thys/Hoare_tm3.thy
changeset 19 087d82632852
child 20 e04123f4bacc
equal deleted inserted replaced
18:d826899bc424 19:087d82632852
       
     1 header {* 
       
     2   Separation logic for Turing Machines
       
     3 *}
       
     4 
       
     5 theory Hoare_tm3
       
     6 imports Hoare_gen My_block Data_slot FMap
       
     7 begin
       
     8 
       
     9 notation FMap.lookup (infixl "$" 999)
       
    10 
       
    11 ML {*
       
    12 fun pretty_terms ctxt trms =
       
    13   Pretty.block (Pretty.commas (map (Syntax.pretty_term ctxt) trms))
       
    14 *}
       
    15 
       
    16 ML {*
       
    17 structure StepRules = Named_Thms
       
    18   (val name = @{binding "step"}
       
    19    val description = "Theorems for hoare rules for every step")
       
    20 *}
       
    21 
       
    22 ML {*
       
    23 structure FwdRules = Named_Thms
       
    24   (val name = @{binding "fwd"}
       
    25    val description = "Theorems for fwd derivation of seperation implication")
       
    26 *}
       
    27 
       
    28 setup {* StepRules.setup *}
       
    29 setup {* FwdRules.setup *}
       
    30 
       
    31 method_setup prune = 
       
    32   {* Scan.succeed (SIMPLE_METHOD' o (K (K prune_params_tac))) *} 
       
    33   "pruning parameters"
       
    34 
       
    35 lemma int_add_C: 
       
    36   "x + (y::int) = y + x"
       
    37   by simp
       
    38 
       
    39 lemma int_add_A : "(x + y) + z = x + (y + (z::int))"
       
    40   by simp
       
    41 
       
    42 lemma int_add_LC: "x + (y + (z::int)) = y + (x + z)"
       
    43   by simp
       
    44 
       
    45 lemmas int_add_ac = int_add_A int_add_C int_add_LC
       
    46 
       
    47 
       
    48 section {* Operational Semantics of TM *}
       
    49 
       
    50 datatype taction = W0 | W1 | L | R
       
    51 
       
    52 type_synonym tstate = nat
       
    53 
       
    54 datatype Block = Oc | Bk
       
    55 
       
    56 (* the successor state when tape symbol is Bk or Oc, respectively *)
       
    57 type_synonym tm_inst = "(taction \<times> tstate) \<times> (taction \<times> tstate)"
       
    58 
       
    59 (* - number of faults (nat)
       
    60    - TM program (nat \<rightharpoonup> tm_inst)
       
    61    - current state (nat)
       
    62    - position of head (int)
       
    63    - tape (int \<rightharpoonup> Block)
       
    64 *)
       
    65 type_synonym tconf = "nat \<times> (nat f\<rightharpoonup> tm_inst) \<times> nat \<times> int \<times> (int f\<rightharpoonup> Block)"
       
    66 
       
    67 (* updates the position/tape according to an action *)
       
    68 fun 
       
    69   next_tape :: "taction \<Rightarrow> (int \<times>  (int f\<rightharpoonup> Block)) \<Rightarrow> (int \<times>  (int f\<rightharpoonup> Block))"
       
    70 where 
       
    71   "next_tape W0 (pos, m) = (pos, m(pos f\<mapsto> Bk))" |
       
    72   "next_tape W1 (pos, m) = (pos, m(pos f\<mapsto> Oc))" |
       
    73   "next_tape L  (pos, m) = (pos - 1, m)" |
       
    74   "next_tape R  (pos, m) = (pos + 1, m)"
       
    75 
       
    76 fun tstep :: "tconf \<Rightarrow> tconf"
       
    77   where "tstep (faults, prog, pc, pos, m) = 
       
    78               (case (prog $ pc) of
       
    79                   Some ((action0, pc0), (action1, pc1)) \<Rightarrow> 
       
    80                      case (m $ pos) of
       
    81                        Some Bk \<Rightarrow> (faults, prog, pc0, next_tape action0 (pos, m)) |
       
    82                        Some Oc \<Rightarrow> (faults, prog, pc1, next_tape action1 (pos, m)) |
       
    83                        None \<Rightarrow> (faults + 1, prog, pc, pos, m)
       
    84                 | None \<Rightarrow> (faults + 1, prog, pc, pos, m))"
       
    85 
       
    86 lemma tstep_splits: 
       
    87   "(P (tstep s)) = ((\<forall> faults prog pc pos m action0 pc0 action1 pc1. 
       
    88                           s = (faults, prog, pc, pos, m) \<longrightarrow> 
       
    89                           prog $ pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> 
       
    90                           m $ pos = Some Bk \<longrightarrow> P (faults, prog, pc0, next_tape action0 (pos, m))) \<and>
       
    91                     (\<forall> faults prog pc pos m action0 pc0 action1 pc1. 
       
    92                           s = (faults, prog, pc, pos, m) \<longrightarrow> 
       
    93                           prog $ pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> 
       
    94                           m $ pos = Some Oc \<longrightarrow> P (faults, prog, pc1, next_tape action1 (pos, m))) \<and>
       
    95                     (\<forall> faults prog pc pos m action0 pc0 action1 pc1. 
       
    96                           s = (faults, prog, pc, pos, m) \<longrightarrow> 
       
    97                           prog $ pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> 
       
    98                           m $ pos = None \<longrightarrow> P (faults + 1, prog, pc, pos, m)) \<and>
       
    99                     (\<forall> faults prog pc pos m . 
       
   100                           s =  (faults, prog, pc, pos, m) \<longrightarrow>
       
   101                           prog $ pc  = None \<longrightarrow> P (faults + 1, prog, pc, pos, m))
       
   102                    )"
       
   103   by (cases s) (auto split: option.splits Block.splits)
       
   104 
       
   105 datatype tresource = 
       
   106     TM int Block      (* at the position int of the tape is a Bl or Oc *)
       
   107   | TC nat tm_inst    (* at the address nat is a certain instruction *)
       
   108   | TAt nat           (* TM is at state nat*)
       
   109   | TPos int          (* head of TM is at position int *)
       
   110   | TFaults nat       (* there are nat faults *)
       
   111 
       
   112 definition "tprog_set prog = {TC i inst | i inst. prog $ i = Some inst}"
       
   113 definition "tpc_set pc = {TAt pc}"
       
   114 definition "tmem_set m = {TM i n | i n. m $ i = Some n}"
       
   115 definition "tpos_set pos = {TPos pos}"
       
   116 definition "tfaults_set faults = {TFaults faults}"
       
   117 
       
   118 lemmas tpn_set_def = tprog_set_def tpc_set_def tmem_set_def tfaults_set_def tpos_set_def
       
   119 
       
   120 fun trset_of :: "tconf \<Rightarrow> tresource set"
       
   121   where "trset_of (faults, prog, pc, pos, m) = 
       
   122                tprog_set prog \<union> tpc_set pc \<union> tpos_set pos \<union> tmem_set m \<union> tfaults_set faults"
       
   123 
       
   124 interpretation tm: sep_exec tstep trset_of .
       
   125 
       
   126 
       
   127 
       
   128 section {* Assembly language for TMs and its program logic *}
       
   129 
       
   130 subsection {* The assembly language *}
       
   131 
       
   132 datatype tpg = 
       
   133    TInstr tm_inst
       
   134  | TLabel nat
       
   135  | TSeq tpg tpg
       
   136  | TLocal "nat \<Rightarrow> tpg"
       
   137 
       
   138 notation TLocal (binder "TL " 10)
       
   139 
       
   140 abbreviation 
       
   141   tprog_instr :: "tm_inst \<Rightarrow> tpg" ("\<guillemotright> _" [61] 61)
       
   142 where "\<guillemotright> i \<equiv> TInstr i"
       
   143 
       
   144 abbreviation tprog_seq :: 
       
   145   "tpg \<Rightarrow> tpg \<Rightarrow> tpg" (infixr ";" 52)
       
   146 where "c1 ; c2 \<equiv> TSeq c1 c2"
       
   147 
       
   148 definition "sg e = (\<lambda>s. s = e)"
       
   149 
       
   150 type_synonym tassert = "tresource set \<Rightarrow> bool"
       
   151 
       
   152 abbreviation 
       
   153   t_hoare :: "tassert \<Rightarrow> tassert  \<Rightarrow> tassert \<Rightarrow> bool" ("(\<lbrace>(1_)\<rbrace>/ (_)/ \<lbrace>(1_)\<rbrace>)" 50)
       
   154 where 
       
   155   "\<lbrace>p\<rbrace> c \<lbrace>q\<rbrace> == sep_exec.Hoare_gen tstep trset_of p c q"
       
   156 
       
   157 abbreviation it_hoare ::
       
   158   "('a::sep_algebra \<Rightarrow> tresource set \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> (tresource set \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
       
   159       ("(1_).(\<lbrace>(1_)\<rbrace>/ (_)/ \<lbrace>(1_)\<rbrace>)" 50)
       
   160 where "I. \<lbrace>P\<rbrace> c \<lbrace>Q\<rbrace> == sep_exec.IHoare tstep trset_of I P c Q"
       
   161 
       
   162 (*
       
   163 primrec tpg_len :: "tpg \<Rightarrow> nat" where 
       
   164   "tpg_len (TInstr ai) = 1" |
       
   165   "tpg_len (TSeq p1 p2) = tpg_len p1 + tpg_len " |
       
   166   "tpg_len (TLocal fp) = tpg_len (fp 0)" |
       
   167   "tpg_len (TLabel l) = 0" 
       
   168 *)
       
   169 
       
   170 primrec tassemble_to :: "tpg \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> tassert" 
       
   171   where 
       
   172   "tassemble_to (TInstr ai) i j = (sg ({TC i ai}) ** <(j = i + 1)>)" |
       
   173   "tassemble_to (TSeq p1 p2) i j = (EXS j'. (tassemble_to p1 i j') ** (tassemble_to p2 j' j))" |
       
   174   "tassemble_to (TLocal fp) i j  = (EXS l. (tassemble_to (fp l) i j))" | 
       
   175   "tassemble_to (TLabel l) i j = <(i = j \<and> j = l)>"
       
   176 
       
   177 declare tassemble_to.simps [simp del]
       
   178 
       
   179 lemmas tasmp = tassemble_to.simps (2, 3, 4)
       
   180 
       
   181 abbreviation 
       
   182   tasmb_to :: "nat \<Rightarrow> tpg \<Rightarrow> nat \<Rightarrow> tassert" ("_ :[ _ ]: _" [60, 60, 60] 60)
       
   183   where 
       
   184   "i :[ tpg ]: j \<equiv> tassemble_to tpg i j"
       
   185 
       
   186 lemma EXS_intro: 
       
   187   assumes h: "(P x) s"
       
   188   shows "(EXS x. P(x)) s"
       
   189   by (smt h pred_ex_def sep_conj_impl)
       
   190 
       
   191 lemma EXS_elim: 
       
   192   assumes "(EXS x. P x) s"
       
   193   obtains x where "P x s"
       
   194   by (metis assms pred_ex_def)
       
   195 
       
   196 lemma EXS_eq:
       
   197   fixes x
       
   198   assumes h: "Q (p x)" 
       
   199   and h1: "\<And> y s. \<lbrakk>p y s\<rbrakk> \<Longrightarrow> y = x"
       
   200   shows "p x = (EXS x. p x)"
       
   201 proof
       
   202   fix s
       
   203   show "p x s = (EXS x. p x) s"
       
   204   proof
       
   205     assume "p x s"
       
   206     thus "(EXS x. p x) s" by (auto simp:pred_ex_def)
       
   207   next
       
   208     assume "(EXS x. p x) s"
       
   209     thus "p x s"
       
   210     proof(rule EXS_elim)
       
   211       fix y
       
   212       assume "p y s"
       
   213       from this[unfolded h1[OF this]] show "p x s" .
       
   214     qed
       
   215   qed
       
   216 qed
       
   217 
       
   218 definition "tpg_fold tpgs = foldr TSeq (butlast tpgs) (last tpgs)"
       
   219 
       
   220 lemma tpg_fold_sg: 
       
   221   "tpg_fold [tpg] = tpg"
       
   222   by (simp add:tpg_fold_def)
       
   223 
       
   224 lemma tpg_fold_cons: 
       
   225   assumes h: "tpgs \<noteq> []"
       
   226   shows "tpg_fold (tpg#tpgs) = (tpg; (tpg_fold tpgs))"
       
   227   using h
       
   228 proof(induct tpgs arbitrary:tpg)
       
   229   case (Cons tpg1 tpgs1)
       
   230   thus ?case
       
   231   proof(cases "tpgs1 = []")
       
   232     case True
       
   233     thus ?thesis by (simp add:tpg_fold_def)
       
   234   next
       
   235     case False
       
   236     show ?thesis
       
   237     proof -
       
   238       have eq_1: "butlast (tpg # tpg1 # tpgs1) = tpg # (butlast (tpg1 # tpgs1))"
       
   239         by simp
       
   240       from False have eq_2: "last (tpg # tpg1 # tpgs1) = last (tpg1 # tpgs1)"
       
   241         by simp
       
   242       have eq_3: "foldr (op ;) (tpg # butlast (tpg1 # tpgs1)) (last (tpg1 # tpgs1)) = 
       
   243             (tpg ; (foldr (op ;) (butlast (tpg1 # tpgs1)) (last (tpg1 # tpgs1))))"
       
   244         by simp
       
   245       show ?thesis
       
   246         apply (subst (1) tpg_fold_def, unfold eq_1 eq_2 eq_3)
       
   247         by (fold tpg_fold_def, simp)
       
   248     qed
       
   249   qed
       
   250 qed auto
       
   251 
       
   252 lemmas tpg_fold_simps = tpg_fold_sg tpg_fold_cons
       
   253 
       
   254 lemma tpg_fold_app:
       
   255   assumes h1: "tpgs1 \<noteq> []" 
       
   256   and h2: "tpgs2 \<noteq> []"
       
   257   shows "i:[(tpg_fold (tpgs1 @ tpgs2))]:j = i:[(tpg_fold (tpgs1); tpg_fold tpgs2)]:j"
       
   258   using h1 h2
       
   259 proof(induct tpgs1 arbitrary: i j tpgs2)
       
   260   case (Cons tpg1' tpgs1')
       
   261   thus ?case (is "?L = ?R")
       
   262   proof(cases "tpgs1' = []")
       
   263     case False
       
   264     from h2 have "(tpgs1' @ tpgs2) \<noteq> []"
       
   265       by (metis Cons.prems(2) Nil_is_append_conv) 
       
   266     have "?L = (i :[ tpg_fold (tpg1' # (tpgs1' @ tpgs2)) ]: j )" by simp
       
   267     also have "\<dots> =  (i:[(tpg1'; (tpg_fold (tpgs1' @ tpgs2)))]:j )"
       
   268       by (simp add:tpg_fold_cons[OF `(tpgs1' @ tpgs2) \<noteq> []`])
       
   269     also have "\<dots> = ?R"
       
   270     proof -
       
   271       have "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) =
       
   272               (EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>* 
       
   273                                j' :[ tpg_fold tpgs2 ]: j)"
       
   274       proof(default+)
       
   275         fix s
       
   276         assume "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
       
   277         thus "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>*
       
   278                   j' :[ tpg_fold tpgs2 ]: j) s"
       
   279         proof(elim EXS_elim)
       
   280           fix j'
       
   281           assume "(i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
       
   282           from this[unfolded Cons(1)[OF False Cons(3)] tassemble_to.simps]
       
   283           show "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>*
       
   284                            j' :[ tpg_fold tpgs2 ]: j) s"
       
   285           proof(elim sep_conjE EXS_elim)
       
   286             fix x y j'a xa ya
       
   287             assume h: "(i :[ tpg1' ]: j') x"
       
   288                       "x ## y" "s = x + y"
       
   289                       "(j' :[ tpg_fold tpgs1' ]: j'a) xa"
       
   290                       "(j'a :[ tpg_fold tpgs2 ]: j) ya"
       
   291                       " xa ## ya" "y = xa + ya"
       
   292             show "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* 
       
   293                                 j'a :[ tpg_fold tpgs1' ]: j') \<and>* j' :[ tpg_fold tpgs2 ]: j) s"
       
   294                (is "(EXS j'. (?P j' \<and>* ?Q j')) s")
       
   295             proof(rule EXS_intro[where x = "j'a"])
       
   296               from `(j'a :[ tpg_fold tpgs2 ]: j) ya` have "(?Q j'a) ya" .
       
   297               moreover have "(?P j'a) (x + xa)" 
       
   298               proof(rule EXS_intro[where x = j'])
       
   299                 have "x + xa = x + xa" by simp
       
   300                 moreover from `x ## y` `y = xa + ya` `xa ## ya` 
       
   301                 have "x ## xa" by (metis sep_disj_addD) 
       
   302                 moreover note `(i :[ tpg1' ]: j') x` `(j' :[ tpg_fold tpgs1' ]: j'a) xa`
       
   303                 ultimately show "(i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold tpgs1' ]: j'a) (x + xa)"
       
   304                   by (auto intro!:sep_conjI)
       
   305               qed
       
   306               moreover from `x##y` `y = xa + ya` `xa ## ya` 
       
   307               have "(x + xa) ## ya"
       
   308                 by (metis sep_disj_addI1 sep_disj_commuteI)
       
   309               moreover from `s = x + y` `y = xa + ya`
       
   310               have "s = (x + xa) + ya"
       
   311                 by (metis h(2) h(6) sep_add_assoc sep_disj_addD1 sep_disj_addD2) 
       
   312               ultimately show "(?P j'a \<and>* ?Q j'a) s"
       
   313                 by (auto intro!:sep_conjI)
       
   314             qed
       
   315           qed
       
   316         qed
       
   317       next
       
   318         fix s
       
   319         assume "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>*
       
   320                                     j' :[ tpg_fold tpgs2 ]: j) s"
       
   321         thus "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
       
   322         proof(elim EXS_elim sep_conjE)
       
   323           fix j' x y j'a xa ya
       
   324           assume h: "(j' :[ tpg_fold tpgs2 ]: j) y"
       
   325                     "x ## y" "s = x + y" "(i :[ tpg1' ]: j'a) xa"
       
   326                     "(j'a :[ tpg_fold tpgs1' ]: j') ya" "xa ## ya" "x = xa + ya"
       
   327           show "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
       
   328           proof(rule EXS_intro[where x = j'a])
       
   329             from `(i :[ tpg1' ]: j'a) xa` have "(i :[ tpg1' ]: j'a) xa" .
       
