros (u + 1) (u + int n + 1) \<and>* tm (u + int n + 2) Bk))"
+ by (smt zero_def zeros_rev)
+ my_block_end
+ by (unfold this, auto simp:sep_conj_ac)
+ my_block_end
+ apply (subst (1) this[of _ "(reps_len (replicate (Suc (n - length ks)) 0))"])
+ my_block
+ from `length ks \<le> n`
+ have "Suc n - length ks = Suc (n - length ks)" by auto
+ my_block_end my_note eq_suc = this
+ apply (subst this)
+ apply hsteps
+ apply (simp add: sep_conj_ac this, sep_cancel+)
+ apply (fwd abs_reps')+
+ my_block
+ have "(int (reps_len (replicate (Suc (n - length ks)) 0))) =
+ (int (reps_len (list_ext n ks)) - int (reps_len ks) - 1)"
+ apply (unfold list_ext_def eq_suc)
+ my_block
+ have "replicate (Suc (n - length ks)) 0 \<noteq> []" by simp
+ my_block_end
+ by (unfold reps_len_split[OF False this], simp)
+ my_block_end
+ apply (unfold this)
+ my_block
+ from `length ks \<le> n`
+ have "(ks @ replicate (Suc (n - length ks)) 0) = (list_ext n ks)"
+ by (unfold list_ext_def, simp)
+ my_block_end
+ apply (unfold this, simp)
+ apply (subst fam_conj_interv_simp, unfold zero_def, simp, simp add:int_add_ac sep_conj_ac)
+ by (sep_cancel+, smt)
+qed
+
+lemma hoare_skip_or_sets_comb_gen:
+ assumes "length ks \<le> n" "u = v" "w = x"
+ shows "\<lbrace>st i \<and>* ps u \<and>* reps v w ks \<and>* fam_conj {x<..} zero\<rbrace>
+ i:[skip_or_sets (Suc n)]:j
+ \<lbrace>st j \<and>* ps ((x + int (reps_len (list_ext n ks)) - int (reps_len ks))+ 2) \<and>*
+ reps' u (x + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) (list_ext n ks) \<and>*
+ fam_conj {(x + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1)<..} zero \<rbrace>"
+ by (unfold assms, rule hoare_skip_or_sets_comb[OF `length ks \<le> n`])
+
+definition "locate n = (skip_or_sets (Suc n);
+ move_left;
+ move_left;
+ left_until_zero;
+ move_right
+ )"
+
+lemma list_ext_tail_expand:
+ assumes h: "length ks \<le> a"
+ shows "list_ext a ks = take a (list_ext a ks) @ [(list_ext a ks)!a]"
+proof -
+ let ?l = "list_ext a ks"
+ from h have eq_len: "length ?l = Suc a"
+ by (smt list_ext_len_eq)
+ hence "?l \<noteq> []" by auto
+ hence "?l = take (length ?l - 1) ?l @ [?l!(length ?l - 1)]"
+ by (metis `length (list_ext a ks) = Suc a` diff_Suc_1 le_refl
+ lessI take_Suc_conv_app_nth take_all)
+ from this[unfolded eq_len]
+ show ?thesis by simp
+qed
+
+lemma reps'_nn_expand:
+ assumes "xs \<noteq> []"
+ shows "(reps' u v xs) = (reps u (v - 1) xs \<and>* zero v)"
+ by (metis assms reps'_def)
+
+lemma sep_conj_st1: "(p \<and>* st t \<and>* q) = (st t \<and>* p \<and>* q)"
+ by (simp only:sep_conj_ac)
+
+lemma sep_conj_st2: "(p \<and>* st t) = (st t \<and>* p)"
+ by (simp only:sep_conj_ac)
+
+lemma sep_conj_st3: "((st t \<and>* p) \<and>* r) = (st t \<and>* p \<and>* r)"
+ by (simp only:sep_conj_ac)
+
+lemma sep_conj_st4: "(EXS x. (st t \<and>* r x)) = ((st t) \<and>* (EXS x. r x))"
+ apply (unfold pred_ex_def, default+)
+ apply (safe)
+ apply (sep_cancel, auto)
+ by (auto elim!: sep_conjE intro!:sep_conjI)
+
+lemmas sep_conj_st = sep_conj_st1 sep_conj_st2 sep_conj_st3 sep_conj_st4
+
+lemma sep_conj_cond3 : "(<cond1> \<and>* <cond2>) = <(cond1 \<and> cond2)>"
+ by (smt cond_eqI cond_true_eq sep_conj_commute sep_conj_empty)
+
+lemma sep_conj_cond4 : "(<cond1> \<and>* <cond2> \<and>* r) = (<(cond1 \<and> cond2)> \<and>* r)"
+ by (metis Hoare_tm3.sep_conj_cond3 sep_conj_assoc)
+
+lemmas sep_conj_cond = sep_conj_cond3 sep_conj_cond4 sep_conj_cond
+
+lemma hoare_left_until_zero_reps:
+ "\<lbrace>st i ** ps v ** zero u ** reps (u + 1) v [k]\<rbrace>
+ i:[left_until_zero]:j
+ \<lbrace>st j ** ps u ** zero u ** reps (u + 1) v [k]\<rbrace>"
+ apply (unfold reps.simps, simp only:sep_conj_cond)
+ apply (rule tm.pre_condI, simp)
+ by hstep
+
+lemma hoare_left_until_zero_reps_gen[step]:
+ assumes "u = x" "w = v + 1"
+ shows "\<lbrace>st i ** ps u ** zero v ** reps w x [k]\<rbrace>
+ i:[left_until_zero]:j
+ \<lbrace>st j ** ps v ** zero v ** reps w x [k]\<rbrace>"
+ by (unfold assms, rule hoare_left_until_zero_reps)
+
+lemma reps_lenE:
+ assumes "reps u v ks s"
+ shows "( <(v = u + int (reps_len ks) - 1)> \<and>* reps u v ks ) s"
+proof(rule condI)
+ from reps_len_correct[OF assms] show "v = u + int (reps_len ks) - 1" .
+next
+ from assms show "reps u v ks s" .
+qed
+
+lemma condI1:
+ assumes "p s" "b"
+ shows "(<b> \<and>* p) s"
+proof(rule condI[OF assms(2)])
+ from assms(1) show "p s" .
+qed
+
+lemma hoare_locate_set:
+ assumes "length ks \<le> n"
+ shows "\<lbrace>st i \<and>* zero (u - 1) \<and>* ps u \<and>* reps u v ks \<and>* fam_conj {v<..} zero\<rbrace>
+ i:[locate n]:j
+ \<lbrace>st j \<and>* zero (u - 1) \<and>*
+ (EXS m w. ps m \<and>* reps' u (m - 1) (take n (list_ext n ks)) \<and>*
+ reps m w [(list_ext n ks)!n] \<and>* fam_conj {w<..} zero)\<rbrace>"
+proof(cases "take n (list_ext n ks) = []")
+ case False
+ show ?thesis
+ apply (unfold locate_def)
+ apply (hstep hoare_skip_or_sets_comb_gen)
+ apply (subst (3) list_ext_tail_expand[OF `length ks \<le> n`])
+ apply (subst (1) reps'_append, simp add:sep_conj_exists)
+ apply (rule tm.precond_exI)
+ apply (subst (1) reps'_nn_expand[OF False])
+ apply (rule_tac p = "st j' \<and>* <(m = u + int (reps_len (take n (list_ext n ks))) + 1)> \<and>*
+ ps (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2) \<and>*
+ ((reps u (m - 1 - 1) (take n (list_ext n ks)) \<and>* zero (m - 1)) \<and>*
+ reps' m (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1)
+ [list_ext n ks ! n]) \<and>*
+ fam_conj
+ {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1<..}
+ zero \<and>*
+ zero (u - 1)"
+ in tm.pre_stren)
+ my_block
+ have "[list_ext n ks ! n] \<noteq> []" by simp
+ from reps'_nn_expand[OF this]
+ have "(reps' m (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) [list_ext n ks ! n]) =
+ (reps m (v + (int (reps_len (list_ext n ks)) - int (reps_len ks))) [list_ext n ks ! n] \<and>*
+ zero (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1))"
+ by simp
+ my_block_end
+ apply (subst this)
+ my_block
+ have "(fam_conj {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1<..} zero) =
+ (zero (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2) \<and>*
+ fam_conj {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2<..} zero)"
+ by (subst fam_conj_interv_simp, smt)
+ my_block_end
+ apply (unfold this)
+ apply (simp only:sep_conj_st)
+ apply hsteps
+ apply (auto simp:sep_conj_ac)[1]
+ apply (sep_cancel+)
+ apply (rule_tac x = m in EXS_intro)
+ apply (rule_tac x = "m + int (list_ext n ks ! n)" in EXS_intro)
+ apply (simp add:sep_conj_ac del:ones_simps, sep_cancel+)
+ apply (subst (asm) sep_conj_cond)+
+ apply (erule_tac condE, clarsimp, simp add:sep_conj_ac int_add_ac)
+ apply (fwd abs_reps')
+ apply (fwd abs_reps')
+ apply (simp add:sep_conj_ac int_add_ac)
+ apply (sep_cancel+)
+ apply (subst (asm) reps'_def, subst fam_conj_interv_simp, subst fam_conj_interv_simp,
+ simp add:sep_conj_ac int_add_ac)
+ my_block
+ fix s
+ assume h: "(reps (1 + (u + int (reps_len (take n (list_ext n ks)))))
+ (v + (- int (reps_len ks) + int (reps_len (list_ext n ks)))) [list_ext n ks ! n]) s"
+ (is "?P s")
+ from reps_len_correct[OF this] list_ext_tail_expand[OF `length ks \<le> n`]
+ have hh: "v + (- int (reps_len ks) +
+ int (reps_len (take n (list_ext n ks) @ [list_ext n ks ! n]))) =
+ 1 + (u + int (reps_len (take n (list_ext n ks)))) +
+ int (reps_len [list_ext n ks ! n]) - 1"
+ by metis
+ have "[list_ext n ks ! n] \<noteq> []" by simp
+ from hh[unfolded reps_len_split[OF False this]]
+ have "v = u + (int (reps_len ks)) - 1"
+ by simp
+ from condI1[where p = ?P, OF h this]
+ have "(<(v = u + int (reps_len ks) - 1)> \<and>*
+ reps (1 + (u + int (reps_len (take n (list_ext n ks)))))
+ (v + (- int (reps_len ks) + int (reps_len (list_ext n ks)))) [list_ext n ks ! n]) s" .
+ my_block_end
+ apply (fwd this, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac int_add_ac
+ reps_len_sg)
+ apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac int_add_ac
+ reps_len_sg)
+ by (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac)
+next
+ case True
+ show ?thesis
+ apply (unfold locate_def)
+ apply (hstep hoare_skip_or_sets_comb)
+ apply (subst (3) list_ext_tail_expand[OF `length ks \<le> n`])
+ apply (subst (1) reps'_append, simp add:sep_conj_exists)
+ apply (rule tm.precond_exI)
+ my_block
+ from True `length ks \<le> n`
+ have "ks = []" "n = 0"
+ apply (metis le0 le_antisym length_0_conv less_nat_zero_code list_ext_len take_eq_Nil)
+ by (smt True length_take list.size(3) list_ext_len)
+ my_block_end
+ apply (unfold True this)
+ apply (simp add:reps'_def list_ext_def reps.simps reps_len_def reps_sep_len_def
+ reps_ctnt_len_def
+ del:ones_simps)
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, simp del:ones_simps)
+ apply (subst fam_conj_interv_simp, simp add:sep_conj_st del:ones_simps)
+ apply (hsteps)
+ apply (auto simp:sep_conj_ac)[1]
+ apply (sep_cancel+)
+ apply (rule_tac x = "(v + int (listsum (replicate (Suc 0) (Suc 0))))" in EXS_intro)+
+ apply (simp only:sep_conj_ac, sep_cancel+)
+ apply (auto)
+ apply (subst fam_conj_interv_simp)
+ apply (subst fam_conj_interv_simp)
+ by smt
+qed
+
+lemma hoare_locate_set_gen[step]:
+ assumes "length ks \<le> n"
+ "u = v - 1" "v = w" "x = y"
+ shows "\<lbrace>st i \<and>* zero u \<and>* ps v \<and>* reps w x ks \<and>* fam_conj {y<..} zero\<rbrace>
+ i:[locate n]:j
+ \<lbrace>st j \<and>* zero u \<and>*
+ (EXS m w. ps m \<and>* reps' v (m - 1) (take n (list_ext n ks)) \<and>*
+ reps m w [(list_ext n ks)!n] \<and>* fam_conj {w<..} zero)\<rbrace>"
+ by (unfold assms, rule hoare_locate_set[OF `length ks \<le> n`])
+
+lemma hoare_locate_skip:
+ assumes h: "n < length ks"
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* zero (u - 1) \<and>* reps' u (v - 1) (take n ks) \<and>* reps' v w [ks!n] \<and>* tm (w + 1) x\<rbrace>
+ i:[locate n]:j
+ \<lbrace>st j \<and>* ps v \<and>* zero (u - 1) \<and>* reps' u (v - 1) (take n ks) \<and>* reps' v w [ks!n] \<and>* tm (w + 1) x\<rbrace>"
+proof -
+ show ?thesis
+ apply (unfold locate_def)
+ apply hsteps
+ apply (subst (2 4) reps'_def, simp add:reps.simps sep_conj_cond del:ones_simps)
+ apply (intro tm.pre_condI, simp del:ones_simps)
+ apply hsteps
+ apply (case_tac "(take n ks) = []", simp add:reps'_def sep_conj_cond del:ones_simps)
+ apply (rule tm.pre_condI, simp del:ones_simps)
+ apply hsteps
+ apply (simp del:ones_simps add:reps'_def)
+ by hsteps
+qed
+
+
+lemma hoare_locate_skip_gen[step]:
+ assumes "n < length ks"
+ "v = u - 1" "w = u" "x = y - 1" "z' = z + 1"
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* tm v Bk \<and>* reps' w x (take n ks) \<and>* reps' y z [ks!n] \<and>* tm z' vx\<rbrace>
+ i:[locate n]:j
+ \<lbrace>st j \<and>* ps y \<and>* tm v Bk \<and>* reps' w x (take n ks) \<and>* reps' y z [ks!n] \<and>* tm z' vx\<rbrace>"
+ by (unfold assms, fold zero_def, rule hoare_locate_skip[OF `n < length ks`])
+
+definition "Inc a = locate a;
+ right_until_zero;
+ move_right;
+ shift_right;
+ move_left;
+ left_until_double_zero;
+ write_one;
+ left_until_double_zero;
+ move_right;
+ move_right
+ "
+
+lemma ones_int_expand: "(ones m (m + int k)) = (one m \<and>* ones (m + 1) (m + int k))"
+ by (simp add:ones_simps)
+
+lemma reps_splitedI:
+ assumes h1: "(reps u v ks1 \<and>* zero (v + 1) \<and>* reps (v + 2) w ks2) s"
+ and h2: "ks1 \<noteq> []"
+ and h3: "ks2 \<noteq> []"
+ shows "(reps u w (ks1 @ ks2)) s"
+proof -
+ from h2 h3
+ have "splited (ks1 @ ks2) ks1 ks2" by (auto simp:splited_def)
+ from h1 obtain s1 where
+ "(reps u v ks1) s1" by (auto elim:sep_conjE)
+ from h1 obtain s2 where
+ "(reps (v + 2) w ks2) s2" by (auto elim:sep_conjE)
+ from reps_len_correct[OF `(reps u v ks1) s1`]
+ have eq_v: "v = u + int (reps_len ks1) - 1" .
+ from reps_len_correct[OF `(reps (v + 2) w ks2) s2`]
+ have eq_w: "w = v + 2 + int (reps_len ks2) - 1" .
+ from h1
+ have "(reps u (u + int (reps_len ks1) - 1) ks1 \<and>*
+ zero (u + int (reps_len ks1)) \<and>* reps (u + int (reps_len ks1) + 1) w ks2) s"
+ apply (unfold eq_v eq_w[unfolded eq_v])
+ by (sep_cancel+, smt)
+ thus ?thesis
+ by(unfold reps_splited[OF `splited (ks1 @ ks2) ks1 ks2`], simp)
+qed
+
+lemma reps_sucI:
+ assumes h: "(reps u v (xs@[x]) \<and>* one (1 + v)) s"
+ shows "(reps u (1 + v) (xs@[Suc x])) s"
+proof(cases "xs = []")
+ case True
+ from h obtain s' where "(reps u v (xs@[x])) s'" by (auto elim:sep_conjE)
+ from reps_len_correct[OF this] have " v = u + int (reps_len (xs @ [x])) - 1" .
+ with True have eq_v: "v = u + int x" by (simp add:reps_len_sg)
+ have eq_one1: "(one (1 + (u + int x)) \<and>* ones (u + 1) (u + int x)) = ones (u + 1) (1 + (u + int x))"
+ by (smt ones_rev sep.mult_commute)
+ from h show ?thesis
+ apply (unfold True, simp add:eq_v reps.simps sep_conj_cond sep_conj_ac ones_rev)
+ by (sep_cancel+, simp add: eq_one1, smt)
+next
+ case False
+ from h obtain s1 s2 where hh: "(reps u v (xs@[x])) s1" "s = s1 + s2" "s1 ## s2" "one (1 + v) s2"
+ by (auto elim:sep_conjE)
+ from hh(1)[unfolded reps_rev[OF False]]
+ obtain s11 s12 s13 where hhh:
+ "(reps u (v - int (x + 1) - 1) xs) s11"
+ "(zero (v - int (x + 1))) s12" "(ones (v - int x) v) s13"
+ "s11 ## (s12 + s13)" "s12 ## s13" "s1 = s11 + s12 + s13"
+ apply (atomize_elim)
+ apply(elim sep_conjE)+
+ apply (rule_tac x = xa in exI)
+ apply (rule_tac x = xaa in exI)
+ apply (rule_tac x = ya in exI)
+ apply (intro conjI, assumption+)
+ by (auto simp:set_ins_def)
+ show ?thesis
+ proof(rule reps_splitedI[where v = "(v - int (x + 1) - 1)"])
+ show "(reps u (v - int (x + 1) - 1) xs \<and>* zero (v - int (x + 1) - 1 + 1) \<and>*
+ reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x]) s"
+ proof(rule sep_conjI)
+ from hhh(1) show "reps u (v - int (x + 1) - 1) xs s11" .