   330             moreover have "(j'a :[ tpg_fold (tpgs1' @ tpgs2) ]: j) (ya + y)"
       
   331             proof(unfold Cons(1)[OF False Cons(3)] tassemble_to.simps)
       
   332               show "(EXS j'. j'a :[ tpg_fold tpgs1' ]: j' \<and>* j' :[ tpg_fold tpgs2 ]: j) (ya + y)"
       
   333               proof(rule EXS_intro[where x = "j'"])
       
   334                 from `x ## y` `x = xa + ya` `xa ## ya`
       
   335                 have "ya ## y" by (metis sep_add_disjD)
       
   336                 moreover have "ya + y = ya + y" by simp
       
   337                 moreover note `(j'a :[ tpg_fold tpgs1' ]: j') ya` 
       
   338                                `(j' :[ tpg_fold tpgs2 ]: j) y`
       
   339                 ultimately show "(j'a :[ tpg_fold tpgs1' ]: j' \<and>* 
       
   340                                  j' :[ tpg_fold tpgs2 ]: j) (ya + y)"
       
   341                   by (auto intro!:sep_conjI)
       
   342               qed
       
   343             qed
       
   344             moreover from `s = x + y` `x = xa + ya`
       
   345             have "s = xa + (ya + y)"
       
   346               by (metis h(2) h(6) sep_add_assoc sep_add_disjD)
       
   347             moreover from `xa ## ya` `x ## y` `x = xa + ya`
       
   348             have "xa ## (ya + y)" by (metis sep_disj_addI3) 
       
   349             ultimately show "(i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
       
   350               by (auto intro!:sep_conjI)
       
   351           qed
       
   352         qed
       
   353       qed
       
   354       thus ?thesis 
       
   355         by (simp add:tassemble_to.simps, unfold tpg_fold_cons[OF False], 
       
   356              unfold tassemble_to.simps, simp)
       
   357     qed
       
   358     finally show ?thesis . 
       
   359   next
       
   360     case True
       
   361     thus ?thesis
       
   362       by (simp add:tpg_fold_cons[OF Cons(3)] tpg_fold_sg)
       
   363   qed 
       
   364 qed auto
       
   365  
       
   366 
       
   367 subsection {* Assertions and program logic for this assembly language *}
       
   368 
       
   369 definition "st l = sg (tpc_set l)"
       
   370 definition "ps p = sg (tpos_set p)" 
       
   371 definition "tm a v = sg ({TM a v})"
       
   372 definition "one i = tm i Oc"
       
   373 definition "zero i= tm i Bk"
       
   374 definition "any i = (EXS v. tm i v)"
       
   375 
       
   376 declare trset_of.simps[simp del]
       
   377 
       
   378 lemma stimes_sgD: 
       
   379   "(sg x \<and>* q) s \<Longrightarrow> q (s - x) \<and> x \<subseteq> s"
       
   380   apply(erule_tac sep_conjE)
       
   381   apply(unfold set_ins_def sg_def)
       
   382   by (metis Diff_Int Diff_cancel Diff_empty Un_Diff sup.cobounded1 sup_bot.left_neutral sup_commute)
       
   383   
       
   384 lemma stD: 
       
   385   "(st i \<and>* r) (trset_of (ft, prog, i', pos, mem)) \<Longrightarrow> i' = i"
       
   386 proof -
       
   387   assume "(st i \<and>* r) (trset_of (ft, prog, i', pos, mem))"
       
   388   from stimes_sgD [OF this[unfolded st_def], unfolded trset_of.simps]
       
   389   have "tpc_set i \<subseteq> tprog_set prog \<union> tpc_set i' \<union> tpos_set pos \<union>  
       
   390             tmem_set mem \<union> tfaults_set ft" by auto
       
   391   thus ?thesis
       
   392     by (unfold tpn_set_def, auto)
       
   393 qed
       
   394 
       
   395 lemma psD: 
       
   396   "(ps p \<and>* r) (trset_of (ft, prog, i', pos, mem)) \<Longrightarrow> pos = p"
       
   397 proof -
       
   398   assume "(ps p ** r) (trset_of (ft, prog, i', pos, mem))"
       
   399   from stimes_sgD [OF this[unfolded ps_def], unfolded trset_of.simps]
       
   400   have "tpos_set p \<subseteq> tprog_set prog \<union> tpc_set i' \<union> 
       
   401                        tpos_set pos \<union> tmem_set mem \<union> tfaults_set ft"
       
   402     by simp
       
   403   thus ?thesis
       
   404     by (unfold tpn_set_def, auto)
       
   405 qed
       
   406 
       
   407 lemma codeD: "(st i \<and>* sg {TC i inst} \<and>* r) (trset_of (ft, prog, i', pos, mem))
       
   408        \<Longrightarrow> prog $ i = Some inst"
       
   409 proof -
       
   410   assume "(st i \<and>* sg {TC i inst} \<and>* r) (trset_of (ft, prog, i', pos, mem))"
       
   411   thus ?thesis
       
   412     apply(unfold sep_conj_def set_ins_def sg_def trset_of.simps tpn_set_def)
       
   413     by auto
       
   414 qed
       
   415 
       
   416 lemma memD: "((tm a v) \<and>* r) (trset_of (ft, prog, i, pos, mem))  \<Longrightarrow> mem $ a = Some v"
       
   417 proof -
       
   418   assume "((tm a v) \<and>* r) (trset_of (ft, prog, i, pos, mem))"
       
   419   from stimes_sgD[OF this[unfolded trset_of.simps tpn_set_def tm_def]]
       
   420   have "{TM a v} \<subseteq> {TC i inst |i inst. prog $ i = Some inst} \<union> {TAt i} \<union> 
       
   421     {TPos pos} \<union> {TM i n |i n. mem $ i = Some n} \<union> {TFaults ft}" by simp
       
   422   thus ?thesis by auto
       
   423 qed
       
   424 
       
   425 lemma t_hoare_seq: 
       
   426   assumes a1: "\<And> i j. \<lbrace>st i \<and>* p\<rbrace> i:[c1]:j \<lbrace>st j \<and>* q\<rbrace>"
       
   427   and     a2: "\<And> j k. \<lbrace>st j ** q\<rbrace> j:[c2]:k \<lbrace>st k ** r\<rbrace>" 
       
   428   shows "\<lbrace>st i \<and>* p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>st k \<and>* r\<rbrace>"
       
   429 proof(subst tassemble_to.simps, rule tm.code_exI)
       
   430   fix j'
       
   431   show "\<lbrace>st i \<and>* p\<rbrace>  i:[ c1 ]:j' \<and>* j':[ c2 ]:k \<lbrace>st k \<and>* r\<rbrace>"
       
   432   proof(rule tm.composition)
       
   433     from a1 show "\<lbrace>st i \<and>* p\<rbrace>  i:[ c1 ]:j' \<lbrace>st j' \<and>* q\<rbrace>" by auto
       
   434   next
       
   435     from a2 show "\<lbrace>st j' \<and>* q\<rbrace>  j':[ c2 ]:k \<lbrace>st k \<and>* r\<rbrace>" by auto
       
   436   qed
       
   437 qed
       
   438 
       
   439 
       
   440 lemma t_hoare_seq1:
       
   441   assumes a1: "\<And>j'. \<lbrace>st i \<and>* p\<rbrace> i:[c1]:j' \<lbrace>st j' \<and>* q\<rbrace>"
       
   442   assumes a2: "\<And>j'. \<lbrace>st j' \<and>* q\<rbrace> j':[c2]:k \<lbrace>st k' \<and>* r\<rbrace>"
       
   443   shows "\<lbrace>st i \<and>* p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>st k' \<and>* r\<rbrace>"
       
   444 proof(subst tassemble_to.simps, rule tm.code_exI)
       
   445   fix j'
       
   446   show "\<lbrace>st i \<and>* p\<rbrace>  i:[ c1 ]:j' \<and>* j':[ c2 ]:k \<lbrace>st k' \<and>* r\<rbrace>"
       
   447   proof(rule tm.composition)
       
   448     from a1 show "\<lbrace>st i \<and>* p\<rbrace>  i:[ c1 ]:j' \<lbrace>st j' \<and>* q\<rbrace>" by auto
       
   449   next
       
   450     from a2 show " \<lbrace>st j' \<and>* q\<rbrace>  j':[ c2 ]:k \<lbrace>st k' \<and>* r\<rbrace>" by auto
       
   451   qed
       
   452 qed
       
   453 
       
   454 lemma t_hoare_seq2:
       
   455   assumes h: "\<And>j. \<lbrace>st i ** p\<rbrace> i:[c1]:j \<lbrace>st k' \<and>* r\<rbrace>"
       
   456   shows "\<lbrace>st i ** p\<rbrace> i:[(c1 ; c2)]:j \<lbrace>st k' ** r\<rbrace>"
       
   457   apply (unfold tassemble_to.simps, rule tm.code_exI)
       
   458   by (rule tm.code_extension, rule h)
       
   459 
       
   460 lemma t_hoare_local: 
       
   461   assumes h: "(\<And>l. \<lbrace>st i \<and>* p\<rbrace>  i :[ c l ]: j \<lbrace>st k \<and>* q\<rbrace>)"
       
   462   shows "\<lbrace>st i ** p\<rbrace> i:[TLocal c]:j \<lbrace>st k ** q\<rbrace>" using h
       
   463   by (unfold tassemble_to.simps, intro tm.code_exI, simp)
       
   464 
       
   465 lemma t_hoare_label: 
       
   466   assumes "\<And>l. l = i \<Longrightarrow> \<lbrace>st l \<and>* p\<rbrace>  l:[ c l ]:j \<lbrace>st k \<and>* q\<rbrace>"
       
   467   shows "\<lbrace>st i \<and>* p\<rbrace> i:[(TLabel l; c l)]:j \<lbrace>st k \<and>* q\<rbrace>"
       
   468 using assms
       
   469 by (unfold tassemble_to.simps, intro tm.code_exI tm.code_condI, clarify, auto)
       
   470 
       
   471 primrec t_split_cmd :: "tpg \<Rightarrow> (tpg \<times> tpg option)"
       
   472   where "t_split_cmd (\<guillemotright>inst) = (\<guillemotright>inst, None)" |
       
   473         "t_split_cmd (TLabel l) = (TLabel l, None)" |
       
   474         "t_split_cmd (TSeq c1 c2) = (case (t_split_cmd c2) of
       
   475                                       (c21, Some c22) \<Rightarrow> (TSeq c1 c21, Some c22) |
       
   476                                       (c21, None) \<Rightarrow> (c1, Some c21))" |
       
   477         "t_split_cmd (TLocal c) = (TLocal c, None)"
       
   478 
       
   479 definition "t_last_cmd tpg = snd (t_split_cmd tpg)"
       
   480 
       
   481 declare t_last_cmd_def [simp]
       
   482 
       
   483 definition "t_blast_cmd tpg = fst (t_split_cmd tpg)"
       
   484 
       
   485 declare t_blast_cmd_def [simp]
       
   486 
       
   487 lemma "t_last_cmd (c1; c2; TLabel l) = Some (TLabel l)"
       
   488   by simp
       
   489 
       
   490 lemma "t_blast_cmd (c1; c2; TLabel l) = (c1; c2)"
       
   491   by simp
       
   492 
       
   493 lemma t_split_cmd_eq:
       
   494   assumes "t_split_cmd c = (c1, Some c2)"
       
   495   shows "i:[c]:j = i:[(c1; c2)]:j"
       
   496   using assms
       
   497 proof(induct c arbitrary: c1 c2 i j)
       
   498   case (TSeq cx cy)
       
   499   from `t_split_cmd (cx ; cy) = (c1, Some c2)`
       
   500   show ?case
       
   501     apply (simp split:prod.splits option.splits)
       
   502     apply (cases cy, auto split:prod.splits option.splits)
       
   503     proof -
       
   504       fix a
       
   505       assume h: "t_split_cmd cy = (a, Some c2)"
       
   506       show "i :[ (cx ; cy) ]: j = i :[ ((cx ; a) ; c2) ]: j"
       
   507         apply (simp only: tassemble_to.simps(2) TSeq(2)[OF h] sep_conj_exists)
       
   508         apply (simp add:sep_conj_ac)
       
   509         by (simp add:pred_ex_def, default, auto)
       
   510     qed
       
   511 qed auto
       
   512 
       
   513 lemma t_hoare_label_last_pre: 
       
   514   assumes h1: "t_split_cmd c = (c', Some (TLabel l))"
       
   515   and h2: "l = j \<Longrightarrow> \<lbrace>p\<rbrace> i:[c']:j \<lbrace>q\<rbrace>"
       
   516   shows "\<lbrace>p\<rbrace> i:[c]:j \<lbrace>q\<rbrace>"
       
   517 by (unfold t_split_cmd_eq[OF h1], 
       
   518     simp only:tassemble_to.simps sep_conj_cond, 
       
   519     intro tm.code_exI tm.code_condI, insert h2, auto)
       
   520 
       
   521 lemma t_hoare_label_last: 
       
   522   assumes h1: "t_last_cmd c = Some (TLabel l)"
       
   523   and h2: "l = j \<Longrightarrow> \<lbrace>p\<rbrace> i:[t_blast_cmd c]:j \<lbrace>q\<rbrace>"
       
   524   shows "\<lbrace>p\<rbrace> i:[c]:j \<lbrace>q\<rbrace>"
       
   525 proof -
       
   526     have "t_split_cmd c = (t_blast_cmd c, t_last_cmd c)"
       
   527       by simp
       
   528   from t_hoare_label_last_pre[OF this[unfolded h1]] h2
       
   529   show ?thesis by auto
       
   530 qed
       
   531 
       
   532 
       
   533 subsection {* Basic assertions for TM *}
       
   534 
       
   535 (* ones between tape position i and j *)
       
   536 function ones :: "int \<Rightarrow> int \<Rightarrow> tassert" where
       
   537   "ones i j = (if j < i then <(i = j + 1)> 
       
   538                else (one i) \<and>* ones (i + 1) j)"
       
   539 by auto
       
   540 
       
   541 termination 
       
   542   by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto
       
   543 
       
   544 lemma ones_base_simp: 
       
   545   "j < i \<Longrightarrow> ones i j = <(i = j + 1)>"
       
   546   by simp
       
   547 
       
   548 lemma ones_step_simp: 
       
   549   "\<not> j < i \<Longrightarrow> ones i j =  ((one i) \<and>* ones (i + 1) j)"
       
   550   by simp
       
   551 
       
   552 lemmas ones_simps = ones_base_simp ones_step_simp
       
   553 
       
   554 declare ones.simps [simp del] ones_simps [simp]
       
   555 
       
   556 lemma ones_induct [case_names Base Step]:
       
   557   assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
       
   558   and h2: "\<And> i j. \<lbrakk>\<not> j < i; P (i + 1) j (ones (i + 1) j)\<rbrakk> \<Longrightarrow> P i j ((one i) \<and>* ones (i + 1) j)"
       
   559   shows "P i j (ones i j)"
       
   560 proof(induct i j rule:ones.induct)
       
   561   fix i j 
       
   562   assume ih: "(\<not> j < i \<Longrightarrow> P (i + 1) j (ones (i + 1) j))"
       
   563   show "P i j (ones i j)"
       
   564   proof(cases "j < i")
       
   565     case True
       
   566     with h1 [OF True]
       
   567     show ?thesis by auto
       
   568   next
       
   569     case False
       
   570     from h2 [OF False] and ih[OF False]
       
   571     have "P i j (one i \<and>* ones (i + 1) j)" by blast
       
   572     with False show ?thesis by auto
       
   573   qed
       
   574 qed
       
   575 
       
   576 function ones' ::  "int \<Rightarrow> int \<Rightarrow> tassert" where
       
   577   "ones' i j = (if j < i then <(i = j + 1)> 
       
   578                 else ones' i (j - 1) \<and>* one j)"
       
   579 by auto
       
   580 termination by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto
       
   581 
       
   582 lemma ones_rev: "\<not> j < i \<Longrightarrow> (ones i j) = ((ones i (j - 1)) ** one j)"
       
   583 proof(induct i j rule:ones_induct)
       
   584   case Base
       
   585   thus ?case by auto
       
   586 next
       
   587   case (Step i j)
       
   588   show ?case
       
   589   proof(cases "j < i + 1")
       
   590     case True
       
   591     with Step show ?thesis
       
   592       by simp
       
   593   next
       
   594     case False
       
   595     with Step show ?thesis 
       
   596       by (auto simp:sep_conj_ac)
       
   597   qed
       
   598 qed
       
   599 
       
   600 lemma ones_rev_induct [case_names Base Step]:
       
   601   assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
       
   602   and h2: "\<And> i j. \<lbrakk>\<not> j < i; P i (j - 1) (ones i (j - 1))\<rbrakk> \<Longrightarrow> P i j ((ones i (j - 1)) ** one j)"
       
   603   shows "P i j (ones i j)"
       
   604 proof(induct i j rule:ones'.induct)
       
   605   fix i j 
       
   606   assume ih: "(\<not> j < i \<Longrightarrow> P i (j - 1) (ones i (j - 1)))"
       
   607   show "P i j (ones i j)"
       
   608   proof(cases "j < i")
       
   609     case True
       
   610     with h1 [OF True]
       
   611     show ?thesis by auto
       
   612   next
       
   613     case False
       
   614     from h2 [OF False] and ih[OF False]
       
   615     have "P i j (ones i (j - 1) \<and>* one j)" by blast
       
   616     with ones_rev and False
       
   617     show ?thesis
       
   618       by simp
       
   619   qed
       
   620 qed
       
   621 
       
   622 function zeros :: "int \<Rightarrow> int \<Rightarrow> tassert" where
       
   623   "zeros i j = (if j < i then <(i = j + 1)> else
       
   624                 (zero i) ** zeros (i + 1) j)"
       
   625 by auto
       
   626 termination by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto
       
   627 
       
   628 lemma zeros_base_simp: "j < i \<Longrightarrow> zeros i j = <(i = j + 1)>"
       
   629   by simp
       
   630 
       
   631 lemma zeros_step_simp: "\<not> j < i \<Longrightarrow> zeros i j = ((zero i) ** zeros (i + 1) j)"
       
   632   by simp
       
   633 
       
   634 declare zeros.simps [simp del]
       
   635 lemmas zeros_simps [simp] = zeros_base_simp zeros_step_simp
       
   636 
       
   637 lemma zeros_induct [case_names Base Step]:
       
   638   assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
       
   639   and h2: "\<And> i j. \<lbrakk>\<not> j < i; P (i + 1) j (zeros (i + 1) j)\<rbrakk> \<Longrightarrow> 
       
   640                                    P i j ((zero i) ** zeros (i + 1) j)"
       
   641   shows "P i j (zeros i j)"
       
   642 proof(induct i j rule:zeros.induct)
       
   643   fix i j 
       
   644   assume ih: "(\<not> j < i \<Longrightarrow> P (i + 1) j (zeros (i + 1) j))"
       
   645   show "P i j (zeros i j)"
       
   646   proof(cases "j < i")
       
   647     case True
       
   648     with h1 [OF True]
       
   649     show ?thesis by auto
       
   650   next
       
   651     case False
       
   652     from h2 [OF False] and ih[OF False]
       
   653     have "P i j (zero i \<and>* zeros (i + 1) j)" by blast
       
   654     with False show ?thesis by auto
       
   655   qed
       
   656 qed
       
   657 
       
   658 lemma zeros_rev: "\<not> j < i \<Longrightarrow> (zeros i j) = ((zeros i (j - 1)) \<and>* zero j)"
       
   659 proof(induct i j rule:zeros_induct)
       
   660   case (Base i j)
       
   661   thus ?case by auto
       
   662 next
       
   663   case (Step i j)
       
   664   show ?case
       
   665   proof(cases "j < i + 1")
       
   666     case True
       
   667     with Step show ?thesis by auto
       
   668   next
       
   669     case False
       
   670     with Step show ?thesis by (auto simp:sep_conj_ac)
       
   671   qed
       
   672 qed
       
   673 
       
   674 lemma zeros_rev_induct [case_names Base Step]:
       
   675   assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
       
   676   and h2: "\<And> i j. \<lbrakk>\<not> j < i; P i (j - 1) (zeros i (j - 1))\<rbrakk> \<Longrightarrow> 
       
   677                        P i j ((zeros i (j - 1)) ** zero j)"
       
   678   shows "P i j (zeros i j)"
       
   679 proof(induct i j rule:ones'.induct)
       
   680   fix i j 
       
   681   assume ih: "(\<not> j < i \<Longrightarrow> P i (j - 1) (zeros i (j - 1)))"
       
   682   show "P i j (zeros i j)"
       
   683   proof(cases "j < i")
       
   684     case True
       
   685     with h1 [OF True]
       
   686     show ?thesis by auto
       
   687   next
       
   688     case False
       
   689     from h2 [OF False] and ih[OF False]
       
   690     have "P i j (zeros i (j - 1) \<and>* zero j)" by blast
       
   691     with zeros_rev and False
       
   692     show ?thesis by simp
       
   693   qed
       
   694 qed
       
   695 
       
   696 definition "rep i j k = ((ones i (i + (int k))) \<and>* <(j = i + int k)>)"
       
   697 
       
   698 fun reps :: "int \<Rightarrow> int \<Rightarrow> nat list\<Rightarrow> tassert"
       
   699   where
       
   700   "reps i j [] = <(i = j + 1)>" |
       
   701   "reps i j [k] = (ones i (i + int k) ** <(j = i + int k)>)" |
       
   702   "reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)"
       
   703 
       
   704 lemma reps_simp3: "ks \<noteq> [] \<Longrightarrow> 
       
   705   reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)"
       
   706   by (cases ks, auto)
       
   707 
       
   708 definition "reps_sep_len ks = (if length ks \<le> 1 then 0 else (length ks) - 1)"
       
   709 
       
   710 definition "reps_ctnt_len ks = (\<Sum> k \<leftarrow> ks. (1 + k))"
       
   711 
       
   712 definition "reps_len ks = (reps_sep_len ks) + (reps_ctnt_len ks)"
       
   713 
       
   714 definition "splited xs ys zs = ((xs = ys @ zs) \<and> (ys \<noteq> []) \<and> (zs \<noteq> []))"
       
   715 
       
   716 lemma list_split: 
       
   717   assumes h: "k # ks = ys @ zs"
       
   718       and h1: "ys \<noteq> []"
       
   719   shows "(ys = [k] \<and> zs = ks) \<or> (\<exists> ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs)"
       
   720 proof(cases ys)
       
   721   case Nil
       
   722   with h1 show ?thesis by auto
       
   723 next
       
   724   case (Cons y' ys')
       
   725   with h have "k#ks = y'#(ys' @ zs)" by simp
       
   726   hence hh: "y' = k" "ks = ys' @ zs" by auto
       
   727   show ?thesis
       
   728   proof(cases "ys' = []")
       
   729     case False
       
   730     show ?thesis
       
   731     proof(rule disjI2)
       
   732       show " \<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs"
       
   733       proof(rule exI[where x = ys'])
       
   734         from False hh Cons show "ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs" by auto
       
   735       qed
       
   736     qed
       
   737   next
       
   738     case True
       
   739     show ?thesis
       
   740     proof(rule disjI1)
       
   741       from hh True Cons
       
   742       show "ys = [k] \<and> zs = ks" by auto
       
   743     qed
       
   744   qed
       
   745 qed
       
   746 
       
   747 lemma splited_cons[elim_format]: 
       
   748   assumes h: "splited (k # ks) ys zs"
       
   749   shows "(ys = [k] \<and> zs = ks) \<or> (\<exists> ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs)"
       
   750 proof -
       
   751   from h have "k # ks = ys @ zs" "ys \<noteq> [] " unfolding splited_def by auto
       
   752   from list_split[OF this]
       
   753   have "ys = [k] \<and> zs = ks \<or> (\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs)" .
       
   754   thus ?thesis
       
   755   proof
       
   756     assume " ys = [k] \<and> zs = ks" thus ?thesis by auto
       
   757   next
       
   758     assume "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs"
       
   759     then obtain ys' where hh: "ys' \<noteq> []" "ys = k # ys'" "ks = ys' @ zs" by auto
       
   760     show ?thesis
       
   761     proof(rule disjI2)
       
   762       show "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs"
       
   763       proof(rule exI[where x = ys'])
       
   764         from h have "zs \<noteq> []" by (unfold splited_def, simp)
       
   765         with hh(1) hh(3)
       
   766         have "splited ks ys' zs"
       
   767           by (unfold splited_def, auto)
       
   768         with hh(1) hh(2) show "ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs" by auto
       
   769       qed
       
   770     qed
       
   771   qed
       
   772 qed
       
   773 
       
   774 lemma splited_cons_elim:
       
   775   assumes h: "splited (k # ks) ys zs"
       
   776   and h1: "\<lbrakk>ys = [k]; zs = ks\<rbrakk> \<Longrightarrow> P"
       
   777   and h2: "\<And> ys'. \<lbrakk>ys' \<noteq> []; ys = k#ys'; splited ks ys' zs\<rbrakk> \<Longrightarrow> P"
       
   778   shows P
       
   779 proof(rule splited_cons[OF h])
       
   780   assume "ys = [k] \<and> zs = ks \<or> (\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs)"
       
   781   thus P
       
   782   proof
       
   783     assume hh: "ys = [k] \<and> zs = ks"
       
   784     show P
       
   785     proof(rule h1)
       
   786       from hh show "ys = [k]" by simp
       
   787     next
       
   788       from hh show "zs = ks" by simp
       
   789     qed
       
   790   next
       
   791     assume "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs"
       
   792     then obtain ys' where hh: "ys' \<noteq> []" "ys = k # ys'"  "splited ks ys' zs" by auto
       
   793     from h2[OF this]
       
   794     show P .
       
   795   qed
       
   796 qed
       
   797 
       
   798 lemma list_nth_expand:
       
   799   "i < length xs \<Longrightarrow> xs = take i xs @ [xs!i] @ drop (Suc i) xs"
       
   800   by (metis Cons_eq_appendI append_take_drop_id drop_Suc_conv_tl eq_Nil_appendI)
       
   801 
       
   802 lemma reps_len_nil: "reps_len [] = 0"
       
   803    by (auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def)
       
   804 
       
   805 lemma reps_len_sg: "reps_len [k] = 1 + k"
       
   806   by (auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def)
       
   807 
       
   808 lemma reps_len_cons: "ks \<noteq> [] \<Longrightarrow> (reps_len (k # ks)) = 2 + k + reps_len ks "
       
   809 proof(induct ks arbitrary:k)
       
   810   case (Cons n ns)
       
   811   thus ?case
       
   812     by(cases "ns = []", 
       
   813       auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def)
       
   814 qed auto
       
   815 
       
   816 lemma reps_len_correct:
       
   817   assumes h: "(reps i j ks) s"
       
   818   shows "j = i + int (reps_len ks) - 1"
       
   819   using h
       
   820 proof(induct ks arbitrary:i j s)
       
   821   case Nil
       
   822   thus ?case
       
   823     by (auto simp:reps_len_nil pasrt_def)
       
   824 next
       
   825   case (Cons n ns)
       
   826   thus ?case
       
   827   proof(cases "ns = []")
       
   828     case False
       
   829     from Cons(2)[unfolded reps_simp3[OF False]]
       
   830     obtain s' where "(reps (i + int n + 2) j ns) s'"
       
   831       by (auto elim!:sep_conjE)
       
   832     from Cons.hyps[OF this]
       
   833     show ?thesis
       
   834       by (unfold reps_len_cons[OF False], simp)
       
   835   next
       
   836     case True
       
   837     with Cons(2)
       
   838     show ?thesis
       
   839       by (auto simp:reps_len_sg pasrt_def)
       
   840   qed
       
   841 qed
       
   842 
       
   843 lemma reps_len_expand: 
       
   844   shows "(EXS j. (reps i j ks)) = (reps i (i + int (reps_len ks) - 1) ks)"
       
   845 proof(default+)
       
   846   fix s
       
   847   assume "(EXS j. reps i j ks) s"
       
   848   with reps_len_correct show "reps i (i + int (reps_len ks) - 1) ks s"
       
   849     by (auto simp:pred_ex_def)
       
   850 next
       
   851   fix s
       
   852   assume "reps i (i + int (reps_len ks) - 1) ks s"
       
   853   thus "(EXS j. reps i j ks) s"  by (auto simp:pred_ex_def)
       
   854 qed
       
   855 
       
   856 lemma reps_len_expand1: "(EXS j. (reps i j ks \<and>* r)) = (reps i (i + int (reps_len ks) - 1) ks \<and>* r)"
       
   857 by (metis reps_len_def reps_len_expand sep.mult_commute sep_conj_exists1)
       
   858 
       
   859 lemma reps_splited:
       
   860   assumes h: "splited xs ys zs"
       
   861   shows "reps i j xs = (reps i (i + int (reps_len ys) - 1) ys \<and>* 
       
   862                         zero (i + int (reps_len ys)) \<and>* 
       
   863                         reps (i + int (reps_len ys) + 1) j zs)"
       
   864   using h
       
   865 proof(induct xs arbitrary: i j ys zs)
       
   866   case Nil
       
   867   thus ?case
       
   868     by (unfold splited_def, auto)
       
   869 next
       
   870   case (Cons k ks)
       
   871   from Cons(2)
       
   872   show ?case
       
   873   proof(rule splited_cons_elim)
       
   874     assume h: "ys = [k]" "zs = ks"
       
   875     with Cons(2)
       
   876     show ?thesis
       
   877     proof(cases "ks = []")
       
   878       case True
       
   879       with Cons(2) have False
       
   880         by (simp add:splited_def, cases ys, auto)
       
   881       thus ?thesis by auto
       
   882     next
       
   883       case False
       
   884       have ss: "i + int k + 1 = i + (1 + int k)"
       
   885            "i + int k + 2 = 2 + (i + int k)" by auto
       
   886       show ?thesis
       
   887         by (unfold h(1), unfold reps_simp3[OF False] reps.simps(2) 
       
   888             reps_len_sg, auto simp:sep_conj_ac,
       
   889             unfold ss h(2), simp)
       
   890     qed
       
   891   next
       
   892     fix ys'
       
   893     assume h: "ys' \<noteq> []" "ys = k # ys'" "splited ks ys' zs"
       
   894     hence nnks: "ks \<noteq> []"
       
   895       by (unfold splited_def, auto)
       
   896     have ss: "i + int k + 2 + int (reps_len ys') = 
       
   897               i + (2 + (int k + int (reps_len ys')))" by auto
       
   898     show ?thesis
       
   899       by (simp add: reps_simp3[OF nnks] reps_simp3[OF h(1)] 
       
   900                     Cons(1)[OF h(3)] h(2) 
       
   901                     reps_len_cons[OF h(1)]
       
   902                     sep_conj_ac, subst ss, simp)
       
   903   qed
       
   904 qed
       
   905 
       
   906 
       
   907 subsection {* A theory of list extension *}
       
   908 
       
   909 definition "list_ext n xs = xs @ replicate ((Suc n) - length xs) 0"
       
   910 
       
   911 lemma list_ext_len_eq: "length (list_ext a xs) = length xs + (Suc a - length xs)"
       
   912   by (metis length_append length_replicate list_ext_def)
       
   913 
       
   914 lemma list_ext_len: "a < length (list_ext a xs)"
       
   915   by (unfold list_ext_len_eq, auto)
       
   916 
       
   917 lemma list_ext_lt: "a < length xs \<Longrightarrow> list_ext a xs = xs"
       
   918   by (smt append_Nil2 list_ext_def replicate_0)
       
   919 
       
   920 lemma list_ext_lt_get: 
       
   921   assumes h: "a' < length xs"
       
   922   shows "(list_ext a xs)!a' = xs!a'"
       
   923 proof(cases "a < length xs")
       
   924   case True
       
   925   with h
       
   926   show ?thesis by (auto simp:list_ext_lt)
       
   927 next
       
   928   case False
       
   929   with h show ?thesis
       
   930     apply (unfold list_ext_def)
       
   931     by (metis nth_append)
       
   932 qed
       
   933 
       
   934 lemma list_ext_get_upd: "((list_ext a xs)[a:=v])!a = v"
       
   935   by (metis list_ext_len nth_list_update_eq)
       
   936 
       
   937 lemma nth_app: "length xs \<le> a \<Longrightarrow> (xs @ ys)!a = ys!(a - length xs)"
       
   938   by (metis not_less nth_append)
       
   939 
       
   940 
       
   941 lemma list_ext_tail:
       
   942   assumes h1: "length xs \<le> a"
       
   943   and h2: "length xs \<le> a'"
       
   944   and h3: "a' \<le> a"
       
   945   shows "(list_ext a xs)!a' = 0"
       
   946 proof -
       
   947   from h1 h2
       
   948   have "a' - length xs < length (replicate (Suc a - length xs) 0)"
       
   949     by (metis diff_less_mono h3 le_imp_less_Suc length_replicate)
       
   950   moreover from h1 have "replicate (Suc a - length xs) 0 \<noteq> []"
       
   951     by (smt empty_replicate)
       
   952   ultimately have "(replicate (Suc a - length xs) 0)!(a' - length xs) = 0"
       
   953     by (metis length_replicate nth_replicate)
       
   954   moreover have "(xs @ (replicate (Suc a - length xs) 0))!a' = 
       
   955             (replicate (Suc a - length xs) 0)!(a' - length xs)"
       
   956     by (rule nth_app[OF h2])
       
   957   ultimately show ?thesis
       
   958     by (auto simp:list_ext_def)
       
   959 qed
       
   960 
       
   961 lemmas list_ext_simps = list_ext_lt_get list_ext_lt list_ext_len list_ext_len_eq
       
   962 
       
   963 lemma listsum_upd_suc:
       
   964   "a < length ks \<Longrightarrow> listsum (map Suc (ks[a := Suc (ks ! a)]))= (Suc (listsum (map Suc ks)))"
       
   965 by (smt elem_le_listsum_nat 
       
   966      length_list_update list_ext_get_upd 
       
   967      list_update_overwrite listsum_update_nat map_update 
       
   968      nth_equalityI nth_list_update nth_map)
       
   969 
       
   970 lemma reps_len_suc:
       
   971   assumes "a < length ks"
       
   972   shows "reps_len (ks[a:=Suc(ks!a)]) = 1 + reps_len ks"
       
   973 proof(cases "length ks \<le> 1")
       
   974   case True
       
   975   with `a < length ks` 
       
   976   obtain k where "ks = [k]" "a = 0"
       
   977     by (smt length_0_conv length_Suc_conv)
       
   978   thus ?thesis
       
   979       apply (unfold `ks = [k]` `a = 0`)
       
   980       by (unfold reps_len_def reps_sep_len_def reps_ctnt_len_def, auto)
       
   981 next
       
   982   case False
       
   983   have "Suc = (op + (Suc 0))"
       
   984     by (default, auto)
       
   985   with listsum_upd_suc[OF `a < length ks`] False
       
   986   show ?thesis
       
   987      by (unfold reps_len_def reps_sep_len_def reps_ctnt_len_def, simp)
       
   988 qed
       
   989   
       
   990 lemma ks_suc_len:
       
   991   assumes h1: "(reps i j ks) s"
       
   992   and h2: "ks!a = v"
       
   993   and h3: "a < length ks"
       
   994   and h4: "(reps i j' (ks[a:=Suc v])) s'"
       
   995   shows "j' = j + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1"
       
   996 proof -
       
   997   from reps_len_correct[OF h1, unfolded list_ext_len_eq]
       
   998        reps_len_correct[OF h4, unfolded list_ext_len_eq] 
       
   999        reps_len_suc[OF `a < length ks`] h2 h3
       
  1000   show ?thesis
       
  1001     by (unfold list_ext_lt[OF `a < length ks`], auto)
       
  1002 qed
       
  1003 
       
  1004 lemma ks_ext_len:
       
  1005   assumes h1: "(reps i j ks) s"
       
  1006   and h3: "length ks \<le> a"
       
  1007   and h4: "reps i j' (list_ext a ks) s'"
       
  1008   shows "j' = j + int (reps_len (list_ext a ks)) - int (reps_len ks)"
       
  1009 proof -
       
  1010   from reps_len_correct[OF h1, unfolded  list_ext_len_eq]
       
  1011     and reps_len_correct[OF h4, unfolded list_ext_len_eq]
       
  1012   h3
       
  1013   show ?thesis by auto
       
  1014 qed
       
  1015 
       
  1016 definition 
       
  1017   "reps' i j ks = 
       
  1018      (if ks = [] then (<(i = j + 1)>)  else (reps i (j - 1) ks \<and>* zero j))"
       
  1019 
       
  1020 lemma reps'_expand: 
       
  1021   assumes h: "ks \<noteq> []"
       
  1022   shows "(EXS j. reps' i j ks) = reps' i (i + int (reps_len ks)) ks"
       
  1023 proof -
       
  1024   show ?thesis
       
  1025   proof(default+)
       
  1026     fix s
       
  1027     assume "(EXS j. reps' i j ks) s"
       
  1028     with h have "(EXS j. reps i (j - 1) ks \<and>* zero j) s" 
       
  1029       by (simp add:reps'_def)
       
  1030     hence "(reps i (i + int (reps_len ks) - 1) ks \<and>* zero (i + int (reps_len ks))) s"
       
  1031     proof(elim EXS_elim)
       
  1032       fix j
       
  1033       assume "(reps i (j - 1) ks \<and>* zero j) s"
       
  1034       then obtain s1 s2 where "s = s1 + s2" "s1 ## s2" "reps i (j - 1) ks s1" "zero j s2"
       