+ next
+ show "(zero (v - int (x + 1) - 1 + 1) \<and>* reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x]) (s12 + (s13 + s2))"
+ proof(rule sep_conjI)
+ from hhh(2) show "zero (v - int (x + 1) - 1 + 1) s12" by smt
+ next
+ from hh(4) hhh(3)
+ show "reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x] (s13 + s2)"
+ apply (simp add:reps.simps del:ones_simps add:ones_rev)
+ by (smt hh(3) hh(4) hhh(4) hhh(5) hhh(6) sep_add_disjD sep_conjI sep_disj_addI1)
+ next
+ show "s12 ## s13 + s2"
+ by (metis hh(3) hhh(4) hhh(5) hhh(6) sep_add_commute sep_add_disjD
+ sep_add_disjI2 sep_disj_addD sep_disj_addD1 sep_disj_addI1 sep_disj_commuteI)
+ next
+ show "s12 + (s13 + s2) = s12 + (s13 + s2)" by metis
+ qed
+ next
+ show "s11 ## s12 + (s13 + s2)"
+ by (metis hh(3) hhh(4) hhh(5) hhh(6) sep_disj_addD1 sep_disj_addI1 sep_disj_addI3)
+ next
+ show "s = s11 + (s12 + (s13 + s2))"
+ by (smt hh(2) hh(3) hhh(4) hhh(5) hhh(6) sep_add_assoc sep_add_commute
+ sep_add_disjD sep_add_disjI2 sep_disj_addD1 sep_disj_addD2
+ sep_disj_addI1 sep_disj_addI3 sep_disj_commuteI)
+ qed
+ next
+ from False show "xs \<noteq> []" .
+ next
+ show "[Suc x] \<noteq> []" by simp
+ qed
+qed
+
+lemma cond_expand: "(<cond> \<and>* p) s = (cond \<and> (p s))"
+ by (metis (full_types) condD pasrt_def sep_conj_commuteI
+ sep_conj_sep_emptyI sep_empty_def sep_globalise)
+
+lemma ones_rev1:
+ assumes "\<not> (1 + n) < m"
+ shows "(ones m n \<and>* one (1 + n)) = (ones m (1 + n))"
+ by (insert ones_rev[OF assms, simplified], simp)
+
+lemma reps_one_abs:
+ assumes "(reps u v [k] \<and>* one w) s"
+ "w = v + 1"
+ shows "(reps u w [Suc k]) s"
+ using assms unfolding assms
+ apply (simp add:reps.simps sep_conj_ac)
+ apply (subst (asm) sep_conj_cond)+
+ apply (erule condE, simp)
+ by (simp add:ones_rev sep_conj_ac, sep_cancel+, smt)
+
+lemma reps'_reps_abs:
+ assumes "(reps' u v xs \<and>* reps w x ys) s"
+ "w = v + 1" "ys \<noteq> []"
+ shows "(reps u x (xs@ys)) s"
+proof(cases "xs = []")
+ case False
+ with assms
+ have h: "splited (xs@ys) xs ys" by (simp add:splited_def)
+ from assms(1)[unfolded assms(2)]
+ show ?thesis
+ apply (unfold reps_splited[OF h])
+ apply (insert False, unfold reps'_def, simp)
+ apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+)
+ by (erule condE, simp)
+next
+ case True
+ with assms
+ show ?thesis
+ apply (simp add:reps'_def)
+ by (erule condE, simp)
+qed
+
+lemma reps_one_abs1:
+ assumes "(reps u v (xs@[k]) \<and>* one w) s"
+ "w = v + 1"
+ shows "(reps u w (xs@[Suc k])) s"
+proof(cases "xs = []")
+ case True
+ with assms reps_one_abs
+ show ?thesis by simp
+next
+ case False
+ hence "splited (xs@[k]) xs [k]" by (simp add:splited_def)
+ from assms(1)[unfolded reps_splited[OF this] assms(2)]
+ show ?thesis
+ apply (fwd reps_one_abs)
+ apply (fwd reps_reps'_abs)
+ apply (fwd reps'_reps_abs)
+ by (simp add:assms)
+qed
+
+lemma tm_hoare_inc00:
+ assumes h: "a < length ks \<and> ks ! a = v"
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>
+ i :[ Inc a ]: j
+ \<lbrace>st j \<and>*
+ ps u \<and>*
+ zero (u - 2) \<and>*
+ zero (u - 1) \<and>*
+ reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) (ks[a := Suc v]) \<and>*
+ fam_conj {(ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1)<..} zero\<rbrace>"
+ (is "\<lbrace> ?P \<rbrace> ?code \<lbrace> ?Q \<rbrace>")
+proof -
+ from h have "a < length ks" "ks ! a = v" by auto
+ from list_nth_expand[OF `a < length ks`]
+ have eq_ks: "ks = take a ks @ [ks!a] @ drop (Suc a) ks" .
+ from `a < length ks` have "ks \<noteq> []" by auto
+ hence "(reps u ia ks \<and>* zero (ia + 1)) = reps' u (ia + 1) ks"
+ by (simp add:reps'_def)
+ also from eq_ks have "\<dots> = reps' u (ia + 1) (take a ks @ [ks!a] @ drop (Suc a) ks)" by simp
+ also have "\<dots> = (EXS m. reps' u (m - 1) (take a ks) \<and>*
+ reps' m (ia + 1) (ks ! a # drop (Suc a) ks))"
+ by (simp add:reps'_append)
+ also have "\<dots> = (EXS m. reps' u (m - 1) (take a ks) \<and>*
+ reps' m (ia + 1) ([ks ! a] @ drop (Suc a) ks))"
+ by simp
+ also have "\<dots> = (EXS m ma. reps' u (m - 1) (take a ks) \<and>*
+ reps' m (ma - 1) [ks ! a] \<and>* reps' ma (ia + 1) (drop (Suc a) ks))"
+ by (simp only:reps'_append sep_conj_exists)
+ finally have eq_s: "(reps u ia ks \<and>* zero (ia + 1)) = \<dots>" .
+ { fix m ma
+ have eq_u: "-1 + u = u - 1" by smt
+ have " \<lbrace>st i \<and>*
+ ps u \<and>*
+ zero (u - 2) \<and>*
+ zero (u - 1) \<and>*
+ (reps' u (m - 1) (take a ks) \<and>*
+ reps' m (ma - 1) [ks ! a] \<and>* reps' ma (ia + 1) (drop (Suc a) ks)) \<and>*
+ fam_conj {ia + 1<..} zero\<rbrace>
+ i :[ Inc a ]: j
+ \<lbrace>st j \<and>*
+ ps u \<and>*
+ zero (u - 2) \<and>*
+ zero (u - 1) \<and>*
+ reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) (ks[a := Suc v]) \<and>*
+ fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1<..} zero\<rbrace>"
+ proof(cases "(drop (Suc a) ks) = []")
+ case True
+ { fix hc
+ have eq_1: "(1 + (m + int (ks ! a))) = (m + int (ks ! a) + 1)" by simp
+ have eq_2: "take a ks @ [Suc (ks ! a)] = ks[a := Suc v]"
+ apply (subst (3) eq_ks, unfold True, simp)
+ by (metis True append_Nil2 eq_ks h upd_conv_take_nth_drop)
+ assume h: "(fam_conj {1 + (m + int (ks ! a))<..} zero \<and>*
+ reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks ! a)])) hc"
+ hence "(fam_conj {m + int (ks ! a) + 1<..} zero \<and>* reps u (m + int (ks ! a) + 1) (ks[a := Suc v])) hc"
+ by (unfold eq_1 eq_2 , sep_cancel+)
+ } note eq_fam = this
+ show ?thesis
+ apply (unfold Inc_def, subst (3) reps'_def, simp add:True sep_conj_cond)
+ apply (intro tm.pre_condI, simp)
+ apply (subst fam_conj_interv_simp, simp, subst (3) zero_def)
+ apply hsteps
+ apply (subst reps'_sg, simp add:sep_conj_cond del:ones_simps)
+ apply (rule tm.pre_condI, simp del:ones_simps)
+ apply hsteps
+ apply (rule_tac p = "
+ st j' \<and>* ps (1 + (m + int (ks ! a))) \<and>* zero (u - 1) \<and>* zero (u - 2) \<and>*
+ reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks!a)])
+ \<and>* fam_conj {1 + (m + int (ks ! a))<..} zero
+ " in tm.pre_stren)
+ apply (hsteps)
+ apply (simp add:sep_conj_ac list_ext_lt[OF `a < length ks`], sep_cancel+)
+ apply (fwd eq_fam, sep_cancel+)
+ apply (simp del:ones_simps add:sep_conj_ac)
+ apply (sep_cancel+, prune)
+ apply ((fwd abs_reps')+, simp)
+ apply (fwd reps_one_abs abs_reps')+
+ apply (subst (asm) reps'_def, simp)
+ by (subst fam_conj_interv_simp, simp add:sep_conj_ac)
+ next
+ case False
+ then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'"
+ by (metis append_Cons append_Nil list.exhaust)
+ from `a < length ks`
+ have eq_ks: "ks[a := Suc v] = (take a ks @ [Suc (ks ! a)]) @ (drop (Suc a) ks)"
+ apply (fold `ks!a = v`)
+ by (metis append_Cons append_Nil append_assoc upd_conv_take_nth_drop)
+ show ?thesis
+ apply (unfold Inc_def)
+ apply (unfold Inc_def eq_drop reps'_append, simp add:sep_conj_exists del:ones_simps)
+ apply (rule tm.precond_exI, subst (2) reps'_sg)
+ apply (subst sep_conj_cond)+
+ apply (subst (1) ones_int_expand)
+ apply (rule tm.pre_condI, simp del:ones_simps)
+ apply hsteps
+ (* apply (hsteps hoare_locate_skip_gen[OF `a < length ks`]) *)
+ apply (subst reps'_sg, simp add:sep_conj_cond del:ones_simps)