  1035         by (auto elim!:sep_conjE)
       
  1036       from reps_len_correct[OF this(3)]
       
  1037       have "j = i + int (reps_len ks)" by auto
       
  1038       with `reps i (j - 1) ks s1` have "reps i (i + int (reps_len ks) - 1) ks s1"
       
  1039         by simp
       
  1040       moreover from `j = i + int (reps_len ks)` and `zero j s2`
       
  1041       have "zero (i + int (reps_len ks)) s2" by auto
       
  1042       ultimately show "(reps i (i + int (reps_len ks) - 1) ks \<and>* zero (i + int (reps_len ks))) s"
       
  1043         using `s = s1 + s2` `s1 ## s2` by (auto intro!:sep_conjI)
       
  1044     qed
       
  1045     thus "reps' i (i + int (reps_len ks)) ks s"
       
  1046       by (simp add:h reps'_def)
       
  1047   next
       
  1048     fix s 
       
  1049     assume "reps' i (i + int (reps_len ks)) ks s"
       
  1050     thus "(EXS j. reps' i j ks) s"
       
  1051       by (auto intro!:EXS_intro)
       
  1052   qed
       
  1053 qed
       
  1054 
       
  1055 lemma reps'_len_correct: 
       
  1056   assumes h: "(reps' i j ks) s"
       
  1057   and h1: "ks \<noteq> []"
       
  1058   shows "(j = i + int (reps_len ks))"
       
  1059 proof -
       
  1060   from h1 have "reps' i j ks s = (reps i (j - 1) ks \<and>* zero j) s" by (simp add:reps'_def)
       
  1061   from h[unfolded this]
       
  1062   obtain s' where "reps i (j - 1) ks s'"
       
  1063     by (auto elim!:sep_conjE)
       
  1064   from reps_len_correct[OF this]
       
  1065   show ?thesis by simp
       
  1066 qed
       
  1067 
       
  1068 lemma reps'_append:
       
  1069   "reps' i j (ks1 @ ks2) = (EXS m. (reps' i (m - 1) ks1 \<and>* reps' m j ks2))"
       
  1070 proof(cases "ks1 = []")
       
  1071   case True
       
  1072   thus ?thesis
       
  1073     by (auto simp:reps'_def pred_ex_def pasrt_def set_ins_def sep_conj_def)
       
  1074 next
       
  1075   case False
       
  1076   show ?thesis
       
  1077   proof(cases "ks2 = []")
       
  1078     case False
       
  1079     from `ks1 \<noteq> []` and `ks2 \<noteq> []` 
       
  1080     have "splited (ks1 @ ks2) ks1 ks2" by (auto simp:splited_def)
       
  1081     from reps_splited[OF this, of i "j - 1"]
       
  1082     have eq_1: "reps i (j - 1) (ks1 @ ks2) =
       
  1083            (reps i (i + int (reps_len ks1) - 1) ks1 \<and>*
       
  1084            zero (i + int (reps_len ks1)) \<and>* 
       
  1085            reps (i + int (reps_len ks1) + 1) (j - 1) ks2)" .
       
  1086     from `ks1 \<noteq> []`
       
  1087     have eq_2: "reps' i j (ks1 @ ks2) = (reps i (j - 1) (ks1 @ ks2) \<and>* zero j)"
       
  1088       by (unfold reps'_def, simp)
       
  1089     show ?thesis
       
  1090     proof(default+)
       
  1091       fix s
       
  1092       assume "reps' i j (ks1 @ ks2) s"
       
  1093       show "(EXS m. reps' i (m - 1) ks1 \<and>* reps' m j ks2) s"
       
  1094       proof(rule EXS_intro[where x = "i + int(reps_len ks1) + 1"])
       
  1095         from `reps' i j (ks1 @ ks2) s`[unfolded eq_2 eq_1]
       
  1096         and `ks1 \<noteq> []` `ks2 \<noteq> []`
       
  1097         show "(reps' i (i + int (reps_len ks1) + 1 - 1) ks1 \<and>* 
       
  1098                          reps' (i + int (reps_len ks1) + 1) j ks2) s"
       
  1099           by (unfold reps'_def, simp, sep_cancel+)
       
  1100       qed
       
  1101     next
       
  1102       fix s
       
  1103       assume "(EXS m. reps' i (m - 1) ks1 \<and>* reps' m j ks2) s"
       
  1104       thus "reps' i j (ks1 @ ks2) s"
       
  1105       proof(elim EXS_elim)
       
  1106         fix m
       
  1107         assume "(reps' i (m - 1) ks1 \<and>* reps' m j ks2) s"
       
  1108         then obtain s1 s2 where h: 
       
  1109           "s = s1 + s2" "s1 ## s2" "reps' i (m - 1) ks1 s1"
       
  1110           " reps' m j ks2 s2" by (auto elim!:sep_conjE)
       
  1111         from reps'_len_correct[OF this(3) `ks1 \<noteq> []`]
       
  1112         have eq_m: "m = i + int (reps_len ks1) + 1" by simp
       
  1113         have "((reps i (i + int (reps_len ks1) - 1) ks1 \<and>* zero (i + int (reps_len ks1))) \<and>* 
       
  1114                ((reps (i + int (reps_len ks1) + 1) (j - 1) ks2) \<and>* zero j)) s"
       
  1115           (is "(?P \<and>* ?Q) s") 
       
  1116         proof(rule sep_conjI)
       
  1117           from h(3) eq_m `ks1 \<noteq> []` show "?P s1"
       
  1118             by (simp add:reps'_def)
       
  1119         next
       
  1120           from h(4) eq_m `ks2 \<noteq> []` show "?Q s2"
       
  1121             by (simp add:reps'_def)
       
  1122         next
       
  1123           from h(2) show "s1 ## s2" .
       
  1124         next
       
  1125           from h(1) show "s = s1 + s2" .
       
  1126         qed
       
  1127         thus "reps' i j (ks1 @ ks2) s"
       
  1128           by (unfold eq_2 eq_1, auto simp:sep_conj_ac)
       
  1129       qed
       
  1130     qed
       
  1131   next
       
  1132     case True
       
  1133     have "-1 + j = j - 1" by auto
       
  1134     with `ks1 \<noteq> []` True
       
  1135     show ?thesis
       
  1136       apply (auto simp:reps'_def pred_ex_def pasrt_def)
       
  1137       apply (unfold `-1 + j = j - 1`)
       
  1138       by (fold sep_empty_def, simp only:sep_conj_empty)
       
  1139   qed
       
  1140 qed
       
  1141 
       
  1142 lemma reps'_sg: 
       
  1143   "reps' i j [k] = 
       
  1144        (<(j = i + int k + 1)> \<and>* ones i (i + int k) \<and>* zero j)"
       
  1145   apply (unfold reps'_def, default, auto simp:sep_conj_ac)
       
  1146   by (sep_cancel+, simp add:pasrt_def)+
       
  1147 
       
  1148 
       
  1149 section {* Basic macros for TM *}
       
  1150 
       
  1151 definition "write_zero = (TL exit. \<guillemotright>((W0, exit), (W0, exit)); TLabel exit)"
       
  1152 
       
  1153 lemma st_upd: 
       
  1154   assumes pre: "(st i' ** r) (trset_of (f, x, i, y, z))"
       
  1155   shows "(st i'' ** r) (trset_of (f, x,  i'', y, z))"
       
  1156 proof -
       
  1157   from stimes_sgD[OF pre[unfolded st_def], unfolded trset_of.simps, unfolded stD[OF pre]]
       
  1158   have "r (tprog_set x \<union> tpc_set i' \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f - tpc_set i')"
       
  1159     by blast
       
  1160   moreover have 
       
  1161     "(tprog_set x \<union> tpc_set i' \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f - tpc_set i') =
       
  1162      (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)"
       
  1163     by (unfold tpn_set_def, auto)
       
  1164   ultimately have r_rest: "r (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)"
       
  1165     by auto
       
  1166   show ?thesis
       
  1167   proof(rule sep_conjI[where Q = r, OF _ r_rest])
       
  1168     show "st i'' (tpc_set i'')" 
       
  1169       by (unfold st_def sg_def, simp)
       
  1170   next
       
  1171     show "tpc_set i'' ## tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f"
       
  1172       by (unfold tpn_set_def sep_disj_set_def, auto)
       
  1173   next
       
  1174     show "trset_of (f, x, i'', y, z) =
       
  1175              tpc_set i'' + (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)"
       
  1176       by (unfold trset_of.simps plus_set_def, auto)
       
  1177   qed
       
  1178 qed
       
  1179 
       
  1180 lemma pos_upd: 
       
  1181   assumes pre: "(ps i ** r) (trset_of (f, x, y, i', z))"
       
  1182   shows "(ps j ** r) (trset_of (f, x, y, j, z))"
       
  1183 proof -
       
  1184   from stimes_sgD[OF pre[unfolded ps_def], unfolded trset_of.simps, unfolded psD[OF pre]]
       
  1185   have "r (tprog_set x \<union> tpc_set y \<union> tpos_set i \<union> tmem_set z \<union> 
       
  1186               tfaults_set f - tpos_set i)" (is "r ?xs")
       
  1187     by blast
       
  1188   moreover have 
       
  1189     "?xs = tprog_set x \<union> tpc_set y  \<union> tmem_set z \<union> tfaults_set f"
       
  1190     by (unfold tpn_set_def, auto)
       
  1191   ultimately have r_rest: "r \<dots>"
       
  1192     by auto
       
  1193   show ?thesis
       
  1194   proof(rule sep_conjI[where Q = r, OF _ r_rest])
       
  1195     show "ps j (tpos_set j)" 
       
  1196       by (unfold ps_def sg_def, simp)
       
  1197   next
       
  1198     show "tpos_set j ## tprog_set x \<union> tpc_set y \<union> tmem_set z \<union> tfaults_set f"
       
  1199       by (unfold tpn_set_def sep_disj_set_def, auto)
       
  1200   next
       
  1201     show "trset_of (f, x, y, j, z) = 
       
  1202              tpos_set j + (tprog_set x \<union> tpc_set y \<union> tmem_set z \<union> tfaults_set f)"
       
  1203       by (unfold trset_of.simps plus_set_def, auto)
       
  1204   qed
       
  1205 qed
       
  1206 
       
  1207 lemma TM_in_simp: "({TM a v} \<subseteq> 
       
  1208                       tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f) = 
       
  1209                              ({TM a v} \<subseteq> tmem_set mem)"
       
  1210   by (unfold tpn_set_def, auto)
       
  1211 
       
  1212 lemma tmem_set_upd: 
       
  1213   "{TM a v} \<subseteq> tmem_set mem \<Longrightarrow> 
       
  1214         tmem_set (mem(a f\<mapsto> v')) = ((tmem_set mem) - {TM a v}) \<union> {TM a v'}"
       
  1215 apply(unfold tpn_set_def) 
       
  1216 apply(auto)
       
  1217 apply (metis the.simps the_lookup_fmap_upd the_lookup_fmap_upd_other)
       
  1218 apply (metis the_lookup_fmap_upd_other)
       
  1219 by (metis option.inject the_lookup_fmap_upd_other)
       
  1220 
       
  1221 lemma tmem_set_disj: "{TM a v} \<subseteq> tmem_set mem \<Longrightarrow> 
       
  1222                             {TM a v'} \<inter>  (tmem_set mem - {TM a v}) = {}"
       
  1223   by (unfold tpn_set_def, auto)
       
  1224 
       
  1225 lemma smem_upd: "((tm a v) ** r) (trset_of (f, x, y, z, mem))  \<Longrightarrow> 
       
  1226                     ((tm a v') ** r) (trset_of (f, x, y, z, mem(a f\<mapsto> v')))"
       
  1227 proof -
       
  1228   have eq_s: "(tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f - {TM a v}) =
       
  1229     (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
       
  1230     by (unfold tpn_set_def, auto)
       
  1231   assume g: "(tm a v \<and>* r) (trset_of (f, x, y, z, mem))"
       
  1232   from this[unfolded trset_of.simps tm_def]
       
  1233   have h: "(sg {TM a v} \<and>* r) (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f)" .
       
  1234   hence h0: "r (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
       
  1235     by(sep_drule stimes_sgD, clarify, unfold eq_s, auto)
       
  1236   from h TM_in_simp have "{TM a v} \<subseteq> tmem_set mem"
       
  1237     by(sep_drule stimes_sgD, auto)
       
  1238   from tmem_set_upd [OF this] tmem_set_disj[OF this]
       
  1239   have h2: "tmem_set (mem(a f\<mapsto> v')) = {TM a v'} \<union> (tmem_set mem - {TM a v})" 
       
  1240            "{TM a v'} \<inter> (tmem_set mem - {TM a v}) = {}" by auto
       
  1241   show ?thesis
       
  1242   proof -
       
  1243     have "(tm a v' ** r) (tmem_set (mem(a f\<mapsto> v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f)"
       
  1244     proof(rule sep_conjI)
       
  1245       show "tm a v' ({TM a v'})" by (unfold tm_def sg_def, simp)
       
  1246     next
       
  1247       from h0 show "r (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)" .
       
  1248     next
       
  1249       show "{TM a v'} ## tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f"
       
  1250       proof -
       
  1251         from g have " mem $ a = Some v"
       
  1252           by(sep_frule memD, simp)
       
  1253         thus "?thesis"
       
  1254           by(unfold tpn_set_def set_ins_def, auto)
       
  1255       qed
       
  1256     next
       
  1257       show "tmem_set (mem(a f\<mapsto> v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f =
       
  1258     {TM a v'} + (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
       
  1259         by (unfold h2(1) set_ins_def eq_s, auto)
       
  1260     qed
       
  1261     thus ?thesis 
       
  1262       apply (unfold trset_of.simps)
       
  1263       by (metis sup_commute sup_left_commute)
       
  1264   qed
       
  1265 qed
       
  1266 
       
  1267 lemma hoare_write_zero: 
       
  1268   "\<lbrace>st i ** ps p ** tm p v\<rbrace> 
       
  1269      i:[write_zero]:j
       
  1270    \<lbrace>st j ** ps p ** tm p Bk\<rbrace>"
       
  1271 proof(unfold write_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp, simp)
       
  1272   show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace>  i :[ \<guillemotright> ((W0, j), W0, j) ]: j \<lbrace>st j \<and>* ps p \<and>* tm p Bk\<rbrace>"
       
  1273   proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
       
  1274         intro tm.code_condI, simp)
       
  1275     assume eq_j: "j = Suc i"
       
  1276     show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace>  sg {TC i ((W0, Suc i), W0, Suc i)} 
       
  1277           \<lbrace>st (Suc i) \<and>* ps p \<and>* tm p Bk\<rbrace>"
       
  1278     proof(fold eq_j, unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
       
  1279       fix ft prog cs i' mem r
       
  1280       assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* sg {TC i ((W0, j), W0, j)})
       
  1281               (trset_of (ft, prog, cs, i', mem))"
       
  1282       from h have "prog $ i = Some ((W0, j), W0, j)"
       
  1283         apply(rule_tac r = "r \<and>* ps p \<and>* tm p v" in codeD)
       
  1284         by(simp add: sep_conj_ac)
       
  1285       from h and this have stp:
       
  1286         "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, j, i', mem(i' f\<mapsto> Bk))" (is "?x = ?y")
       
  1287         apply(sep_frule psD)
       
  1288         apply(sep_frule stD)
       
  1289         apply(sep_frule memD, simp)
       
  1290         by(cases v, unfold tm.run_def, auto)
       
  1291       from h have "i' = p"
       
  1292         by(sep_drule psD, simp)
       
  1293       with h
       
  1294       have "(r \<and>* ps p \<and>* st j \<and>* tm p Bk \<and>* sg {TC i ((W0, j), W0, j)}) (trset_of ?x)"
       
  1295         apply(unfold stp)
       
  1296         apply(sep_drule pos_upd, sep_drule st_upd, sep_drule smem_upd)
       
  1297         apply(auto simp: sep_conj_ac)
       
  1298         done
       
  1299       thus "\<exists>k. (r \<and>* ps p \<and>* st j \<and>* tm p Bk \<and>* sg {TC i ((W0, j), W0, j)}) 
       
  1300              (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
       
  1301         apply (rule_tac x = 0 in exI)
       
  1302         by auto
       
  1303     qed
       
  1304   qed
       
  1305 qed
       
  1306 
       
  1307 lemma hoare_write_zero_gen[step]: 
       
  1308   assumes "p = q"
       
  1309   shows  "\<lbrace>st i ** ps p ** tm q v\<rbrace> 
       
  1310             i:[write_zero]:j
       
  1311           \<lbrace>st j ** ps p ** tm q Bk\<rbrace>"
       
  1312   by (unfold assms, rule hoare_write_zero)
       
  1313 
       
  1314 definition "write_one = (TL exit. \<guillemotright>((W1, exit), (W1, exit)); TLabel exit)"
       
  1315 
       
  1316 lemma hoare_write_one: 
       
  1317   "\<lbrace>st i ** ps p ** tm p v\<rbrace> 
       
  1318      i:[write_one]:j
       
  1319    \<lbrace>st j ** ps p ** tm p Oc\<rbrace>"
       
  1320 proof(unfold write_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
       
  1321   fix l
       
  1322   show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace>  i :[ \<guillemotright> ((W1, j), W1, j) ]: j \<lbrace>st j \<and>* ps p \<and>* tm p Oc\<rbrace>"
       
  1323   proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
       
  1324         rule_tac tm.code_condI, simp add: sep_conj_ac)
       
  1325     let ?j = "Suc i"
       
  1326     show "\<lbrace>ps p \<and>* st i \<and>* tm p v\<rbrace>  sg {TC i ((W1, ?j), W1, ?j)} 
       
  1327           \<lbrace>ps p \<and>* st ?j \<and>* tm p Oc\<rbrace>"
       
  1328     proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
       
  1329       fix ft prog cs i' mem r
       
  1330       assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* sg {TC i ((W1, ?j), W1, ?j)})
       
  1331               (trset_of (ft, prog, cs, i', mem))"
       
  1332       from h have "prog $ i = Some ((W1, ?j), W1, ?j)"
       
  1333         apply(rule_tac r = "r \<and>* ps p \<and>* tm p v" in codeD)
       
  1334         by(simp add: sep_conj_ac)
       
  1335       from h and this have stp:
       
  1336         "tm.run 1 (ft, prog, cs, i', mem) = 
       
  1337                      (ft, prog, ?j, i', mem(i' f\<mapsto> Oc))" (is "?x = ?y")
       
  1338         apply(sep_frule psD)
       
  1339         apply(sep_frule stD)
       
  1340         apply(sep_frule memD, simp)
       
  1341         by(cases v, unfold tm.run_def, auto)
       
  1342       from h have "i' = p"
       
  1343         by(sep_drule psD, simp)
       