+ apply (rule tm.pre_condI, simp del:ones_simps)
+ apply hsteps
+ apply (rule_tac p = "st j' \<and>*
+ ps (2 + (m + int (ks ! a))) \<and>*
+ reps (2 + (m + int (ks ! a))) ia (drop (Suc a) ks) \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>*
+ reps u (m + int (ks ! a)) (take a ks @ [ks!a]) \<and>* zero (1 + (m + int (ks ! a))) \<and>*
+ zero (u - 2) \<and>* zero (u - 1) \<and>* fam_conj {ia + 2<..} zero
+ " in tm.pre_stren)
+ apply (hsteps hoare_shift_right_cons_gen[OF False]
+ hoare_left_until_double_zero_gen[OF False])
+ apply (rule_tac p =
+ "st j' \<and>* ps (1 + (m + int (ks ! a))) \<and>*
+ zero (u - 2) \<and>* zero (u - 1) \<and>*
+ reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks ! a)]) \<and>*
+ zero (2 + (m + int (ks ! a))) \<and>*
+ reps (3 + (m + int (ks ! a))) (ia + 1) (drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero
+ " in tm.pre_stren)
+ apply (hsteps)
+ apply (simp add:sep_conj_ac, sep_cancel+)
+ apply (unfold list_ext_lt[OF `a < length ks`], simp)
+ apply (fwd abs_reps')+
+ apply(fwd reps'_reps_abs)
+ apply (subst eq_ks, simp)
+ apply (sep_cancel+)
+ apply (thin_tac "mb = 4 + (m + (int (ks ! a) + int k'))")
+ apply (thin_tac "ma = 2 + (m + int (ks ! a))", prune)
+ apply (simp add: int_add_ac sep_conj_ac, sep_cancel+)
+ apply (fwd reps_one_abs1, subst fam_conj_interv_simp, simp, sep_cancel+, smt)
+ apply (fwd abs_ones)+
+ apply (fwd abs_reps')
+ apply (fwd abs_reps')
+ apply (fwd abs_reps')
+ apply (fwd abs_reps')
+ apply (unfold eq_drop, simp add:int_add_ac sep_conj_ac)
+ apply (sep_cancel+)
+ apply (fwd reps'_abs[where xs = "take a ks"])
+ apply (fwd reps'_abs[where xs = "[k']"])
+ apply (unfold reps'_def, simp add:int_add_ac sep_conj_ac)
+ apply (sep_cancel+)
+ by (subst (asm) fam_conj_interv_simp, simp, smt)
+ qed
+ } note h = this
+ show ?thesis
+ apply (subst fam_conj_interv_simp)
+ apply (rule_tac p = "st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+ (reps u ia ks \<and>* zero (ia + 1)) \<and>* fam_conj {ia + 1<..} zero"
+ in tm.pre_stren)
+ apply (unfold eq_s, simp only:sep_conj_exists)
+ apply (intro tm.precond_exI h)
+ by (sep_cancel+, unfold eq_s, simp)
+qed
+
+declare ones_simps [simp del]
+
+lemma tm_hoare_inc01:
+ assumes "length ks \<le> a \<and> v = 0"
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>
+ i :[ Inc a ]: j
+ \<lbrace>st j \<and>*
+ ps u \<and>*
+ zero (u - 2) \<and>*
+ zero (u - 1) \<and>*
+ reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) ((list_ext a ks)[a := Suc v]) \<and>*
+ fam_conj {(ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1)<..} zero\<rbrace>"
+proof -
+ from assms have "length ks \<le> a" "v = 0" by auto
+ show ?thesis
+ apply (rule_tac p = "
+ st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* (reps u ia ks \<and>* <(ia = u + int (reps_len ks) - 1)>) \<and>*
+ fam_conj {ia<..} zero
+ " in tm.pre_stren)
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, simp)
+ apply (unfold Inc_def)
+ apply hstep
+ (* apply (hstep hoare_locate_set_gen[OF `length ks \<le> a`]) *)
+ apply (simp only:sep_conj_exists)
+ apply (intro tm.precond_exI)
+ my_block
+ fix m w
+ have "reps m w [list_ext a ks ! a] =
+ (ones m (m + int (list_ext a ks ! a)) \<and>* <(w = m + int (list_ext a ks ! a))>)"
+ by (simp add:reps.simps)
+ my_block_end
+ apply (unfold this)
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, simp)
+ apply (subst fam_conj_interv_simp)
+ apply (hsteps)
+ apply (subst fam_conj_interv_simp, simp)
+ apply (hsteps)
+ apply (rule_tac p = "st j' \<and>* ps (m + int (list_ext a ks ! a) + 1) \<and>*
+ zero (u - 2) \<and>* zero (u - 1) \<and>*
+ reps u (m + int (list_ext a ks ! a) + 1)
+ ((take a (list_ext a ks))@[Suc (list_ext a ks ! a)]) \<and>*
+ fam_conj {(m + int (list_ext a ks ! a) + 1)<..} zero
+ " in tm.pre_stren)
+ apply (hsteps)
+ apply (simp add:sep_conj_ac, sep_cancel+)
+ apply (unfold `v = 0`, prune)
+ my_block
+ from `length ks \<le> a` have "list_ext a ks ! a = 0"
+ by (metis le_refl list_ext_tail)
+ from `length ks \<le> a` have "a < length (list_ext a ks)"
+ by (metis list_ext_len)
+ from reps_len_suc[OF this]
+ have eq_len: "int (reps_len (list_ext a ks)) =
+ int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)])) - 1"
+ by smt
+ fix m w hc
+ assume h: "(fam_conj {m + int (list_ext a ks ! a) + 1<..} zero \<and>*
+ reps u (m + int (list_ext a ks ! a) + 1) (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)]))
+ hc"
+ then obtain s where
+ "(reps u (m + int (list_ext a ks ! a) + 1) (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)])) s"
+ by (auto dest!:sep_conjD)
+ from reps_len_correct[OF this]
+ have "m = u + int (reps_len (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)]))
+ - int (list_ext a ks ! a) - 2" by smt
+ from h [unfolded this]
+ have "(fam_conj {u + int (reps_len (list_ext a ks))<..} zero \<and>*
+ reps u (u + int (reps_len (list_ext a ks))) (list_ext a ks[a := Suc 0]))
+ hc"
+ apply (unfold eq_len, simp)
+ my_block
+ from `a < length (list_ext a ks)`
+ have "take a (list_ext a ks) @ [Suc (list_ext a ks ! a)] =
+ list_ext a ks[a := Suc (list_ext a ks ! a)]"
+ by (smt `list_ext a ks ! a = 0` assms length_take list_ext_tail_expand list_update_length)
+ my_block_end
+ apply (unfold this)
+ my_block
+ have "-1 + (u + int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)]))) =
+ u + (int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)])) - 1)" by simp
+ my_block_end
+ apply (unfold this)
+ apply (sep_cancel+)
+ by (unfold `(list_ext a ks ! a) = 0`, simp)
+ my_block_end
+ apply (rule this, assumption)
+ apply (simp only:sep_conj_ac, sep_cancel+)+
+ apply (fwd abs_reps')+
+ apply (fwd reps_one_abs)
+ apply (fwd reps'_reps_abs)
+ apply (simp add:int_add_ac sep_conj_ac)
+ apply (sep_cancel+)
+ apply (subst fam_conj_interv_simp, simp add:sep_conj_ac, smt)
+ apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp)
+ by (sep_cancel+)
+qed
+
+definition "Dec a e = (TL continue.
+ (locate a;
+ if_reps_nz continue;
+ left_until_double_zero;
+ move_right;
+ move_right;
+ jmp e);
+ (TLabel continue;
+ right_until_zero;
+ move_left;
+ write_zero;
+ move_right;
+ move_right;
+ shift_left;
+ move_left;
+ move_left;
+ move_left;
+ left_until_double_zero;
+ move_right;
+ move_right))"
+
+lemma cond_eq: "((<b> \<and>* p) s) = (b \<and> (p s))"
+proof
+ assume "(<b> \<and>* p) s"
+ from condD[OF this] show " b \<and> p s" .
+next
+ assume "b \<and> p s"
+ hence b and "p s" by auto
+ from `b` have "(<b>) 0" by (auto simp:pasrt_def)
+ moreover have "s = 0 + s" by auto
+ moreover have "0 ## s" by auto
+ moreover note `p s`
+ ultimately show "(<b> \<and>* p) s" by (auto intro!:sep_conjI)
+qed
+
+lemma tm_hoare_dec_fail00:
+ assumes "a < length ks \<and> ks ! a = 0"
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>
+ i :[ Dec a e ]: j
+ \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+ reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
+ fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"
+proof -
+ from assms have "a < length ks" "ks!a = 0" by auto
+ from list_nth_expand[OF `a < length ks`]
+ have eq_ks: "ks = take a ks @ [ks ! a] @ drop (Suc a) ks" .
+ show ?thesis
+ proof(cases " drop (Suc a) ks = []")
+ case False
+ then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'"
+ by (metis append_Cons append_Nil list.exhaust)
+ show ?thesis
+ apply (unfold Dec_def, intro t_hoare_local)
+ apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension)
+ apply (subst (1) eq_ks)
+ my_block
+ have "(reps u ia (take a ks @ [ks ! a] @ drop (Suc a) ks) \<and>* fam_conj {ia<..} zero) =
+ (reps' u (ia + 1) ((take a ks @ [ks ! a]) @ drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero)"
+ apply (subst fam_conj_interv_simp)
+ by (unfold reps'_def, simp add:sep_conj_ac)
+ my_block_end
+ apply (unfold this)
+ apply (subst reps'_append)
+ apply (unfold eq_drop)
+ apply (subst (2) reps'_append)
+ apply (simp only:sep_conj_exists, intro tm.precond_exI)
+ apply (subst (2) reps'_def, simp add:reps.simps ones_simps)
+ apply (subst reps'_append, simp only:sep_conj_exists, intro tm.precond_exI)
+ apply hstep
+ (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
+ my_block
+ fix m mb
+ have "(reps' mb (m - 1) [ks ! a]) = (reps mb (m - 2) [ks!a] \<and>* zero (m - 1))"
+ by (simp add:reps'_def, smt)
+ my_block_end
+ apply (unfold this)
+ apply hstep
+ (* apply (hstep hoare_if_reps_nz_false_gen[OF `ks!a = 0`]) *)
+ apply (simp only:reps.simps(2), simp add:`ks!a = 0`)
+ apply (rule_tac p = "st j'b \<and>*
+ ps mb \<and>*
+ reps u mb ((take a ks)@[ks ! a]) \<and>* <(m - 2 = mb)> \<and>*
+ zero (m - 1) \<and>*
+ zero (u - 1) \<and>*
+ one m \<and>*
+ zero (u - 2) \<and>*
+ ones (m + 1) (m + int k') \<and>*
+ <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero"
+ in tm.pre_stren)
+ apply hsteps
+ apply (simp add:sep_conj_ac, sep_cancel+)
+ apply (subgoal_tac "m + int k' = ma - 2", simp)
+ apply (fwd abs_ones)+
+ apply (subst (asm) sep_conj_cond)+
+ apply (erule condE, auto)
+ apply (fwd abs_reps')+
+ apply (subgoal_tac "ma = m + int k' + 2", simp)
+ apply (fwd abs_reps')+
+ my_block
+ from `a < length ks`
+ have "list_ext a ks = ks" by (auto simp:list_ext_def)
+ my_block_end
+ apply (simp add:this)
+ apply (subst eq_ks, simp add:eq_drop `ks!a = 0`)
+ apply (subst (asm) reps'_def, simp)
+ apply (subst fam_conj_interv_simp, simp add:sep_conj_ac, sep_cancel+)
+ apply (metis append_Cons assms eq_Nil_appendI eq_drop eq_ks list_update_id)
+ apply (clarsimp)
+ apply (subst (asm) sep_conj_cond)+
+ apply (erule condE, clarsimp)
+ apply (subst (asm) sep_conj_cond)+
+ apply (erule condE, clarsimp)
+ apply (simp add:sep_conj_ac, sep_cancel+)
+ apply (fwd abs_reps')+
+ by (fwd reps'_reps_abs, simp add:`ks!a = 0`)
+ next
+ case True
+ show ?thesis
+ apply (unfold Dec_def, intro t_hoare_local)
+ apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension)
+ apply (subst (1) eq_ks, unfold True, simp)
+ my_block
+ have "(reps u ia (take a ks @ [ks ! a]) \<and>* fam_conj {ia<..} zero) =
+ (reps' u (ia + 1) (take a ks @ [ks ! a]) \<and>* fam_conj {ia + 1<..} zero)"
+ apply (unfold reps'_def, subst fam_conj_interv_simp)
+ by (simp add:sep_conj_ac)
+ my_block_end
+ apply (subst (1) this)
+ apply (subst reps'_append)
+ apply (simp only:sep_conj_exists, intro tm.precond_exI)
+ apply (subst fam_conj_interv_simp, simp)
+ my_block
+ have "(zero (2 + ia)) = (tm (2 + ia) Bk)"
+ by (simp add:zero_def)
+ my_block_end my_note eq_z = this
+ apply hstep
+ (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
+ my_block
+ fix m
+ have "(reps' m (ia + 1) [ks ! a]) = (reps m ia [ks!a] \<and>* zero (ia + 1))"
+ by (simp add:reps'_def)
+ my_block_end
+ apply (unfold this, prune)
+ apply hstep
+ (* apply (hstep hoare_if_reps_nz_false_gen[OF `ks!a = 0`]) *)
+ apply (simp only:reps.simps(2), simp add:`ks!a = 0`)
+ apply (rule_tac p = "st j'b \<and>* ps m \<and>* (reps u m ((take a ks)@[ks!a]) \<and>* <(ia = m)>)
+ \<and>* zero (ia + 1) \<and>* zero (u - 1) \<and>*
+ zero (2 + ia) \<and>* zero (u - 2) \<and>* fam_conj {2 + ia<..} zero"
+ in tm.pre_stren)
+ apply hsteps
+ apply (simp add:sep_conj_ac)
+ apply ((subst (asm) sep_conj_cond)+, erule condE, simp)
+ my_block
+ from `a < length ks` have "list_ext a ks = ks" by (metis list_ext_lt)
+ my_block_end
+ apply (unfold this, simp)
+ apply (subst fam_conj_interv_simp)
+ apply (subst fam_conj_interv_simp, simp)
+ apply (simp only:sep_conj_ac, sep_cancel+)
+ apply (subst eq_ks, unfold True `ks!a = 0`, simp)
+ apply (metis True append_Nil2 assms eq_ks list_update_same_conv)
+ apply (simp add:sep_conj_ac)
+ apply (subst (asm) sep_conj_cond)+
+ apply (erule condE, simp, thin_tac "ia = m")
+ apply (fwd abs_reps')+
+ apply (simp add:sep_conj_ac int_add_ac, sep_cancel+)
+ apply (unfold reps'_def, simp)
+ by (metis sep.mult_commute)
+ qed
+qed
+
+lemma tm_hoare_dec_fail01:
+ assumes "length ks \<le> a"
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>
+ i :[ Dec a e ]: j
+ \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+ reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
+ fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"
+ apply (unfold Dec_def, intro t_hoare_local)
+ apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension)
+ apply (rule_tac p = "st i \<and>* ps u \<and>* zero (u - 2) \<and>*
+ zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero \<and>*
+ <(ia = u + int (reps_len ks) - 1)>" in tm.pre_stren)
+ apply hstep
+ (* apply (hstep hoare_locate_set_gen[OF `length ks \<le> a`]) *)
+ apply (simp only:sep_conj_exists, intro tm.precond_exI)
+ my_block
+ from assms
+ have "list_ext a ks ! a = 0" by (metis le_refl list_ext_tail)
+ my_block_end my_note is_z = this
+ apply (subst fam_conj_interv_simp)
+ apply hstep
+ (* apply (hstep hoare_if_reps_nz_false_gen[OF is_z]) *)
+ apply (unfold is_z)
+ apply (subst (1) reps.simps)
+ apply (rule_tac p = "st j'b \<and>* ps m \<and>* reps u m (take a (list_ext a ks) @ [0]) \<and>* zero (w + 1) \<and>*
+ <(w = m + int 0)> \<and>* zero (u - 1) \<and>*
+ fam_conj {w + 1<..} zero \<and>* zero (u - 2) \<and>*
+ <(ia = u + int (reps_len ks) - 1)>" in tm.pre_stren)
+ my_block
+ have "(take a (list_ext a ks)) @ [0] \<noteq> []" by simp
+ my_block_end
+ apply hsteps
+ (* apply (hsteps hoare_left_until_double_zero_gen[OF this]) *)
+ apply (simp add:sep_conj_ac)
+ apply prune
+ apply (subst (asm) sep_conj_cond)+
+ apply (elim condE, simp add:sep_conj_ac, prune)
+ my_block
+ fix m w ha
+ assume h1: "w = m \<and> ia = u + int (reps_len ks) - 1"
+ and h: "(ps u \<and>*
+ st e \<and>*
+ zero (u - 1) \<and>*
+ zero (m + 1) \<and>*
+ fam_conj {m + 1<..} zero \<and>* zero (u - 2) \<and>* reps u m (take a (list_ext a ks) @ [0])) ha"
+ from h1 have eq_w: "w = m" and eq_ia: "ia = u + int (reps_len ks) - 1" by auto
+ from h obtain s' where "reps u m (take a (list_ext a ks) @ [0]) s'"
+ by (auto dest!:sep_conjD)
+ from reps_len_correct[OF this]
+ have eq_m: "m = u + int (reps_len (take a (list_ext a ks) @ [0])) - 1" .
+ from h[unfolded eq_m, simplified]
+ have "(ps u \<and>*
+ st e \<and>*
+ zero (u - 1) \<and>*
+ zero (u - 2) \<and>*
+ fam_conj {u + (-1 + int (reps_len (list_ext a ks)))<..} zero \<and>*
+ reps u (u + (-1 + int (reps_len (list_ext a ks)))) (list_ext a ks[a := 0])) ha"
+ apply (sep_cancel+)
+ apply (subst fam_conj_interv_simp, simp)
+ my_block
+ from `length ks \<le> a` have "list_ext a ks[a := 0] = list_ext a ks"
+ by (metis is_z list_update_id)
+ my_block_end
+ apply (unfold this)
+ my_block
+ from `length ks \<le> a` is_z
+ have "take a (list_ext a ks) @ [0] = list_ext a ks"
+ by (metis list_ext_tail_expand)
+ my_block_end
+ apply (unfold this)
+ by (simp add:sep_conj_ac, sep_cancel+, smt)
+ my_block_end
+ apply (rule this, assumption)
+ apply (sep_cancel+)[1]
+ apply (subst (asm) sep_conj_cond)+
+ apply (erule condE, prune, simp)
+ my_block
+ fix s m
+ assume "(reps' u (m - 1) (take a (list_ext a ks)) \<and>* ones m m \<and>* zero (m + 1)) s"
+ hence "reps' u (m + 1) (take a (list_ext a ks) @ [0]) s"
+ apply (unfold reps'_append)
+ apply (rule_tac x = m in EXS_intro)
+ by (subst (2) reps'_def, simp add:reps.simps)
+ my_block_end
+ apply (rotate_tac 1, fwd this)
+ apply (subst (asm) reps'_def, simp add:sep_conj_ac)
+ my_block
+ fix s
+ assume h: "(st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+ reps u ia ks \<and>* fam_conj {ia<..} zero) s"
+ then obtain s' where "reps u ia ks s'" by (auto dest!:sep_conjD)
+ from reps_len_correct[OF this] have eq_ia: "ia = u + int (reps_len ks) - 1" .