  1344       with h
       
  1345       have "(r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W1, ?j), W1, ?j)}) (trset_of ?x)"
       
  1346         apply(unfold stp)
       
  1347         apply(sep_drule pos_upd, sep_drule st_upd, sep_drule smem_upd)
       
  1348         apply(auto simp: sep_conj_ac)
       
  1349         done
       
  1350       thus "\<exists>k. (r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W1, ?j), W1, ?j)}) 
       
  1351              (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
       
  1352         apply (rule_tac x = 0 in exI)
       
  1353         by auto
       
  1354     qed
       
  1355   qed
       
  1356 qed
       
  1357 
       
  1358 lemma hoare_write_one_gen[step]: 
       
  1359   assumes "p = q"
       
  1360   shows  "\<lbrace>st i ** ps p ** tm q v\<rbrace> 
       
  1361               i:[write_one]:j
       
  1362           \<lbrace>st j ** ps p ** tm q Oc\<rbrace>"
       
  1363   by (unfold assms, rule hoare_write_one)
       
  1364 
       
  1365 definition "move_left = (TL exit . \<guillemotright>((L, exit), (L, exit)); TLabel exit)"
       
  1366 
       
  1367 lemma hoare_move_left: 
       
  1368   "\<lbrace>st i ** ps p ** tm p v2\<rbrace> 
       
  1369      i:[move_left]:j
       
  1370    \<lbrace>st j ** ps (p - 1) **  tm p v2\<rbrace>"
       
  1371 proof(unfold move_left_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
       
  1372   fix l
       
  1373   show "\<lbrace>st i \<and>* ps p \<and>* tm p v2\<rbrace>  i :[ \<guillemotright> ((L, l), L, l) ]: l
       
  1374         \<lbrace>st l \<and>* ps (p - 1) \<and>* tm p v2\<rbrace>"
       
  1375   proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
       
  1376       intro tm.code_condI, simp add: sep_conj_ac)
       
  1377     let ?j = "Suc i"
       
  1378     show "\<lbrace>ps p \<and>* st i \<and>* tm p v2\<rbrace>  sg {TC i ((L, ?j), L, ?j)} 
       
  1379           \<lbrace>st ?j \<and>* tm p v2 \<and>* ps (p - 1)\<rbrace>"
       
  1380     proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
       
  1381       fix ft prog cs i' mem r
       
  1382       assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v2 \<and>* sg {TC i ((L, ?j), L, ?j)}) 
       
  1383                        (trset_of (ft, prog, cs, i',  mem))"
       
  1384       from h have "prog $ i = Some ((L, ?j), L, ?j)"
       
  1385         apply(rule_tac r = "r \<and>* ps p \<and>* tm p v2" in codeD)
       
  1386         by(simp add: sep_conj_ac)
       
  1387       from h and this have stp:
       
  1388         "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, ?j, i' - 1, mem)" (is "?x = ?y")
       
  1389         apply(sep_frule psD)
       
  1390         apply(sep_frule stD)
       
  1391         apply(sep_frule memD, simp)
       
  1392         apply(unfold tm.run_def, case_tac v2, auto)
       
  1393         done
       
  1394       from h have "i' = p"
       
  1395         by(sep_drule psD, simp)
       
  1396       with h
       
  1397       have "(r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)}) 
       
  1398                (trset_of ?x)"
       
  1399         apply(unfold stp)
       
  1400         apply(sep_drule pos_upd, sep_drule st_upd, simp)
       
  1401       proof -
       
  1402         assume "(st ?j \<and>* ps (p - 1) \<and>* r \<and>* tm p v2 \<and>* sg {TC i ((L, ?j), L, ?j)}) 
       
  1403                    (trset_of (ft, prog, ?j, p - 1, mem))"
       
  1404         thus "(r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)}) 
       
  1405                     (trset_of (ft, prog, ?j, p - 1, mem))"
       
  1406           by(simp add: sep_conj_ac)
       
  1407       qed
       
  1408       thus "\<exists>k. (r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)}) 
       
  1409              (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
       
  1410         apply (rule_tac x = 0 in exI)
       
  1411         by auto
       
  1412     qed
       
  1413   qed
       
  1414 qed
       
  1415 
       
  1416 lemma hoare_move_left_gen[step]: 
       
  1417   assumes "p = q"
       
  1418   shows "\<lbrace>st i ** ps p ** tm q v2\<rbrace> 
       
  1419             i:[move_left]:j
       
  1420          \<lbrace>st j ** ps (p - 1) **  tm q v2\<rbrace>"
       
  1421   by (unfold assms, rule hoare_move_left)
       
  1422 
       
  1423 definition "move_right = (TL exit . \<guillemotright>((R, exit), (R, exit)); TLabel exit)"
       
  1424 
       
  1425 lemma hoare_move_right: 
       
  1426   "\<lbrace>st i ** ps p ** tm p v1 \<rbrace> 
       
  1427      i:[move_right]:j
       
  1428    \<lbrace>st j ** ps (p + 1) ** tm p v1 \<rbrace>"
       
  1429 proof(unfold move_right_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
       
  1430   fix l
       
  1431   show "\<lbrace>st i \<and>* ps p \<and>* tm p v1\<rbrace>  i :[ \<guillemotright> ((R, l), R, l) ]: l
       
  1432         \<lbrace>st l \<and>* ps (p + 1) \<and>* tm p v1\<rbrace>"
       
  1433   proof(unfold tassemble_to.simps, simp only:sep_conj_cond, 
       
  1434       intro tm.code_condI, simp add: sep_conj_ac)
       
  1435     let ?j = "Suc i"
       
  1436     show "\<lbrace>ps p \<and>* st i \<and>* tm p v1\<rbrace>  sg {TC i ((R, ?j), R, ?j)} 
       
  1437           \<lbrace>st ?j \<and>* tm p v1 \<and>* ps (p + 1)\<rbrace>"
       
  1438     proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
       
  1439       fix ft prog cs i' mem r
       
  1440       assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v1 \<and>* sg {TC i ((R, ?j), R, ?j)}) 
       
  1441                        (trset_of (ft, prog, cs, i',  mem))"
       
  1442       from h have "prog $ i = Some ((R, ?j), R, ?j)"
       
  1443         apply(rule_tac r = "r \<and>* ps p \<and>* tm p v1" in codeD)
       
  1444         by(simp add: sep_conj_ac)
       
  1445       from h and this have stp:
       
  1446         "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, ?j, i'+ 1, mem)" (is "?x = ?y")
       
  1447         apply(sep_frule psD)
       
  1448         apply(sep_frule stD)
       
  1449         apply(sep_frule memD, simp)
       
  1450         apply(unfold tm.run_def, case_tac v1, auto)
       
  1451         done
       
  1452       from h have "i' = p"
       
  1453         by(sep_drule psD, simp)
       
  1454       with h
       
  1455       have "(r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>* 
       
  1456                 sg {TC i ((R, ?j), R, ?j)}) (trset_of ?x)"
       
  1457         apply(unfold stp)
       
  1458         apply(sep_drule pos_upd, sep_drule st_upd, simp)
       
  1459       proof -
       
  1460         assume "(st ?j \<and>* ps (p + 1) \<and>* r \<and>* tm p v1 \<and>* sg {TC i ((R, ?j), R, ?j)}) 
       
  1461                    (trset_of (ft, prog, ?j, p + 1, mem))"
       
  1462         thus "(r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>* sg {TC i ((R, ?j), R, ?j)}) 
       
  1463                     (trset_of (ft, prog, ?j, p + 1, mem))"
       
  1464           by (simp add: sep_conj_ac)
       
  1465       qed
       
  1466       thus "\<exists>k. (r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>* sg {TC i ((R, ?j), R, ?j)}) 
       
  1467              (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
       
  1468         apply (rule_tac x = 0 in exI)
       
  1469         by auto
       
  1470     qed
       
  1471   qed
       
  1472 qed
       
  1473 
       
  1474 lemma hoare_move_right_gen[step]: 
       
  1475   assumes "p = q"
       
  1476   shows "\<lbrace>st i ** ps p ** tm q v1 \<rbrace> 
       
  1477            i:[move_right]:j
       
  1478          \<lbrace>st j ** ps (p + 1) ** tm q v1 \<rbrace>"
       
  1479   by (unfold assms, rule hoare_move_right)
       
  1480 
       
  1481 definition "if_one e = (TL exit . \<guillemotright>((W0, exit), (W1, e)); TLabel exit)"
       
  1482 
       
  1483 lemma hoare_if_one_true: 
       
  1484   "\<lbrace>st i ** ps p ** one p\<rbrace> 
       
  1485      i:[if_one e]:j
       
  1486    \<lbrace>st e ** ps p ** one p\<rbrace>"
       
  1487 proof(unfold if_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
       
  1488   fix l
       
  1489   show " \<lbrace>st i \<and>* ps p \<and>* one p\<rbrace>  i :[ \<guillemotright> ((W0, l), W1, e) ]: l \<lbrace>st e \<and>* ps p \<and>* one p\<rbrace>"
       
  1490   proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
       
  1491         intro tm.code_condI, simp add: sep_conj_ac)
       
  1492     let ?j = "Suc i"
       
  1493     show "\<lbrace>one p \<and>* ps p \<and>* st i\<rbrace>  sg {TC i ((W0, ?j), W1, e)} \<lbrace>one p \<and>* ps p \<and>* st e\<rbrace>"
       
  1494     proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
       
  1495       fix ft prog cs pc mem r
       
  1496       assume h: "(r \<and>* one p \<and>* ps p \<and>* st i \<and>* sg {TC i ((W0, ?j), W1, e)}) 
       
  1497         (trset_of (ft, prog, cs, pc, mem))"
       
  1498       from h have k1: "prog $ i = Some ((W0, ?j), W1, e)"
       
  1499         apply(rule_tac r = "r \<and>* one p \<and>* ps p" in codeD)
       
  1500         by(simp add: sep_conj_ac)
       
  1501       from h have k2: "pc = p"
       
  1502         by(sep_drule psD, simp)
       
  1503       from h and this have k3: "mem $ pc = Some Oc"
       
  1504         apply(unfold one_def)
       
  1505         by(sep_drule memD, simp)
       
  1506       from h k1 k2 k3 have stp:
       
  1507         "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, e, pc, mem)" (is "?x = ?y")
       
  1508         apply(sep_drule stD)
       
  1509         apply(unfold tm.run_def)
       
  1510         apply(auto)
       
  1511         thm fmap_eqI
       
  1512         apply(rule fmap_eqI)
       
  1513         apply(simp)
       
  1514         apply(subgoal_tac "p \<in> fdom mem")
       
  1515         apply(simp add: insert_absorb)
       
  1516         apply(simp add: fdomIff)
       
  1517         by (metis the_lookup_fmap_upd the_lookup_fmap_upd_other)
       
  1518       from h k2 
       
  1519       have "(r \<and>* one p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, ?j), W1, e)})  (trset_of ?x)"
       
  1520         apply(unfold stp)
       
  1521         by(sep_drule st_upd, simp add: sep_conj_ac)
       
  1522       thus "\<exists>k.(r \<and>* one p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, ?j), W1, e)})
       
  1523              (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
       
  1524         apply (rule_tac x = 0 in exI)
       
  1525         by auto
       
  1526     qed
       
  1527   qed
       
  1528 qed
       
  1529 
       
  1530 text {*
       
  1531   The following problematic lemma is not provable now 
       
  1532   lemma hoare_self: "\<lbrace>p\<rbrace> i :[ap]: j \<lbrace>p\<rbrace>" 
       
  1533   apply(simp add: tm.Hoare_gen_def, clarify)
       
  1534   apply(rule_tac x = 0 in exI, simp add: tm.run_def)
       
  1535   done
       
  1536 *}
       
  1537 
       
  1538 lemma hoare_if_one_true_gen[step]: 
       
  1539   assumes "p = q"
       
  1540   shows
       
  1541   "\<lbrace>st i ** ps p ** one q\<rbrace> 
       
  1542      i:[if_one e]:j
       
  1543    \<lbrace>st e ** ps p ** one q\<rbrace>"
       
  1544   by (unfold assms, rule hoare_if_one_true)
       
  1545 
       
  1546 lemma hoare_if_one_true1: 
       
  1547   "\<lbrace>st i ** ps p ** one p\<rbrace> 
       
  1548      i:[(if_one e; c)]:j
       
  1549    \<lbrace>st e ** ps p ** one p\<rbrace>"
       
  1550 proof(unfold tassemble_to.simps, rule tm.code_exI, 
       
  1551        simp add: sep_conj_ac tm.Hoare_gen_def, clarify)  
       
  1552   fix j' ft prog cs pos mem r
       
  1553   assume h: "(r \<and>* one p \<and>* ps p \<and>* st i \<and>* j' :[ c ]: j \<and>* i :[ if_one e ]: j') 
       
  1554     (trset_of (ft, prog, cs, pos, mem))"
       
  1555   from tm.frame_rule[OF hoare_if_one_true]
       
  1556   have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* one p \<and>* r\<rbrace>  i :[ if_one e ]: j' \<lbrace>st e \<and>* ps p \<and>* one p \<and>* r\<rbrace>"
       
  1557     by(simp add: sep_conj_ac)
       
  1558   from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h
       
  1559   have "\<exists> k. (r \<and>* one p \<and>* ps p \<and>* st e \<and>* i :[ if_one e ]: j' \<and>* j' :[ c ]: j)
       
  1560     (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
       
  1561     by(auto simp: sep_conj_ac)
       
  1562   thus "\<exists>k. (r \<and>* one p \<and>* ps p \<and>* st e \<and>* j' :[ c ]: j \<and>* i :[ if_one e ]: j') 
       
  1563     (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
       
  1564     by(simp add: sep_conj_ac)
       
  1565 qed
       
  1566 
       
  1567 lemma hoare_if_one_true1_gen[step]: 
       
  1568   assumes "p = q"
       
  1569   shows
       
  1570   "\<lbrace>st i ** ps p ** one q\<rbrace> 
       
  1571      i:[(if_one e; c)]:j
       
  1572    \<lbrace>st e ** ps p ** one q\<rbrace>"
       
  1573   by (unfold assms, rule hoare_if_one_true1)
       
  1574 
       
  1575 lemma hoare_if_one_false: 
       
  1576   "\<lbrace>st i ** ps p ** zero p\<rbrace> 
       
  1577        i:[if_one e]:j
       
  1578    \<lbrace>st j ** ps p ** zero p\<rbrace>"
       
  1579 proof(unfold if_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
       
  1580   show "\<lbrace>st i \<and>* ps p \<and>* zero p\<rbrace>  i :[ (\<guillemotright> ((W0, j), W1, e)) ]: j
       
  1581         \<lbrace>st j \<and>* ps p \<and>* zero p\<rbrace>"
       
  1582   proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
       
  1583         intro tm.code_condI, simp add: sep_conj_ac)
       
  1584     let ?j = "Suc i"
       
  1585     show "\<lbrace>ps p \<and>* st i \<and>* zero p\<rbrace>  sg {TC i ((W0, ?j), W1, e)} \<lbrace>ps p \<and>*  zero p \<and>* st ?j \<rbrace>"
       
  1586     proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
       
  1587       fix ft prog cs pc mem r
       
  1588       assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* sg {TC i ((W0, ?j), W1, e)})
       
  1589         (trset_of (ft, prog, cs, pc, mem))"
       
  1590       from h have k1: "prog $ i = Some ((W0, ?j), W1, e)"
       
  1591         apply(rule_tac r = "r \<and>* zero p \<and>* ps p" in codeD)
       
  1592         by(simp add: sep_conj_ac)
       
  1593       from h have k2: "pc = p"
       
  1594         by(sep_drule psD, simp)
       
  1595       from h and this have k3: "mem $ pc = Some Bk"
       
  1596         apply(unfold zero_def)
       
  1597         by(sep_drule memD, simp)
       
  1598       from h k1 k2 k3 have stp:
       
  1599         "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, ?j, pc, mem)" (is "?x = ?y")
       
  1600         apply(sep_drule stD)
       
  1601         apply(unfold tm.run_def)
       
  1602         apply(auto)
       
  1603         apply(rule fmap_eqI)
       
  1604         apply(simp)
       
  1605         apply(subgoal_tac "p \<in> fdom mem")
       
  1606         apply(simp add: insert_absorb)
       
  1607         apply(simp add: fdomIff)
       
  1608         by (metis the_lookup_fmap_upd the_lookup_fmap_upd_other)
       
  1609       from h k2 
       
  1610       have "(r \<and>* zero p \<and>* ps p \<and>* st ?j \<and>* sg {TC i ((W0, ?j), W1, e)})  (trset_of ?x)"
       
  1611         apply (unfold stp)
       
  1612         by (sep_drule st_upd[where i''="?j"], auto simp:sep_conj_ac)
       
  1613       thus "\<exists>k. (r \<and>* ps p \<and>* zero p \<and>* st ?j \<and>*  sg {TC i ((W0, ?j), W1, e)})
       
  1614              (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
       
  1615         by(auto simp: sep_conj_ac)
       
  1616     qed
       
  1617   qed
       
  1618 qed
       
  1619 
       
  1620 lemma hoare_if_one_false_gen[step]: 
       
  1621   assumes "p = q"
       
  1622   shows "\<lbrace>st i ** ps p ** zero q\<rbrace> 
       
  1623              i:[if_one e]:j
       
  1624          \<lbrace>st j ** ps p ** zero q\<rbrace>"
       
  1625   by (unfold assms, rule hoare_if_one_false)
       
  1626 
       
  1627 definition "if_zero e = (TL exit . \<guillemotright>((W0, e), (W1, exit)); TLabel exit)"
       
  1628 
       
  1629 lemma hoare_if_zero_true: 
       
  1630   "\<lbrace>st i ** ps p ** zero p\<rbrace> 
       
  1631      i:[if_zero e]:j
       
  1632    \<lbrace>st e ** ps p ** zero p\<rbrace>"
       
  1633 proof(unfold if_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
       
  1634   fix l
       
  1635   show "\<lbrace>st i \<and>* ps p \<and>* zero p\<rbrace>  i :[ \<guillemotright> ((W0, e), W1, l) ]: l \<lbrace>st e \<and>* ps p \<and>* zero p\<rbrace>"
       
  1636   proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
       
  1637         intro tm.code_condI, simp add: sep_conj_ac)
       
  1638     let ?j = "Suc i"
       
  1639     show "\<lbrace>ps p \<and>* st i \<and>* zero p\<rbrace>  sg {TC i ((W0, e), W1, ?j)} \<lbrace>ps p \<and>* st e \<and>* zero p\<rbrace>"
       
  1640     proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
       
  1641       fix ft prog cs pc mem r
       
  1642       assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* sg {TC i ((W0, e), W1, ?j)})
       