+ from h
+ have "(st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>*
+ fam_conj {ia<..} zero \<and>* <(ia = u + int (reps_len ks) - 1)>) s"
+ by (unfold eq_ia, simp)
+ my_block_end
+ by (rule this, assumption)
+
+lemma t_hoare_label1:
+ "(\<And>l. l = i \<Longrightarrow> \<lbrace>st l \<and>* p\<rbrace> l :[ c l ]: j \<lbrace>st k \<and>* q\<rbrace>) \<Longrightarrow>
+ \<lbrace>st l \<and>* p \<rbrace>
+ i:[(TLabel l; c l)]:j
+ \<lbrace>st k \<and>* q\<rbrace>"
+by (unfold tassemble_to.simps, intro tm.code_exI tm.code_condI, clarify, auto)
+
+lemma tm_hoare_dec_fail1:
+ assumes "a < length ks \<and> ks ! a = 0 \<or> length ks \<le> a"
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>
+ i :[ Dec a e ]: j
+ \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+ reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
+ fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"
+ using assms
+proof
+ assume "a < length ks \<and> ks ! a = 0"
+ thus ?thesis
+ by (rule tm_hoare_dec_fail00)
+next
+ assume "length ks \<le> a"
+ thus ?thesis
+ by (rule tm_hoare_dec_fail01)
+qed
+
+lemma shift_left_nil_gen[step]:
+ assumes "u = v"
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero v\<rbrace>
+ i :[shift_left]:j
+ \<lbrace>st j \<and>* ps u \<and>* zero v\<rbrace>"
+ apply(unfold assms shift_left_def, intro t_hoare_local t_hoare_label, clarify,
+ rule t_hoare_label_last, simp, clarify, prune, simp)
+ by hstep
+
+lemma tm_hoare_dec_suc1:
+ assumes "a < length ks \<and> ks ! a = Suc v"
+ shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>
+ i :[ Dec a e ]: j
+ \<lbrace>st j \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+ reps u (ia - 1) (list_ext a ks[a := v]) \<and>*
+ fam_conj {ia - 1<..} zero\<rbrace>"
+proof -
+ from assms have "a < length ks" " ks ! a = Suc v" by auto
+ from list_nth_expand[OF `a < length ks`]
+ have eq_ks: "ks = take a ks @ [ks ! a] @ drop (Suc a) ks" .
+ show ?thesis
+ proof(cases " drop (Suc a) ks = []")
+ case False
+ then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'"
+ by (metis append_Cons append_Nil list.exhaust)
+ show ?thesis
+ apply (unfold Dec_def, intro t_hoare_local)
+ apply (subst tassemble_to.simps(2), rule tm.code_exI)
+ apply (subst (1) eq_ks)
+ my_block
+ have "(reps u ia (take a ks @ [ks ! a] @ drop (Suc a) ks) \<and>* fam_conj {ia<..} zero) =
+ (reps' u (ia + 1) ((take a ks @ [ks ! a]) @ drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero)"
+ apply (subst fam_conj_interv_simp)
+ by (unfold reps'_def, simp add:sep_conj_ac)
+ my_block_end
+ apply (unfold this)
+ apply (subst reps'_append)
+ apply (unfold eq_drop)
+ apply (subst (2) reps'_append)
+ apply (simp only:sep_conj_exists, intro tm.precond_exI)
+ apply (subst (2) reps'_def, simp add:reps.simps ones_simps)
+ apply (subst reps'_append, simp only:sep_conj_exists, intro tm.precond_exI)
+ apply (rule_tac q =
+ "st l \<and>*
+ ps mb \<and>*
+ zero (u - 1) \<and>*
+ reps' u (mb - 1) (take a ks) \<and>*
+ reps' mb (m - 1) [ks ! a] \<and>*
+ one m \<and>*
+ zero (u - 2) \<and>*
+ ones (m + 1) (m + int k') \<and>*
+ <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero"
+ in tm.sequencing)
+ apply (rule tm.code_extension)
+ apply hstep
+ (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
+ apply (subst (2) reps'_def, simp)
+ my_block
+ fix i j l m mb
+ from `ks!a = (Suc v)` have "ks!a \<noteq> 0" by simp
+ from hoare_if_reps_nz_true[OF this, where u = mb and v = "m - 2"]
+ have "\<lbrace>st i \<and>* ps mb \<and>* reps mb (-2 + m) [ks ! a]\<rbrace>
+ i :[ if_reps_nz l ]: j
+ \<lbrace>st l \<and>* ps mb \<and>* reps mb (-2 + m) [ks ! a]\<rbrace>"
+ by smt
+ my_block_end
+ apply (hgoto this)
+ apply (simp add:sep_conj_ac, sep_cancel+)
+ apply (subst reps'_def, simp add:sep_conj_ac)
+ apply (rule tm.code_extension1)
+ apply (rule t_hoare_label1, simp, prune)
+ apply (subst (2) reps'_def, simp add:reps.simps)
+ apply (rule_tac p = "st j' \<and>* ps mb \<and>* zero (u - 1) \<and>* reps' u (mb - 1) (take a ks) \<and>*
+ ((ones mb (mb + int (ks ! a)) \<and>* <(-2 + m = mb + int (ks ! a))>) \<and>* zero (mb + int (ks ! a) + 1)) \<and>*
+ one (mb + int (ks ! a) + 2) \<and>* zero (u - 2) \<and>*
+ ones (mb + int (ks ! a) + 3) (mb + int (ks ! a) + int k' + 2) \<and>*
+ <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero
+ " in tm.pre_stren)
+ apply hsteps
+ (* apply (simp add:sep_conj_ac) *)
+ apply (unfold `ks!a = Suc v`)
+ my_block
+ fix mb
+ have "(ones mb (mb + int (Suc v))) = (ones mb (mb + int v) \<and>* one (mb + int (Suc v)))"
+ by (simp add:ones_rev)
+ my_block_end
+ apply (unfold this, prune)
+ apply hsteps
+ apply (rule_tac p = "st j'a \<and>*
+ ps (mb + int (Suc v) + 2) \<and>* zero (mb + int (Suc v) + 1) \<and>*
+ reps (mb + int (Suc v) + 2) ia (drop (Suc a) ks) \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>*
+ zero (mb + int (Suc v)) \<and>*
+ ones mb (mb + int v) \<and>*
+ zero (u - 1) \<and>*
+ reps' u (mb - 1) (take a ks) \<and>*
+ zero (u - 2) \<and>* fam_conj {ia + 2<..} zero
+ " in tm.pre_stren)
+ apply hsteps
+ (* apply (hsteps hoare_shift_left_cons_gen[OF False]) *)
+ apply (rule_tac p = "st j'a \<and>* ps (ia - 1) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+ reps u (ia - 1) (take a ks @ [v] @ drop (Suc a) ks) \<and>*
+ zero ia \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>*
+ fam_conj {ia + 2<..} zero
+ " in tm.pre_stren)
+ apply hsteps
+ apply (simp add:sep_conj_ac)
+ apply (subst fam_conj_interv_simp)
+ apply (subst fam_conj_interv_simp)
+ apply (subst fam_conj_interv_simp)
+ apply (simp add:sep_conj_ac)
+ apply (sep_cancel+)
+ my_block
+ have "take a ks @ v # drop (Suc a) ks = list_ext a ks[a := v]"
+ proof -
+ from `a < length ks` have "list_ext a ks = ks" by (metis list_ext_lt)
+ hence "list_ext a ks[a:=v] = ks[a:=v]" by simp
+ moreover from `a < length ks` have "ks[a:=v] = take a ks @ v # drop (Suc a) ks"
+ by (metis upd_conv_take_nth_drop)
+ ultimately show ?thesis by metis
+ qed
+ my_block_end
+ apply (unfold this, sep_cancel+, smt)
+ apply (simp add:sep_conj_ac)
+ apply (fwd abs_reps')+
+ apply (simp add:sep_conj_ac int_add_ac)
+ apply (sep_cancel+)
+ apply (subst (asm) reps'_def, simp add:sep_conj_ac)
+ apply (subst (asm) sep_conj_cond)+
+ apply (erule condE, clarsimp)
+ apply (simp add:sep_conj_ac, sep_cancel+)
+ apply (fwd abs_ones)+
+ apply (fwd abs_reps')+
+ apply (subst (asm) reps'_def, simp)
+ apply (subst (asm) fam_conj_interv_simp)
+ apply (simp add:sep_conj_ac int_add_ac eq_drop reps'_def)
+ apply (subst (asm) sep_conj_cond)+
+ apply (erule condE, clarsimp)
+ by (simp add:sep_conj_ac int_add_ac)
+ next
+ case True
+ show ?thesis
+ apply (unfold Dec_def, intro t_hoare_local)
+ apply (subst tassemble_to.simps(2), rule tm.code_exI)
+ apply (subst (1) eq_ks, simp add:True)
+ my_block
+ have "(reps u ia (take a ks @ [ks ! a]) \<and>* fam_conj {ia<..} zero) =
+ (reps' u (ia + 1) (take a ks @ [ks ! a]) \<and>* fam_conj {ia + 1<..} zero)"
+ apply (subst fam_conj_interv_simp)
+ by (unfold reps'_def, simp add:sep_conj_ac)
+ my_block_end
+ apply (unfold this)
+ apply (subst reps'_append)
+ apply (simp only:sep_conj_exists, intro tm.precond_exI)
+ apply (rule_tac q = "st l \<and>* ps m \<and>* zero (u - 1) \<and>* reps' u (m - 1) (take a ks) \<and>*
+ reps' m (ia + 1) [ks ! a] \<and>* zero (2 + ia) \<and>* zero (u - 2) \<and>* fam_conj {2 + ia<..} zero"
+ in tm.sequencing)
+ apply (rule tm.code_extension)
+ apply (subst fam_conj_interv_simp, simp)
+ apply hsteps
+ (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
+ my_block
+ fix m
+ have "(reps' m (ia + 1) [ks ! a]) =
+ (reps m ia [ks!a] \<and>* zero (ia + 1))"
+ by (unfold reps'_def, simp)
+ my_block_end
+ apply (unfold this)
+ my_block
+ fix i j l m
+ from `ks!a = (Suc v)` have "ks!a \<noteq> 0" by simp
+ my_block_end