  1643         (trset_of (ft, prog, cs, pc, mem))"
       
  1644       from h have k1: "prog $ i = Some ((W0, e), W1, ?j)"
       
  1645         apply(rule_tac r = "r \<and>* zero p \<and>* ps p" in codeD)
       
  1646         by(simp add: sep_conj_ac)
       
  1647       from h have k2: "pc = p"
       
  1648         by(sep_drule psD, simp)
       
  1649       from h and this have k3: "mem $ pc = Some Bk"
       
  1650         apply(unfold zero_def)
       
  1651         by(sep_drule memD, simp)
       
  1652       from h k1 k2 k3 have stp:
       
  1653         "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, e, pc, mem)" (is "?x = ?y")
       
  1654         apply(sep_drule stD)
       
  1655         apply(unfold tm.run_def)
       
  1656         apply(auto)
       
  1657         apply(rule fmap_eqI)
       
  1658         apply(simp)
       
  1659         apply(subgoal_tac "p \<in> fdom mem")
       
  1660         apply(simp add: insert_absorb)
       
  1661         apply(simp add: fdomIff)
       
  1662         by (metis the_lookup_fmap_upd the_lookup_fmap_upd_other)
       
  1663       from h k2 
       
  1664       have "(r \<and>* zero p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, e), W1, ?j)})  (trset_of ?x)"
       
  1665         apply(unfold stp)
       
  1666         by(sep_drule st_upd, simp add: sep_conj_ac)
       
  1667       thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* zero p \<and>* sg {TC i ((W0, e), W1, ?j)})
       
  1668              (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
       
  1669         by(auto simp: sep_conj_ac)
       
  1670     qed
       
  1671   qed
       
  1672 qed
       
  1673 
       
  1674 lemma hoare_if_zero_true_gen[step]: 
       
  1675   assumes "p = q"
       
  1676   shows
       
  1677   "\<lbrace>st i ** ps p ** zero q\<rbrace> 
       
  1678      i:[if_zero e]:j
       
  1679    \<lbrace>st e ** ps p ** zero q\<rbrace>"
       
  1680   by (unfold assms, rule hoare_if_zero_true)
       
  1681 
       
  1682 lemma hoare_if_zero_true1: 
       
  1683   "\<lbrace>st i ** ps p ** zero p\<rbrace> 
       
  1684      i:[(if_zero e; c)]:j
       
  1685    \<lbrace>st e ** ps p ** zero p\<rbrace>"
       
  1686  proof(unfold tassemble_to.simps, rule tm.code_exI, simp add: sep_conj_ac 
       
  1687         tm.Hoare_gen_def, clarify)  
       
  1688   fix j' ft prog cs pos mem r
       
  1689   assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* j' :[ c ]: j \<and>* i :[ if_zero e ]: j') 
       
  1690     (trset_of (ft, prog, cs, pos, mem))"
       
  1691   from tm.frame_rule[OF hoare_if_zero_true]
       
  1692   have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* zero p \<and>* r\<rbrace>  i :[ if_zero e ]: j' \<lbrace>st e \<and>* ps p \<and>* zero p \<and>* r\<rbrace>"
       
  1693     by(simp add: sep_conj_ac)
       
  1694   from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h
       
  1695   have "\<exists> k. (r \<and>* zero p \<and>* ps p \<and>* st e \<and>* i :[ if_zero e ]: j' \<and>* j' :[ c ]: j)
       
  1696     (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
       
  1697     by(auto simp: sep_conj_ac)
       
  1698   thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* zero p \<and>* j' :[ c ]: j \<and>* i :[ if_zero e ]: j')  
       
  1699     (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
       
  1700     by(simp add: sep_conj_ac)
       
  1701 qed
       
  1702 
       
  1703 lemma hoare_if_zero_true1_gen[step]: 
       
  1704   assumes "p = q"
       
  1705   shows
       
  1706   "\<lbrace>st i ** ps p ** zero q\<rbrace> 
       
  1707      i:[(if_zero e; c)]:j
       
  1708    \<lbrace>st e ** ps p ** zero q\<rbrace>"
       
  1709   by (unfold assms, rule hoare_if_zero_true1)
       
  1710 
       
  1711 lemma hoare_if_zero_false: 
       
  1712   "\<lbrace>st i ** ps p ** tm p Oc\<rbrace> 
       
  1713      i:[if_zero e]:j
       
  1714    \<lbrace>st j ** ps p ** tm p Oc\<rbrace>"
       
  1715 proof(unfold if_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp, simp)
       
  1716   fix l
       
  1717   show "\<lbrace>st i \<and>* ps p \<and>* tm p Oc\<rbrace>  i :[ \<guillemotright> ((W0, e), W1, l) ]: l
       
  1718         \<lbrace>st l \<and>* ps p \<and>* tm p Oc\<rbrace>"
       
  1719   proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
       
  1720       intro tm.code_condI, simp add: sep_conj_ac)
       
  1721     let ?j = "Suc i"
       
  1722     show "\<lbrace>ps p \<and>* st i \<and>* tm p Oc\<rbrace>  sg {TC i ((W0, e), W1, ?j)} 
       
  1723           \<lbrace>ps p \<and>* st ?j \<and>* tm p Oc\<rbrace>"
       
  1724     proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
       
  1725       fix ft prog cs pc mem r
       
  1726       assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p Oc \<and>* sg {TC i ((W0, e), W1, ?j)})
       
  1727         (trset_of (ft, prog, cs, pc, mem))"
       
  1728       from h have k1: "prog $ i = Some ((W0, e), W1, ?j)"
       
  1729         apply(rule_tac r = "r \<and>* tm p Oc \<and>* ps p" in codeD)
       
  1730         by(simp add: sep_conj_ac)
       
  1731       from h have k2: "pc = p"
       
  1732         by(sep_drule psD, simp)
       
  1733       from h and this have k3: "mem $ pc = Some Oc"
       
  1734         by(sep_drule memD, simp)
       
  1735       from h k1 k2 k3 have stp:
       
  1736         "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, ?j, pc, mem)" (is "?x = ?y")
       
  1737         apply(sep_drule stD)
       
  1738         apply(unfold tm.run_def)
       
  1739         apply(auto)
       
  1740         apply(rule fmap_eqI)
       
  1741         apply(simp)
       
  1742         apply(subgoal_tac "p \<in> fdom mem")
       
  1743         apply(simp add: insert_absorb)
       
  1744         apply(simp add: fdomIff)
       
  1745         by (metis the_lookup_fmap_upd the_lookup_fmap_upd_other)
       
  1746       from h k2 
       
  1747       have "(r \<and>* tm p Oc \<and>* ps p \<and>* st ?j \<and>* sg {TC i ((W0, e), W1, ?j)})  (trset_of ?x)"
       
  1748         apply(unfold stp)
       
  1749         by(sep_drule st_upd, simp add: sep_conj_ac)
       
  1750       thus "\<exists>k. (r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W0, e), W1, ?j)})
       
  1751              (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
       
  1752         by(auto simp: sep_conj_ac)
       
  1753     qed
       
  1754   qed
       
  1755 qed
       
  1756 
       
  1757 lemma hoare_if_zero_false_gen[step]: 
       
  1758   assumes "p = q"
       
  1759   shows
       
  1760   "\<lbrace>st i ** ps p ** tm q Oc\<rbrace> 
       
  1761      i:[if_zero e]:j
       
  1762    \<lbrace>st j ** ps p ** tm q Oc\<rbrace>"
       
  1763   by (unfold assms, rule hoare_if_zero_false)
       
  1764 
       
  1765 
       
  1766 definition "jmp e = \<guillemotright>((W0, e), (W1, e))"
       
  1767 
       
  1768 lemma hoare_jmp: 
       
  1769   "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace>  i:[jmp e]:j \<lbrace>st e \<and>* ps p \<and>* tm p v\<rbrace>"
       
  1770 proof(unfold jmp_def tm.Hoare_gen_def tassemble_to.simps sep_conj_ac, clarify)
       
  1771   fix ft prog cs pos mem r
       
  1772   assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* <(j = i + 1)> \<and>* sg {TC i ((W0, e), W1, e)})
       
  1773     (trset_of (ft, prog, cs, pos, mem))"
       
  1774   from h have k1: "prog $ i = Some ((W0, e), W1, e)"
       
  1775     apply(rule_tac r = "r \<and>* <(j = i + 1)> \<and>* tm p v \<and>* ps p" in codeD)
       
  1776     by(simp add: sep_conj_ac)
       
  1777   from h have k2: "p = pos"
       
  1778     by(sep_drule psD, simp)
       
  1779   from h k2 have k3: "mem $ pos = Some v"
       
  1780     by(sep_drule memD, simp)
       
  1781   from h k1 k2 k3 have 
       
  1782     stp: "tm.run 1 (ft, prog, cs, pos, mem) = (ft, prog, e, pos, mem)" (is "?x = ?y")
       
  1783     apply(sep_drule stD)
       
  1784     apply(unfold tm.run_def)
       
  1785     apply(cases "mem $ pos")
       
  1786     apply(simp)
       
  1787     apply(cases v)
       
  1788     apply(auto)
       
  1789     apply(rule fmap_eqI)
       
  1790     apply(simp)
       
  1791     apply(subgoal_tac "pos \<in> fdom mem")
       
  1792     apply(simp add: insert_absorb)
       
  1793     apply(simp add: fdomIff)
       
  1794     apply(metis the_lookup_fmap_upd the_lookup_fmap_upd_other)
       
  1795     apply(rule fmap_eqI)
       
  1796     apply(simp)
       
  1797     apply(subgoal_tac "pos \<in> fdom mem")
       
  1798     apply(simp add: insert_absorb)
       
  1799     apply(simp add: fdomIff)
       
  1800     apply(metis the_lookup_fmap_upd the_lookup_fmap_upd_other)
       
  1801     done
       
  1802   from h k2 
       
  1803   have "(r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* <(j = i + 1)> \<and>* 
       
  1804            sg {TC i ((W0, e), W1, e)}) (trset_of ?x)"
       
  1805     apply(unfold stp)
       
  1806     by(sep_drule st_upd, simp add: sep_conj_ac)
       
  1807   thus "\<exists> k. (r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* <(j = i + 1)> \<and>* sg {TC i ((W0, e), W1, e)})
       
  1808              (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
       
  1809     apply (rule_tac x = 0 in exI)
       
  1810     by auto
       
  1811 qed
       
  1812 
       
  1813 lemma hoare_jmp_gen[step]: 
       
  1814   assumes "p = q"
       
  1815   shows "\<lbrace>st i \<and>* ps p \<and>* tm q v\<rbrace>  i:[jmp e]:j \<lbrace>st e \<and>* ps p \<and>* tm q v\<rbrace>"
       
  1816   by (unfold assms, rule hoare_jmp)
       
  1817 
       
  1818 lemma hoare_jmp1: 
       
  1819   "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace> 
       
  1820      i:[(jmp e; c)]:j
       
  1821    \<lbrace>st e \<and>* ps p \<and>* tm p v\<rbrace>"
       
  1822 proof(unfold  tassemble_to.simps, rule tm.code_exI, simp 
       
  1823               add: sep_conj_ac tm.Hoare_gen_def, clarify)
       
  1824   fix j' ft prog cs pos mem r
       
  1825   assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* j' :[ c ]: j \<and>* i :[ jmp e ]: j') 
       
  1826     (trset_of (ft, prog, cs, pos, mem))"
       
  1827   from tm.frame_rule[OF hoare_jmp]
       
  1828   have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* tm p v \<and>* r\<rbrace>  i :[ jmp e ]: j' \<lbrace>st e \<and>* ps p \<and>* tm p v \<and>* r\<rbrace>"
       
  1829     by(simp add: sep_conj_ac)
       
  1830   from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h
       
  1831   have "\<exists> k. (r \<and>* tm p v \<and>* ps p \<and>* st e \<and>* i :[ jmp e ]: j' \<and>* j' :[ c ]: j)
       
  1832     (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
       
  1833     by(auto simp: sep_conj_ac)
       
  1834   thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* j' :[ c ]: j \<and>* i :[ jmp e ]: j')  
       
  1835     (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
       
  1836     by(simp add: sep_conj_ac)
       
  1837 qed
       
  1838 
       
  1839 
       
  1840 lemma hoare_jmp1_gen[step]: 
       
  1841   assumes "p = q"
       
  1842   shows "\<lbrace>st i \<and>* ps p \<and>* tm q v\<rbrace> 
       
  1843             i:[(jmp e; c)]:j
       
  1844          \<lbrace>st e \<and>* ps p \<and>* tm q v\<rbrace>"
       
  1845   by (unfold assms, rule hoare_jmp1)
       
  1846 
       
  1847 
       
  1848 lemma condI: 
       
  1849   assumes h1: b
       
  1850   and h2: "b \<Longrightarrow> p s"
       
  1851   shows "(<b> \<and>* p) s"
       
  1852   by (metis (full_types) cond_true_eq1 h1 h2)
       
  1853 
       
  1854 lemma condE:
       
  1855   assumes "(<b> \<and>* p) s"
       
  1856   obtains "b" and "p s"
       
  1857 proof(atomize_elim)
       
  1858   from condD[OF assms]
       
  1859   show "b \<and> p s" .
       
  1860 qed
       
  1861 
       
  1862 
       
  1863 section {* Tactics *}
       
  1864 
       
  1865 ML {*
       
  1866   val trace_step = Attrib.setup_config_bool @{binding trace_step} (K false)
       
  1867   val trace_fwd = Attrib.setup_config_bool @{binding trace_fwd} (K false)
       
  1868 *}
       
  1869 
       
  1870 
       
  1871 ML {*
       
  1872   val tracing  = (fn ctxt => fn str =>
       
  1873                    if (Config.get ctxt trace_step) then tracing str else ())
       
  1874   fun not_pred p = fn s => not (p s)
       
  1875   fun break_sep_conj (Const (@{const_name sep_conj},_) $ t1 $ t2 $ _) =
       
  1876          (break_sep_conj t1) @ (break_sep_conj t2)
       
  1877     | break_sep_conj (Const (@{const_name sep_conj},_) $ t1 $ t2) =
       
  1878             (break_sep_conj t1) @ (break_sep_conj t2)
       
  1879                    (* dig through eta exanded terms: *)
       
  1880     | break_sep_conj (Abs (_, _, t $ Bound 0)) = break_sep_conj t
       
  1881     | break_sep_conj t = [t];
       
  1882 
       
  1883   val empty_env = (Vartab.empty, Vartab.empty)
       
  1884 
       
  1885   fun match_env ctxt pat trm env = 
       
  1886             Pattern.match (ctxt |> Proof_Context.theory_of) (pat, trm) env
       
  1887 
       
  1888   fun match ctxt pat trm = match_env ctxt pat trm empty_env;
       
  1889 
       
  1890   val inst = Envir.subst_term;
       
  1891 
       
  1892   fun term_of_thm thm = thm |>  prop_of |> HOLogic.dest_Trueprop
       
  1893 
       
  1894   fun get_cmd ctxt code = 
       
  1895       let val pat = term_of @{cpat "_:[(?cmd)]:_"}
       
  1896           val pat1 = term_of @{cpat "?cmd::tpg"}
       
  1897           val env = match ctxt pat code
       
  1898       in inst env pat1 end
       
  1899 
       
  1900   fun is_seq_term (Const (@{const_name TSeq}, _) $ _ $ _) = true
       
  1901     | is_seq_term _ = false
       
  1902 
       
  1903   fun get_hcmd  (Const (@{const_name TSeq}, _) $ hcmd $ _) = hcmd
       
  1904     | get_hcmd hcmd = hcmd
       
  1905 
       
  1906   fun last [a]  = a |
       
  1907       last (a::b) = last b
       
  1908 
       
  1909   fun but_last [a] = [] |
       
  1910       but_last (a::b) = a::(but_last b)
       
  1911 
       
  1912   fun foldr f [] = (fn x => x) |
       
  1913       foldr f (x :: xs) = (f x) o  (foldr f xs)
       
  1914 
       
  1915   fun concat [] = [] |
       
  1916       concat (x :: xs) = x @ concat xs
       
  1917 
       
  1918   fun match_any ctxt pats tm = 
       
  1919               fold 
       
  1920                  (fn pat => fn b => (b orelse Pattern.matches 
       
  1921                           (ctxt |> Proof_Context.theory_of) (pat, tm))) 
       
  1922                  pats false
       
  1923 
       
  1924   fun is_ps_term (Const (@{const_name ps}, _) $ _) = true
       
  1925     | is_ps_term _ = false
       
  1926 
       
  1927   fun string_of_term ctxt t = t |> Syntax.pretty_term ctxt |> Pretty.str_of
       
  1928   fun string_of_cterm ctxt ct = ct |> term_of |> string_of_term ctxt
       
  1929   fun pterm ctxt t =
       
  1930           t |> string_of_term ctxt |> tracing ctxt
       
  1931   fun pcterm ctxt ct = ct |> string_of_cterm ctxt |> tracing ctxt
       
  1932   fun string_for_term ctxt t =
       
  1933        Print_Mode.setmp (filter (curry (op =) Symbol.xsymbolsN)
       
  1934                    (print_mode_value ())) (Syntax.string_of_term ctxt) t
       
  1935          |> String.translate (fn c => if Char.isPrint c then str c else "")
       
  1936          |> Sledgehammer_Util.simplify_spaces  
       
  1937   fun string_for_cterm ctxt ct = ct |> term_of |> string_for_term ctxt
       
  1938   fun attemp tac = fn i => fn st => (tac i st) handle exn => Seq.empty
       
  1939   fun try_tac tac = fn i => fn st => (tac i st) handle exn => (Seq.single st)       
       
  1940  (* aux end *) 
       
  1941 *}
       
  1942 
       
  1943 ML {* (* Functions specific to Hoare triples *)
       
  1944   fun get_pre ctxt t = 
       
  1945     let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"} 
       
  1946         val env = match ctxt pat t 
       
  1947     in inst env (term_of @{cpat "?P::tresource set \<Rightarrow> bool"}) end
       
  1948 
       
  1949   fun can_process ctxt t = ((get_pre ctxt t; true) handle _ => false)
       
  1950 
       
  1951   fun get_post ctxt t = 
       
  1952     let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"} 
       
  1953         val env = match ctxt pat t 
       
  1954     in inst env (term_of @{cpat "?Q::tresource set \<Rightarrow> bool"}) end;
       
  1955 
       
  1956   fun get_mid ctxt t = 
       
  1957     let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"} 
       
  1958         val env = match ctxt pat t 
       
  1959     in inst env (term_of @{cpat "?c::tresource set \<Rightarrow> bool"}) end;
       
  1960 
       
  1961   fun is_pc_term (Const (@{const_name st}, _) $ _) = true
       
  1962     | is_pc_term _ = false
       
  1963 
       
  1964   fun mk_pc_term x =
       
  1965      Const (@{const_name st}, @{typ "nat \<Rightarrow> tresource set \<Rightarrow> bool"}) $ Free (x, @{typ "nat"})
       
  1966 
       
  1967   val sconj_term = term_of @{cterm "sep_conj::tassert \<Rightarrow> tassert \<Rightarrow> tassert"}
       
  1968 
       
  1969   fun mk_ps_term x =
       
  1970      Const (@{const_name ps}, @{typ "int \<Rightarrow> tresource set \<Rightarrow> bool"}) $ Free (x, @{typ "int"})
       
  1971 
       
  1972   fun atomic tac  = ((SOLVED' tac) ORELSE' (K all_tac))
       
  1973 
       
  1974   fun map_simpset f = Context.proof_map (Simplifier.map_ss f)
       
  1975 
       
  1976   fun pure_sep_conj_ac_tac ctxt = 
       
  1977          (auto_tac (map_simpset (fn ss => ss addsimps @{thms sep_conj_ac}) ctxt)
       
  1978           |> SELECT_GOAL)
       
  1979 
       
  1980 
       
  1981   fun potential_facts ctxt prop = Facts.could_unify (Proof_Context.facts_of ctxt) 
       
  1982                                        ((Term.strip_all_body prop) |> Logic.strip_imp_concl);
       
  1983 
       
  1984   fun some_fact_tac ctxt = SUBGOAL (fn (goal, i) => 
       
  1985                                       (Method.insert_tac (potential_facts ctxt goal) i) THEN
       
  1986                                       (pure_sep_conj_ac_tac ctxt i));
       
  1987 
       
  1988   fun sep_conj_ac_tac ctxt = 
       
  1989      (SOLVED' (auto_tac (ctxt |> map_simpset (fn ss => ss addsimps @{thms sep_conj_ac}))
       
  1990        |> SELECT_GOAL)) ORELSE' (atomic (some_fact_tac ctxt))
       
  1991 *}
       
  1992 
       
  1993 ML {*
       
  1994 type HoareTriple = {
       
  1995   binding: binding,
       
  1996   can_process: Proof.context -> term -> bool,
       
  1997   get_pre: Proof.context -> term -> term,
       
  1998   get_mid: Proof.context -> term -> term,
       
  1999   get_post: Proof.context -> term -> term,
       
  2000   is_pc_term: term -> bool,
       
  2001   mk_pc_term: string -> term,
       
  2002   sconj_term: term,
       
  2003   sep_conj_ac_tac: Proof.context -> int -> tactic,
       
  2004   hoare_seq1: thm,
       
  2005   hoare_seq2: thm,
       
  2006   pre_stren: thm,
       
  2007   post_weaken: thm,
       
  2008   frame_rule: thm
       
  2009 }
       
  2010 
       
  2011   val tm_triple = {binding = @{binding "tm_triple"}, 
       
  2012                    can_process = can_process,
       
  2013                    get_pre = get_pre,
       
  2014                    get_mid = get_mid,
       
  2015                    get_post = get_post,
       
  2016                    is_pc_term = is_pc_term,
       
  2017                    mk_pc_term = mk_pc_term,
       
  2018                    sconj_term = sconj_term,
       
  2019                    sep_conj_ac_tac = sep_conj_ac_tac,
       
  2020                    hoare_seq1 = @{thm t_hoare_seq1},
       
  2021                    hoare_seq2 = @{thm t_hoare_seq2},
       
  2022                    pre_stren = @{thm tm.pre_stren},
       
  2023                    post_weaken = @{thm tm.post_weaken},
       
  2024                    frame_rule = @{thm tm.frame_rule}
       
  2025                   }:HoareTriple
       
  2026 *}
       
  2027 
       
  2028 ML {*
       
  2029   val _ = data_slot "HoareTriples" "HoareTriple list" "[]"
       
  2030 *}
       
  2031 
       
  2032 ML {*
       
  2033   val _ = HoareTriples_store [tm_triple]
       
  2034 *}
       
  2035 
       
  2036 ML {* (* aux1 functions *)
       
  2037 
       
  2038 fun focus_params t ctxt =
       
  2039   let
       
  2040     val (xs, Ts) =
       
  2041       split_list (Term.variant_frees t (Term.strip_all_vars t));  (*as they are printed :-*)
       
  2042     (* val (xs', ctxt') = variant_fixes xs ctxt; *)
       
  2043     (* val ps = xs' ~~ Ts; *)
       
  2044     val ps = xs ~~ Ts
       
  2045     val (_, ctxt'') = ctxt |> Variable.add_fixes xs
       
  2046   in ((xs, ps), ctxt'') end
       
  2047 
       
  2048 fun focus_concl ctxt t =
       
  2049   let
       
  2050     val ((xs, ps), ctxt') = focus_params t ctxt
       
  2051     val t' = Term.subst_bounds (rev (map Free ps), Term.strip_all_body t);
       
  2052   in (t' |> Logic.strip_imp_concl, ctxt') end
       
  2053 
       
  2054   fun get_concl ctxt (i, state) = 
       
  2055               nth (Thm.prems_of state) (i - 1) 
       
  2056                             |> focus_concl ctxt |> (fn (x, _) => x |> HOLogic.dest_Trueprop)
       
  2057  (* aux1 end *)
       
  2058 *}
       
  2059 
       
  2060 ML {*
       
  2061   fun indexing xs = upto (0, length xs - 1) ~~ xs
       
  2062   fun select_idxs idxs ps = 
       
  2063       map_index (fn (i, e) => if (member (op =) idxs i) then [e] else []) ps |> flat
       
  2064   fun select_out_idxs idxs ps = 
       
  2065       map_index (fn (i, e) => if (member (op =) idxs i) then [] else [e]) ps |> flat
       
  2066   fun match_pres ctxt mf env ps qs = 
       
  2067       let  fun sel_match mf env [] qs = [(env, [])]
       
  2068              | sel_match mf env (p::ps) qs = 
       
  2069                   let val pm = map (fn (i, q) => [(i, 
       
  2070                                       let val _ = tracing ctxt "Matching:"
       
  2071                                           val _ = [p, q] |>
       
  2072                                             (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       
  2073                                           val r = mf p q env 
       
  2074                                       in r end)]
       
  2075                                       handle _ => (
       
  2076                                       let val _ = tracing ctxt "Failed matching:"
       
  2077                                           val _ = [p, q] |>
       
  2078                                             (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       
  2079                                       in [] end)) qs |> flat
       
  2080                       val r = pm |> map (fn (i, env') => 
       
  2081                                 let val qs' = filter_out (fn (j, q) => j = i) qs
       
  2082                                 in  sel_match mf env' ps qs' |> 
       
  2083                                       map (fn (env'', idxs) => (env'', i::idxs)) end) 
       
  2084                         |> flat
       
  2085             in r end
       
  2086    in sel_match mf env ps (indexing qs) end
       
  2087 
       
  2088   fun provable tac ctxt goal = 
       
  2089           let 
       
  2090               val _ = tracing ctxt "Provable trying to prove:"
       
  2091               val _ = [goal] |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       
  2092           in
       
  2093              (Goal.prove ctxt [] [] goal (fn {context, ...} => tac context 1); true)
       
  2094                         handle exn => false
       
  2095           end
       
  2096   fun make_sense tac ctxt thm_assms env  = 
       
  2097                 thm_assms |>  map (inst env) |> forall (provable tac ctxt)
       
  2098 *}
       
  2099 
       
  2100 ML {*
       
  2101   fun triple_for ctxt goal = 
       
  2102     filter (fn trpl => (#can_process trpl) ctxt goal) (HoareTriples.get (Proof_Context.theory_of ctxt)) |> hd
       
  2103 
       
  2104   fun step_terms_for thm goal ctxt = 
       
  2105     let
       
  2106        val _ = tracing ctxt "This is the new version of step_terms_for!"
       
  2107        val _ = tracing ctxt "Tring to find triple processor: TP"
       
  2108        val TP = triple_for ctxt goal
       
  2109        val _ = #binding TP |> Binding.name_of |> tracing ctxt
       
  2110        fun mk_sep_conj tms = foldr (fn tm => fn rtm => 
       
  2111               ((#sconj_term TP)$tm$rtm)) (but_last tms) (last tms)
       
  2112        val thm_concl = thm |> prop_of 
       
  2113                  |> Logic.strip_imp_concl |> HOLogic.dest_Trueprop 
       
  2114        val thm_assms = thm |> prop_of 
       
  2115            |> Logic.strip_imp_prems 
       
  2116        val cmd_pat = thm_concl |> #get_mid TP ctxt |> get_cmd ctxt 
       
  2117        val cmd = goal |> #get_mid TP ctxt |> get_cmd ctxt
       
  2118        val _ = tracing ctxt "matching command ... "
       
  2119        val _ = tracing ctxt "cmd_pat = "
       
  2120        val _ = pterm ctxt cmd_pat
       
  2121        val (hcmd, env1, is_last) =  (cmd, match ctxt cmd_pat cmd, true)
       
  2122              handle exn => (cmd |> get_hcmd, match ctxt cmd_pat (cmd |> get_hcmd), false)
       
  2123        val _ = tracing ctxt "hcmd ="
       
  2124        val _ = pterm ctxt hcmd
       
  2125        val _ = tracing ctxt "match command succeed! "
       
  2126        val _ = tracing ctxt "pres ="
       
  2127        val pres = goal |> #get_pre TP ctxt |> break_sep_conj 
       
  2128        val _ = pres |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       
  2129        val _ = tracing ctxt "pre_pats ="
       
  2130        val pre_pats = thm_concl |> #get_pre TP ctxt |> inst env1 |> break_sep_conj
       
  2131        val _ = pre_pats |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       
  2132        val _ = tracing ctxt "post_pats ="
       
  2133        val post_pats = thm_concl |> #get_post TP ctxt |> inst env1 |> break_sep_conj
       
  2134        val _ = post_pats |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       
  2135        val _ = tracing ctxt "Calculating sols"
       
  2136        val sols = match_pres ctxt (match_env ctxt) env1 pre_pats pres 
       
  2137        val _ = tracing ctxt "End calculating sols, sols ="
       
  2138        val _ = tracing ctxt (@{make_string} sols)
       
  2139        val _ = tracing ctxt "Calulating env2 and idxs"
       
  2140        val (env2, idxs) = filter (fn (env, idxs) => make_sense (#sep_conj_ac_tac TP) 
       
  2141                              ctxt thm_assms env) sols |> hd
       
  2142        val _ = tracing ctxt "End calculating env2 and idxs"
       
  2143        val _ = tracing ctxt "mterms ="
       
  2144        val mterms = select_idxs idxs pres |> map (inst env2) 
       
  2145        val _ = mterms |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       
  2146        val _ = tracing ctxt "nmterms = "
       
  2147        val nmterms = select_out_idxs idxs pres |> map (inst env2) 
       
  2148        val _ = nmterms |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
       
  2149        val pre_cond = pre_pats |> map (inst env2) |> mk_sep_conj
       
  2150        val post_cond = post_pats |> map (inst env2) |> mk_sep_conj 
       
  2151        val post_cond_npc  = 
       
  2152                post_cond |> break_sep_conj |> filter (not_pred (#is_pc_term TP)) 
       
  2153                |> (fn x => x @ nmterms) |> mk_sep_conj |> cterm_of (Proof_Context.theory_of ctxt)
       
  2154        fun mk_frame cond rest  = 
       
  2155              if rest = [] then cond else ((#sconj_term TP)$ cond) $ (mk_sep_conj rest)
       
  2156        val pre_cond_frame = mk_frame pre_cond nmterms |> cterm_of (Proof_Context.theory_of ctxt)
       
  2157        fun post_cond_frame j' = post_cond |> break_sep_conj |> filter (not_pred (#is_pc_term TP)) 
       
  2158                |> (fn x => [#mk_pc_term TP j']@x) |> mk_sep_conj
       
  2159                |> (fn x => mk_frame x nmterms)
       
  2160                |> cterm_of (Proof_Context.theory_of ctxt)
       
  2161        val need_frame = (nmterms <> [])
       
  2162     in 
       
  2163          (post_cond_npc,
       
  2164           pre_cond_frame, 
       
  2165           post_cond_frame, need_frame, is_last)       
       
  2166     end
       
  2167 *}
       
  2168 
       
  2169 ML {*
       
  2170   fun step_tac ctxt thm i state = 
       
  2171      let  
       
  2172        val _ = tracing ctxt "This is the new version of step_tac"
       
  2173        val (goal, ctxt) = nth (Thm.prems_of state) (i - 1) 
       
  2174                   |> focus_concl ctxt 
       
  2175                   |> (apfst HOLogic.dest_Trueprop)
       
  2176        val _ = tracing ctxt "step_tac: goal = "
       
  2177        val _ = goal |> pterm ctxt
       
  2178        val _ = tracing ctxt "Start to calculate intermediate terms ... "
       
  2179        val (post_cond_npc, pre_cond_frame, post_cond_frame, need_frame, is_last) 
       
  2180                         = step_terms_for thm goal ctxt
       
  2181        val _ = tracing ctxt "Tring to find triple processor: TP"
       
  2182        val TP = triple_for ctxt goal
       
  2183        val _ = #binding TP |> Binding.name_of |> tracing ctxt
       
  2184        fun mk_sep_conj tms = foldr (fn tm => fn rtm => 
       
  2185               ((#sconj_term TP)$tm$rtm)) (but_last tms) (last tms)
       
  2186        val _ = tracing ctxt "Calculate intermediate terms finished! "
       
  2187        val post_cond_npc_str = post_cond_npc |> string_for_cterm ctxt
       
  2188        val pre_cond_frame_str = pre_cond_frame |> string_for_cterm ctxt
       
  2189        val _ = tracing ctxt "step_tac: post_cond_npc = "
       
  2190        val _ = post_cond_npc |> pcterm ctxt
       
  2191        val _ = tracing ctxt "step_tac: pre_cond_frame = "
       
  2192        val _ = pre_cond_frame |> pcterm ctxt
       
  2193        fun tac1 i state = 
       
  2194              if is_last then (K all_tac) i state else
       
  2195               res_inst_tac ctxt [(("q", 0), post_cond_npc_str)] 
       
  2196                                           (#hoare_seq1 TP) i state
       
  2197        fun tac2 i state = res_inst_tac ctxt [(("p", 0), pre_cond_frame_str)] 
       
  2198                                           (#pre_stren TP) i state
       
  2199        fun foc_tac post_cond_frame ctxt i state  =
       
  2200            let
       
  2201                val goal = get_concl ctxt (i, state)
       
  2202                val pc_term = goal |> #get_post TP ctxt |> break_sep_conj 
       
  2203                                 |> filter (#is_pc_term TP) |> hd
       
  2204                val (_$Free(j', _)) = pc_term
       
  2205                val psd = post_cond_frame j'
       
  2206                val str_psd = psd |> string_for_cterm ctxt
       
  2207                val _ = tracing ctxt "foc_tac: psd = "
       
  2208                val _ = psd |> pcterm ctxt
       
  2209            in 
       
  2210                res_inst_tac ctxt [(("q", 0), str_psd)] 
       
  2211                                           (#post_weaken TP) i state
       
  2212            end
       
  2213      val frame_tac = if need_frame then (rtac (#frame_rule TP)) else (K all_tac)
       
  2214      val print_tac = if (Config.get ctxt trace_step) then Tactical.print_tac else (K all_tac)
       
  2215      val tac = (tac1 THEN' (K (print_tac "tac1 success"))) THEN' 
       
  2216                (tac2 THEN' (K (print_tac "tac2 success"))) THEN' 
       
  2217                ((foc_tac post_cond_frame ctxt) THEN' (K (print_tac "foc_tac success"))) THEN' 
       
  2218                (frame_tac  THEN' (K (print_tac "frame_tac success"))) THEN' 
       
  2219                (((rtac thm) THEN_ALL_NEW (#sep_conj_ac_tac TP ctxt)) THEN' (K (print_tac "rtac thm success"))) THEN' 
       
  2220                (K (ALLGOALS (atomic (#sep_conj_ac_tac TP ctxt)))) THEN'
       
  2221                (* (#sep_conj_ac_tac TP ctxt) THEN' (#sep_conj_ac_tac TP ctxt) THEN'  *)
       
  2222                (K prune_params_tac)
       
  2223    in 
       
  2224         tac i state
       
  2225    end
       
  2226 
       
  2227   fun unfold_cell_tac ctxt = (Local_Defs.unfold_tac ctxt @{thms one_def zero_def})
       
  2228   fun fold_cell_tac ctxt = (Local_Defs.fold_tac ctxt @{thms one_def zero_def})
       
  2229 *}
       
  2230 
       
  2231 ML {*
       
  2232   fun sg_step_tac thms ctxt =
       
  2233      let val sg_step_tac' =  (map (fn thm  => attemp (step_tac ctxt thm)) thms)
       
  2234                                (* @ [attemp (goto_tac ctxt)]  *)
       
  2235                               |> FIRST'
       
  2236          val sg_step_tac'' = (K (unfold_cell_tac ctxt)) THEN' sg_step_tac' THEN' (K (fold_cell_tac ctxt))
       
  2237      in
       
  2238          sg_step_tac' ORELSE' sg_step_tac''
       
  2239      end
       
  2240   fun steps_tac thms ctxt i = REPEAT (sg_step_tac thms ctxt i) THEN (prune_params_tac)
       
  2241 *}
       
  2242 
       
  2243 method_setup hstep = {* 
       
  2244   Attrib.thms >> (fn thms => fn ctxt =>
       
  2245                     (SIMPLE_METHOD' (fn i => 
       
  2246                        sg_step_tac (thms@(StepRules.get ctxt)) ctxt i)))
       
  2247   *} 
       
  2248   "One step symbolic execution using step theorems."
       
  2249 
       
  2250 method_setup hsteps = {* 
       
  2251   Attrib.thms >> (fn thms => fn ctxt =>
       
  2252                     (SIMPLE_METHOD' (fn i => 
       
  2253                        steps_tac (thms@(StepRules.get ctxt)) ctxt i)))
       
  2254   *} 
       
  2255   "Sequential symbolic execution using step theorems."
       