+ apply (hgoto hoare_if_reps_nz_true_gen)
+ apply (rule tm.code_extension1)
+ apply (rule t_hoare_label1, simp)
+ apply (thin_tac "la = j'", prune)
+ apply (subst (1) reps.simps)
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, simp)
+ apply hsteps
+ apply (unfold `ks!a = Suc v`)
+ my_block
+ fix m
+ have "(ones m (m + int (Suc v))) = (ones m (m + int v) \<and>* one (m + int (Suc v)))"
+ by (simp add:ones_rev)
+ my_block_end
+ apply (unfold this)
+ apply hsteps
+ apply (rule_tac p = "st j'a \<and>* ps (m + int v) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+ reps u (m + int v) (take a ks @ [v]) \<and>* zero (m + (1 + int v)) \<and>*
+ zero (2 + (m + int v)) \<and>* zero (3 + (m + int v)) \<and>*
+ fam_conj {3 + (m + int v)<..} zero
+ " in tm.pre_stren)
+ apply hsteps
+ apply (simp add:sep_conj_ac, sep_cancel+)
+ my_block
+ have "take a ks @ [v] = list_ext a ks[a := v]"
+ proof -
+ from True `a < length ks` have "ks = take a ks @ [ks!a]"
+ by (metis append_Nil2 eq_ks)
+ hence "ks[a:=v] = take a ks @ [v]"
+ by (metis True `a < length ks` upd_conv_take_nth_drop)
+ moreover from `a < length ks` have "list_ext a ks = ks"
+ by (metis list_ext_lt)
+ ultimately show ?thesis by simp
+ qed
+ my_block_end my_note eq_l = this
+ apply (unfold this)
+ apply (subst fam_conj_interv_simp)
+ apply (subst fam_conj_interv_simp)
+ apply (subst fam_conj_interv_simp)
+ apply (simp add:sep_conj_ac, sep_cancel, smt)
+ apply (simp add:sep_conj_ac int_add_ac)+
+ apply (sep_cancel+)
+ apply (fwd abs_reps')+
+ apply (fwd reps'_reps_abs)
+ by (simp add:eq_l)
+ qed
+qed
+
+definition "cfill_until_one = (TL start exit.
+ TLabel start;
+ if_one exit;
+ write_one;
+ move_left;
+ jmp start;
+ TLabel exit
+ )"
+
+lemma hoare_cfill_until_one:
+ "\<lbrace>st i \<and>* ps v \<and>* one (u - 1) \<and>* zeros u v\<rbrace>
+ i :[ cfill_until_one ]: j
+ \<lbrace>st j \<and>* ps (u - 1) \<and>* ones (u - 1) v \<rbrace>"
+proof(induct u v rule:zeros_rev_induct)
+ case (Base x y)
+ thus ?case
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, simp add:ones_simps)
+ apply (unfold cfill_until_one_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
+ by hstep
+next
+ case (Step x y)
+ show ?case
+ apply (rule_tac q = "st i \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1) \<and>* one y" in tm.sequencing)
+ apply (subst cfill_until_one_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
+ apply hsteps
+ my_block
+ fix i j l
+ have "\<lbrace>st i \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1)\<rbrace>
+ i :[ jmp l ]: j
+ \<lbrace>st l \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1)\<rbrace>"
+ apply (case_tac "(y - 1) < x", simp add:zeros_simps)
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, simp)
+ apply hstep
+ apply (drule_tac zeros_rev, simp)
+ by hstep
+ my_block_end
+ apply (hstep this)
+ (* The next half *)
+ apply (hstep Step(2), simp add:sep_conj_ac, sep_cancel+)
+ by (insert Step(1), simp add:ones_rev sep_conj_ac)
+qed
+
+definition "cmove = (TL start exit.
+ TLabel start;
+ left_until_zero;
+ left_until_one;
+ move_left;
+ if_zero exit;
+ move_right;
+ write_zero;
+ right_until_one;
+ right_until_zero;
+ write_one;
+ jmp start;
+ TLabel exit
+ )"
+
+declare zeros.simps [simp del] zeros_simps[simp del]
+
+lemma hoare_cmove:
+ assumes "w \<le> k"
+ shows "\<lbrace>st i \<and>* ps (v + 2 + int w) \<and>* zero (u - 1) \<and>*
+ reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1) \<and>*
+ one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<and>* zeros (v + 3 + int w) (v + int(reps_len [k]) + 1)\<rbrace>
+ i :[cmove]: j
+ \<lbrace>st j \<and>* ps (u - 1) \<and>* zero (u - 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>*
+ reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>"
+ using assms
+proof(induct "k - w" arbitrary: w)
+ case (0 w)
+ hence "w = k" by auto
+ show ?case
+ apply (simp add: `w = k` del:zeros.simps zeros_simps)
+ apply (unfold cmove_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
+ apply (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def del:zeros_simps zeros.simps)
+ apply (rule_tac p = "st i \<and>* ps (v + 2 + int k) \<and>* zero (u - 1) \<and>*
+ reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>*
+ ones (v + 2) (v + 2 + int k) \<and>* zeros (v + 3 + int k) (2 + (v + int k)) \<and>*
+ <(u = v - int k)>"
+ in tm.pre_stren)
+ my_block
+ fix i j
+ have "\<lbrace>st i \<and>* ps (v + 2 + int k) \<and>* zeros (u + 1) (v + 1) \<and>* ones (v + 2) (v + 2 + int k)
+ \<and>* <(u = v - int k)>\<rbrace>
+ i :[ left_until_zero ]: j
+ \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros (u + 1) (v + 1) \<and>* ones (v + 2) (v + 2 + int k)
+ \<and>* <(u = v - int k)>\<rbrace>"
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, simp)
+ my_block
+ have "(zeros (v - int k + 1) (v + 1)) = (zeros (v - int k + 1) v \<and>* zero (v + 1))"
+ by (simp only:zeros_rev, smt)
+ my_block_end
+ apply (unfold this)
+ by hsteps
+ my_block_end
+ apply (hstep this)
+ my_block
+ fix i j
+ have "\<lbrace>st i \<and>* ps (v + 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1)\<rbrace>
+ i :[left_until_one]:j
+ \<lbrace>st j \<and>* ps u \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1)\<rbrace>"
+ apply (simp add:reps.simps ones_simps)
+ by hsteps
+ my_block_end
+ apply (hsteps this)
+ apply ((subst (asm) sep_conj_cond)+, erule condE, clarsimp)
+ apply (fwd abs_reps')+
+ apply (simp only:sep_conj_ac int_add_ac, sep_cancel+)
+ apply (simp add:int_add_ac sep_conj_ac zeros_simps)
+ apply (simp add:sep_conj_ac int_add_ac, sep_cancel+)
+ apply (fwd reps_lenE)
+ apply (subst (asm) sep_conj_cond)+
+ apply (erule condE, clarsimp)
+ apply (subgoal_tac "v = u + int k + int (reps_len [0]) - 1", clarsimp)
+ apply (simp add:reps_len_sg)
+ apply (fwd abs_ones)+
+ apply (fwd abs_reps')+
+ apply (simp add:sep_conj_ac int_add_ac)
+ apply (sep_cancel+)
+ apply (simp add:reps.simps, smt)
+ by (clarsimp)
+next
+ case (Suc k' w)
+ from `Suc k' = k - w` `w \<le> k`
+ have h: "k' = k - (Suc w)" "Suc w \<le> k" by auto
+ show ?case
+ apply (rule tm.sequencing[OF _ Suc(1)[OF h(1, 2)]])
+ apply (unfold cmove_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
+ apply (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def del:zeros_simps zeros.simps)
+ my_block
+ fix i j
+ have "\<lbrace>st i \<and>* ps (v + 2 + int w) \<and>* zeros (v - int w + 1) (v + 1) \<and>*
+ one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<rbrace>
+ i :[left_until_zero]: j
+ \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros (v - int w + 1) (v + 1) \<and>*
+ one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<rbrace>"
+ my_block
+ have "(one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)) =
+ ones (v + 2) (v + 2 + int w)"
+ by (simp only:ones_simps, smt)
+ my_block_end
+ apply (unfold this)
+ my_block
+ have "(zeros (v - int w + 1) (v + 1)) = (zeros (v - int w + 1) v \<and>* zero (v + 1))"
+ by (simp only:zeros_rev, simp)
+ my_block_end
+ apply (unfold this)
+ by hsteps
+ my_block_end
+ apply (hstep this)
+ my_block
+ fix i j
+ have "\<lbrace>st i \<and>* ps (v + 1) \<and>* reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1)\<rbrace>
+ i :[left_until_one]: j
+ \<lbrace>st j \<and>* ps (v - int w) \<and>* reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1)\<rbrace>"
+ apply (simp add:reps.simps ones_rev)
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, clarsimp)
+ apply (subgoal_tac "u + int (k - w) = v - int w", simp)
+ defer
+ apply simp
+ by hsteps
+ my_block_end
+ apply (hstep this)
+ my_block
+ have "(reps u (v - int w) [k - w]) = (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))"
+ apply (subst (1 2) reps.simps)
+ apply (subst sep_conj_cond)+
+ my_block
+ have "((v - int w = u + int (k - w))) =
+ (v - (1 + int w) = u + int (k - Suc w))"
+ apply auto
+ apply (smt Suc.prems h(2))
+ by (smt Suc.prems h(2))
+ my_block_end
+ apply (simp add:this)
+ my_block
+ fix b p q
+ assume "(b \<Longrightarrow> (p::tassert) = q)"
+ have "(<b> \<and>* p) = (<b> \<and>* q)"
+ by (metis `b \<Longrightarrow> p = q` cond_eqI)
+ my_block_end
+ apply (rule this)
+ my_block
+ assume "v - (1 + int w) = u + int (k - Suc w)"
+ hence "v = 1 + int w + u + int (k - Suc w)" by auto
+ my_block_end
+ apply (simp add:this)
+ my_block
+ have "\<not> (u + int (k - w)) < u" by auto
+ my_block_end
+ apply (unfold ones_rev[OF this])
+ my_block
+ from Suc (2, 3) have "(u + int (k - w) - 1) = (u + int (k - Suc w))"
+ by auto
+ my_block_end
+ apply (unfold this)
+ my_block
+ from Suc (2, 3) have "(u + int (k - w)) = (1 + (u + int (k - Suc w)))"
+ by auto
+ my_block_end
+ by (unfold this, simp)
+ my_block_end
+ apply (unfold this)
+ my_block
+ fix i j
+ have "\<lbrace>st i \<and>* ps (v - int w) \<and>*
+ (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))\<rbrace>
+ i :[ move_left]: j
+ \<lbrace>st j \<and>* ps (v - (1 + int w)) \<and>*
+ (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))\<rbrace>"
+ apply (simp add:reps.simps ones_rev)
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, clarsimp)
+ apply (subgoal_tac " u + int (k - Suc w) = v - (1 + int w)", simp)
+ defer
+ apply simp
+ apply hsteps
+ by (simp add:sep_conj_ac, sep_cancel+, smt)
+ my_block_end
+ apply (hstep this)
+ my_block
+ fix i' j'
+ have "\<lbrace>st i' \<and>* ps (v - (1 + int w)) \<and>* reps u (v - (1 + int w)) [k - Suc w]\<rbrace>
+ i' :[ if_zero j ]: j'
+ \<lbrace>st j' \<and>* ps (v - (1 + int w)) \<and>* reps u (v - (1 + int w)) [k - Suc w]\<rbrace>"
+ apply (simp add:reps.simps ones_rev)
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, clarsimp)
+ apply (subgoal_tac " u + int (k - Suc w) = v - (1 + int w)", simp)
+ defer
+ apply simp
+ by hstep
+ my_block_end
+ apply (hstep this)
+ my_block
+ fix i j
+ have "\<lbrace>st i \<and>* ps (v - (1 + int w)) \<and>* reps u (v - (1 + int w)) [k - Suc w]\<rbrace>
+ i :[ move_right ]: j
+ \<lbrace>st j \<and>* ps (v - int w) \<and>* reps u (v - (1 + int w)) [k - Suc w] \<rbrace>"
+ apply (simp add:reps.simps ones_rev)
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, clarsimp)
+ apply (subgoal_tac " u + int (k - Suc w) = v - (1 + int w)", simp)
+ defer
+ apply simp
+ by hstep
+ my_block_end
+ apply (hsteps this)
+ my_block
+ fix i j
+ have "\<lbrace>st i \<and>* ps (v - int w) \<and>* one (v + 2) \<and>*
+ zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)\<rbrace>
+ i :[right_until_one]: j
+ \<lbrace>st j \<and>* ps (v + 2) \<and>* one (v + 2) \<and>* zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)\<rbrace>"
+ my_block
+ have "(zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)) =
+ (zeros (v - int w) (v + 1))"
+ by (simp add:zeros_simps)
+ my_block_end
+ apply (unfold this)
+ by hsteps
+ my_block_end
+ apply (hstep this)
+ my_block
+ from Suc(2, 3) have "w < k" by auto
+ hence "(zeros (v + 3 + int w) (2 + (v + int k))) =
+ (zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)))"
+ by (simp add:zeros_simps)
+ my_block_end
+ apply (unfold this)
+ my_block
+ fix i j
+ have "\<lbrace>st i \<and>* ps (v + 2) \<and>* zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)) \<and>*
+ one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)\<rbrace>
+ i :[right_until_zero]: j
+ \<lbrace>st j \<and>* ps (v + 3 + int w) \<and>* zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)) \<and>*
+ one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)\<rbrace>"
+ my_block
+ have "(one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)) =
+ (ones (v + 2) (v + 2 + int w))"
+ by (simp add:ones_simps, smt)
+ my_block_end
+ apply (unfold this)
+ by hsteps
+ my_block_end
+ apply (hsteps this, simp only:sep_conj_ac)
+ apply (sep_cancel+, simp add:sep_conj_ac)
+ my_block
+ fix s
+ assume "(zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)) s"
+ hence "zeros (v - int w) (v + 1) s"
+ by (simp add:zeros_simps)
+ my_block_end
+ apply (fwd this)
+ my_block
+ fix s
+ assume "(one (v + 3 + int w) \<and>* ones (v + 3) (v + 2 + int w)) s"
+ hence "ones (v + 3) (3 + (v + int w)) s"
+ by (simp add:ones_rev sep_conj_ac, smt)
+ my_block_end
+ apply (fwd this)
+ by (simp add:sep_conj_ac, smt)
+qed
+
+definition "cinit = (right_until_zero; move_right; write_one)"
+
+definition "copy = (cinit; cmove; move_right; move_right; right_until_one; move_left; move_left; cfill_until_one)"
+
+lemma hoare_copy:
+ shows
+ "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
+ zeros (v + 2) (v + int(reps_len [k]) + 1)\<rbrace>
+ i :[copy]: j
+ \<lbrace>st j \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
+ reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>"
+ apply (unfold copy_def)
+ my_block
+ fix i j
+ have
+ "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1) \<and>* zeros (v + 2) (v + int(reps_len [k]) + 1)\<rbrace>
+ i :[cinit]: j
+ \<lbrace>st j \<and>* ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
+ one (v + 2) \<and>* zeros (v + 3) (v + int(reps_len [k]) + 1)\<rbrace>"
+ apply (unfold cinit_def)
+ apply (simp add:reps.simps)
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, simp)
+ apply hsteps
+ apply (simp add:sep_conj_ac)
+ my_block
+ have "(zeros (u + int k + 2) (u + int k + int (reps_len [k]) + 1)) =
+ (zero (u + int k + 2) \<and>* zeros (u + int k + 3) (u + int k + int (reps_len [k]) + 1))"
+ by (smt reps_len_sg zeros_step_simp)
+ my_block_end
+ apply (unfold this)
+ apply hstep
+ by (simp add:sep_conj_ac, sep_cancel+, smt)
+ my_block_end
+ apply (hstep this)
+ apply (rule_tac p = "st j' \<and>* ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
+ one (v + 2) \<and>* zeros (v + 3) (v + int (reps_len [k]) + 1) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+ <(v = u + int (reps_len [k]) - 1)>
+ " in tm.pre_stren)
+ my_block
+ fix i j
+ from hoare_cmove[where w = 0 and k = k and i = i and j = j and v = v and u = u]
+ have "\<lbrace>st i \<and>* ps (v + 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
+ one (v + 2) \<and>* zeros (v + 3) (v + int(reps_len [k]) + 1)\<rbrace>
+ i :[cmove]: j
+ \<lbrace>st j \<and>* ps (u - 1) \<and>* zero (u - 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>*
+ reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>"
+ by (auto simp:ones_simps zeros_simps)
+ my_block_end
+ apply (hstep this)
+ apply (hstep, simp)
+ my_block
+ have "reps u u [0] = one u" by (simp add:reps.simps ones_simps)
+ my_block_end my_note eq_repsz = this
+ apply (unfold this)
+ apply (hstep)
+ apply (subst reps.simps, simp add: ones_simps)
+ apply hsteps
+ apply (subst sep_conj_cond)+
+ apply (rule tm.pre_condI, simp del:zeros.simps zeros_simps)
+ apply (thin_tac "int (reps_len [k]) = 1 + int k \<and> v = u + int (reps_len [k]) - 1")
+ my_block
+ have "(zeros (u + 1) (u + int k + 1)) = (zeros (u + 1) (u + int k) \<and>* zero (u + int k + 1))"
+ by (simp only:zeros_rev, smt)
+ my_block_end
+ apply (unfold this)
+ apply (hstep, simp)
+ my_block
+ fix i j
+ from hoare_cfill_until_one[where v = "u + int k" and u = "u + 1"]
+ have "\<lbrace>st i \<and>* ps (u + int k) \<and>* one u \<and>* zeros (u + 1) (u + int k)\<rbrace>
+ i :[ cfill_until_one ]: j
+ \<lbrace>st j \<and>* ps u \<and>* ones u (u + int k) \<rbrace>"
+ by simp
+ my_block_end
+ apply (hstep this, simp add:sep_conj_ac reps.simps ones_simps)
+ apply (simp add:sep_conj_ac reps.simps ones_simps)
+ apply (subst sep_conj_cond)+
+ apply (subst (asm) sep_conj_cond)+
+ apply (rule condI)
+ apply (erule condE, simp)
+ apply (simp add: reps_len_def reps_sep_len_def reps_ctnt_len_def)
+ apply (sep_cancel+)
+ by (erule condE, simp)
+
+end