  2256 
       
  2257 
       
  2258 ML {*
       
  2259   fun goto_tac ctxt thm i state = 
       
  2260      let  
       
  2261        val (goal, ctxt) = nth (Thm.prems_of state) (i - 1) 
       
  2262                              |> focus_concl ctxt |> (apfst HOLogic.dest_Trueprop)
       
  2263        val _ = tracing ctxt "goto_tac: goal = "
       
  2264        val _ = goal |> string_of_term ctxt |> tracing ctxt
       
  2265        val (post_cond_npc, pre_cond_frame, post_cond_frame, need_frame, is_last) 
       
  2266                         = step_terms_for thm goal ctxt
       
  2267        val _ = tracing ctxt "Tring to find triple processor: TP"
       
  2268        val TP = triple_for ctxt goal
       
  2269        val _ = #binding TP |> Binding.name_of |> tracing ctxt
       
  2270        val _ = tracing ctxt "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
       
  2271        val post_cond_npc_str = post_cond_npc |> string_for_cterm ctxt
       
  2272        val pre_cond_frame_str = pre_cond_frame |> string_for_cterm ctxt
       
  2273        val _ = tracing ctxt "goto_tac: post_cond_npc = "
       
  2274        val _ = post_cond_npc_str |> tracing ctxt
       
  2275        val _ = tracing ctxt "goto_tac: pre_cond_frame = "
       
  2276        val _ = pre_cond_frame_str |> tracing ctxt
       
  2277        fun tac1 i state = 
       
  2278              if is_last then (K all_tac) i state else
       
  2279               res_inst_tac ctxt [] 
       
  2280                                           (#hoare_seq2 TP) i state
       
  2281        fun tac2 i state = res_inst_tac ctxt [(("p", 0), pre_cond_frame_str)] 
       
  2282                                           (#pre_stren TP) i state
       
  2283        fun foc_tac post_cond_frame ctxt i state  =
       
  2284            let
       
  2285                val goal = get_concl ctxt (i, state)
       
  2286                val pc_term = goal |> #get_post TP ctxt |> break_sep_conj 
       
  2287                                 |> filter (#is_pc_term TP) |> hd
       
  2288                val (_$Free(j', _)) = pc_term
       
  2289                val psd = post_cond_frame j'
       
  2290                val str_psd = psd |> string_for_cterm ctxt
       
  2291                val _ = tracing ctxt "goto_tac: psd = "
       
  2292                val _ = str_psd |> tracing ctxt
       
  2293            in 
       
  2294                res_inst_tac ctxt [(("q", 0), str_psd)] 
       
  2295                                           (#post_weaken TP) i state
       
  2296            end
       
  2297      val frame_tac = if need_frame then (rtac (#frame_rule TP)) else (K all_tac)
       
  2298      val _ = tracing ctxt "goto_tac: starting to apply tacs"
       
  2299      val print_tac = if (Config.get ctxt trace_step) then Tactical.print_tac else (K all_tac)
       
  2300      val tac = (tac1 THEN' (K (print_tac "tac1 success"))) THEN' 
       
  2301                (tac2 THEN' (K (print_tac "tac2 success"))) THEN' 
       
  2302                ((foc_tac post_cond_frame ctxt) THEN' (K (print_tac "foc_tac success"))) THEN' 
       
  2303                (frame_tac THEN' (K (print_tac "frame_tac success"))) THEN' 
       
  2304                ((((rtac thm) THEN_ALL_NEW (#sep_conj_ac_tac TP ctxt))) THEN'
       
  2305                  (K (print_tac "rtac success"))
       
  2306                ) THEN' 
       
  2307                (K (ALLGOALS (atomic (#sep_conj_ac_tac TP ctxt)))) THEN'
       
  2308                (K prune_params_tac)
       
  2309    in 
       
  2310         tac i state
       
  2311    end
       
  2312 *}
       
  2313 
       
  2314 ML {*
       
  2315   fun sg_goto_tac thms ctxt =
       
  2316      let val sg_goto_tac' =  (map (fn thm  => attemp (goto_tac ctxt thm)) thms)
       
  2317                               |> FIRST'
       
  2318          val sg_goto_tac'' = (K (unfold_cell_tac ctxt)) THEN' sg_goto_tac' THEN' (K (fold_cell_tac ctxt))
       
  2319      in
       
  2320          sg_goto_tac' ORELSE' sg_goto_tac''
       
  2321      end
       
  2322   fun gotos_tac thms ctxt i = REPEAT (sg_goto_tac thms ctxt i) THEN (prune_params_tac)
       
  2323 *}
       
  2324 
       
  2325 method_setup hgoto = {* 
       
  2326   Attrib.thms >> (fn thms => fn ctxt =>
       
  2327                     (SIMPLE_METHOD' (fn i => 
       
  2328                        sg_goto_tac (thms@(StepRules.get ctxt)) ctxt i)))
       
  2329   *} 
       
  2330   "One step symbolic execution using goto theorems."
       
  2331 
       
  2332 subsection {* Tactic for forward reasoning *}
       
  2333 
       
  2334 ML {*
       
  2335 fun mk_msel_rule ctxt conclusion idx term =
       
  2336 let 
       
  2337   val cjt_count = term |> break_sep_conj |> length
       
  2338   fun variants nctxt names = fold_map Name.variant names nctxt;
       
  2339 
       
  2340   val (state, nctxt0) = Name.variant "s" (Variable.names_of ctxt);
       
  2341 
       
  2342   fun sep_conj_prop cjts =
       
  2343         FunApp.fun_app_free
       
  2344           (FunApp.fun_app_foldr SepConj.sep_conj_term cjts) state
       
  2345         |> HOLogic.mk_Trueprop;
       
  2346 
       
  2347   (* concatenate string and string of an int *)
       
  2348   fun conc_str_int str int = str ^ Int.toString int;
       
  2349 
       
  2350   (* make the conjunct names *)
       
  2351   val (cjts, _) = ListExtra.range 1 cjt_count
       
  2352                   |> map (conc_str_int "a") |> variants nctxt0;
       
  2353 
       
  2354  fun skel_sep_conj names (Const (@{const_name sep_conj}, _) $ t1 $ t2 $ y) =
       
  2355      (let val nm1 = take (length (break_sep_conj t1)) names 
       
  2356           val nm2 = drop (length (break_sep_conj t1)) names
       
  2357           val t1' = skel_sep_conj nm1 t1 
       
  2358           val t2' = skel_sep_conj nm2 t2 
       
  2359       in (SepConj.sep_conj_term $ t1' $ t2' $ y) end)
       
  2360   | skel_sep_conj names (Const (@{const_name sep_conj}, _) $ t1 $ t2) =
       
  2361      (let val nm1 = take (length (break_sep_conj t1)) names 
       
  2362           val nm2 = drop (length (break_sep_conj t1)) names
       
  2363           val t1' = skel_sep_conj nm1 t1 
       
  2364           val t2' = skel_sep_conj nm2 t2 
       
  2365      in (SepConj.sep_conj_term $ t1' $ t2') end)
       
  2366    | skel_sep_conj names (Abs (x, y, t $ Bound 0)) = 
       
  2367                   let val t' = (skel_sep_conj names t) 
       
  2368                       val ty' = t' |> type_of |> domain_type
       
  2369                   in (Abs (x, ty', (t' $ Bound 0))) end
       
  2370   | skel_sep_conj names t = Free (hd names, SepConj.sep_conj_term |> type_of |> domain_type);
       
  2371   val _ = tracing ctxt "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
       
  2372   val oskel = skel_sep_conj cjts term;
       
  2373   val _ = tracing ctxt "yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy"
       
  2374   val ttt = oskel |> type_of
       
  2375   val _ = tracing ctxt "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
       
  2376   val orig = FunApp.fun_app_free oskel state |> HOLogic.mk_Trueprop
       
  2377   val _ = tracing ctxt "uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu"
       
  2378   val is_selected = member (fn (x, y) => x = y) idx
       
  2379   val all_idx = ListExtra.range 0 cjt_count
       
  2380   val selected_idx = idx
       
  2381   val unselected_idx = filter_out is_selected all_idx
       
  2382   val selected = map (nth cjts) selected_idx
       
  2383   val unselected = map (nth cjts) unselected_idx
       
  2384 
       
  2385   fun fun_app_foldr f [a,b] = FunApp.fun_app_free (FunApp.fun_app_free f a) b
       
  2386   | fun_app_foldr f [a] = Free (a, SepConj.sep_conj_term |> type_of |> domain_type)
       
  2387   | fun_app_foldr f (x::xs) = (FunApp.fun_app_free f x) $ (fun_app_foldr f xs)
       
  2388   | fun_app_foldr _ _ = raise Fail "fun_app_foldr";
       
  2389 
       
  2390   val reordered_skel = 
       
  2391       if unselected = [] then (fun_app_foldr SepConj.sep_conj_term selected)
       
  2392           else (SepConj.sep_conj_term $ (fun_app_foldr SepConj.sep_conj_term selected)
       
  2393                         $ (fun_app_foldr SepConj.sep_conj_term unselected))
       
  2394 
       
  2395   val reordered =  FunApp.fun_app_free reordered_skel state  |> HOLogic.mk_Trueprop
       
  2396   val goal = Logic.mk_implies
       
  2397                (if conclusion then (orig, reordered) else (reordered, orig));
       
  2398   val rule =
       
  2399    Goal.prove ctxt [] [] goal (fn _ => 
       
  2400         auto_tac (ctxt |> map_simpset (fn ss => ss addsimps @{thms sep_conj_ac})))
       
  2401          |> Drule.export_without_context
       
  2402 in
       
  2403    rule
       
  2404 end
       
  2405 *}
       
  2406 
       
  2407 lemma fwd_rule: 
       
  2408   assumes "\<And> s . U s \<longrightarrow> V s"
       
  2409   shows "(U ** RR) s \<Longrightarrow> (V ** RR) s"
       
  2410   by (metis assms sep_globalise)
       
  2411 
       
  2412 ML {*
       
  2413   fun sg_sg_fwd_tac ctxt thm pos i state = 
       
  2414   let  
       
  2415 
       
  2416   val tracing  = (fn str =>
       
  2417                    if (Config.get ctxt trace_fwd) then Output.tracing str else ())
       
  2418   fun pterm t =
       
  2419           t |> string_of_term ctxt |> tracing
       
  2420   fun pcterm ct = ct |> string_of_cterm ctxt |> tracing
       
  2421 
       
  2422   fun atm thm = 
       
  2423   let
       
  2424   (* val thm = thm |> Drule.forall_intr_vars *)
       
  2425   val res =  thm |> cprop_of |> Object_Logic.atomize
       
  2426   val res' = Raw_Simplifier.rewrite_rule [res] thm
       
  2427   in res' end
       
  2428 
       
  2429   fun find_idx ctxt pats terms = 
       
  2430      let val result = 
       
  2431               map (fn pat => (find_index (fn trm => ((match ctxt pat trm; true)
       
  2432                                               handle _ => false)) terms)) pats
       
  2433      in (assert_all (fn x => x >= 0) result (K "match of precondition failed"));
       
  2434          result
       
  2435      end
       
  2436 
       
  2437   val goal = nth (Drule.cprems_of state) (i - 1) |> term_of
       
  2438   val _ = tracing "goal = "
       
  2439   val _ = goal |> pterm
       
  2440   
       
  2441   val ctxt_orig = ctxt
       
  2442 
       
  2443   val ((ps, goal), ctxt) = Variable.focus goal ctxt_orig
       
  2444   
       
  2445   val prems = goal |> Logic.strip_imp_prems 
       
  2446 
       
  2447   val cprem = nth prems (pos - 1)
       
  2448   val (_ $ (the_prem $ _)) = cprem
       
  2449   val cjts = the_prem |> break_sep_conj
       
  2450   val thm_prems = thm |> cprems_of |> hd |> Thm.dest_arg |> Thm.dest_fun
       
  2451   val thm_assms = thm |> cprems_of |> tl |> map term_of
       
  2452   val thm_cjts = thm_prems |> term_of |> break_sep_conj
       
  2453   val thm_trm = thm |> prop_of
       
  2454 
       
  2455   val _ = tracing "cjts = "
       
  2456   val _ = cjts |> map pterm
       
  2457   val _ = tracing "thm_cjts = "
       
  2458   val _ = thm_cjts |> map pterm
       
  2459 
       
  2460   val _ = tracing "Calculating sols"
       
  2461   val sols = match_pres ctxt (match_env ctxt) empty_env thm_cjts cjts
       
  2462   val _ = tracing "End calculating sols, sols ="
       
  2463   val _ = tracing (@{make_string} sols)
       
  2464   val _ = tracing "Calulating env2 and idxs"
       
  2465   val (env2, idx) = filter (fn (env, idxs) => make_sense sep_conj_ac_tac ctxt thm_assms env) sols |> hd
       
  2466   val ([thm'_trm], ctxt') = thm_trm |> inst env2 |> single 
       
  2467                             |> (fn trms => Variable.import_terms true trms ctxt)
       
  2468   val thm'_prem  = Logic.strip_imp_prems thm'_trm |> hd 
       
  2469   val thm'_concl = Logic.strip_imp_concl thm'_trm 
       
  2470   val thm'_prem = (Goal.prove ctxt' [] [thm'_prem] thm'_concl 
       
  2471                   (fn {context, prems = [prem]} =>  
       
  2472                       (rtac (prem RS thm)  THEN_ALL_NEW (sep_conj_ac_tac ctxt)) 1))
       
  2473   val [thm'] = Variable.export ctxt' ctxt_orig [thm'_prem]
       
  2474   val trans_rule = 
       
  2475        mk_msel_rule ctxt true idx the_prem
       
  2476   val _ = tracing "trans_rule = "
       
  2477   val _ = trans_rule |> cprop_of |> pcterm
       
  2478   val app_rule = 
       
  2479       if (length cjts = length thm_cjts) then thm' else
       
  2480        ((thm' |> atm) RS @{thm fwd_rule})
       
  2481   val _ = tracing "app_rule = "
       
  2482   val _ = app_rule |> cprop_of |> pcterm
       
  2483   val print_tac = if (Config.get ctxt trace_fwd) then Tactical.print_tac else (K all_tac)
       
  2484   val the_tac = (dtac trans_rule THEN' (K (print_tac "dtac1 success"))) THEN'
       
  2485                 ((dtac app_rule THEN' (K (print_tac "dtac2 success"))))
       
  2486 in
       
  2487   (the_tac i state) handle _ => no_tac state
       
  2488 end
       
  2489 *}
       
  2490 
       
  2491 ML {*
       
  2492   fun sg_fwd_tac ctxt thm i state = 
       
  2493   let  
       
  2494     val goal = nth (Drule.cprems_of state) (i - 1)          
       
  2495     val prems = goal |> term_of |> Term.strip_all_body |> Logic.strip_imp_prems 
       
  2496     val posx = ListExtra.range 1 (length prems)
       
  2497   in
       
  2498       ((map (fn pos => attemp (sg_sg_fwd_tac ctxt thm pos)) posx) |> FIRST') i state
       
  2499   end
       
  2500 
       
  2501   fun fwd_tac ctxt thms i state =
       
  2502        ((map (fn thm => sg_fwd_tac ctxt thm) thms) |> FIRST') i state
       
  2503 *}
       
  2504 
       
  2505 method_setup fwd = {* 
       
  2506   Attrib.thms >> (fn thms => fn ctxt =>
       
  2507                     (SIMPLE_METHOD' (fn i => 
       
  2508                        fwd_tac ctxt (thms@(FwdRules.get ctxt))  i)))
       
  2509   *} 
       
  2510   "Forward derivation of separation implication"
       
  2511 
       
  2512 text {* Testing the fwd tactic *}
       
  2513 
       
  2514 lemma ones_abs:
       
  2515   assumes "(ones u v \<and>* ones w x) s" "w = v + 1"
       
  2516   shows "ones u x s"
       
  2517   using assms(1) unfolding assms(2)
       
  2518 proof(induct u v arbitrary: x s rule:ones_induct)
       
  2519   case (Base i j x s)
       
  2520   thus ?case by (auto elim!:condE)
       
  2521 next
       
  2522   case (Step i j x s)
       
  2523   hence h: "\<And> x s. (ones (i + 1) j \<and>* ones (j + 1) x) s \<longrightarrow> ones (i + 1) x s"
       
  2524     by metis
       
  2525   hence "(ones (i + 1) x \<and>* one i) s"
       
  2526     by (rule fwd_rule, insert Step(3), auto simp:sep_conj_ac)
       
  2527   thus ?case
       
  2528     by (smt condD ones.simps sep_conj_commute)
       
  2529 qed
       
  2530 
       
  2531 lemma one_abs: "(one m) s \<Longrightarrow> (ones m m) s"
       
  2532  by (smt cond_true_eq2 ones.simps)
       
  2533 
       
  2534 lemma ones_reps_abs: 
       
  2535   assumes "ones m n s"
       
  2536           "m \<le> n"
       
  2537   shows "(reps m n [nat (n - m)]) s"
       
  2538   using assms
       
  2539   by simp
       
  2540 
       
  2541 lemma reps_reps'_abs: 
       
  2542   assumes "(reps m n xs \<and>* zero u) s" "u = n + 1" "xs \<noteq> []"
       
  2543   shows "(reps' m u xs) s"
       
  2544   unfolding assms using assms
       
  2545   by (unfold reps'_def, simp)
       
  2546 
       
  2547 lemma reps'_abs:
       
  2548   assumes "(reps' m n xs \<and>* reps' u v ys) s" "u = n + 1"
       
  2549   shows "(reps' m v (xs @ ys)) s"
       
  2550   apply (unfold reps'_append, rule_tac x = u in EXS_intro)
       
  2551   by (insert assms, simp)
       
  2552 
       
  2553 lemmas abs_ones = one_abs ones_abs
       
  2554 
       
  2555 lemmas abs_reps' = ones_reps_abs reps_reps'_abs reps'_abs
       
  2556 
       
  2557 
       
  2558 section {* Modular TM programming and verification *}
       
  2559 
       
  2560 definition "right_until_zero = 
       
  2561                  (TL start exit. 
       
  2562                   TLabel start;
       
  2563                      if_zero exit;
       
  2564                      move_right;
       
  2565                      jmp start;
       
  2566                   TLabel exit
       
  2567                  )"
       
  2568 
       
  2569 lemma ones_false [simp]: "j < i - 1 \<Longrightarrow> (ones i j) = sep_false"
       
  2570   by (simp add:pasrt_def)
       
  2571   
       
  2572 lemma hoare_right_until_zero: 
       
  2573   "\<lbrace>st i ** ps u ** ones u (v - 1) ** zero v \<rbrace> 
       
  2574      i:[right_until_zero]:j
       
  2575    \<lbrace>st j ** ps v ** ones u (v - 1) ** zero v \<rbrace>"
       
  2576 proof(unfold right_until_zero_def, 
       
  2577       intro t_hoare_local t_hoare_label, clarify, 
       
  2578       rule t_hoare_label_last, simp, simp)
       
  2579   fix la
       
  2580   let ?body = "i :[ (if_zero la ; move_right ; jmp i) ]: la"
       
  2581   let ?j = la
       
  2582   show "\<lbrace>st i \<and>* ps u \<and>* ones u (v - 1) \<and>* zero v\<rbrace>  ?body
       
  2583         \<lbrace>st ?j \<and>* ps v \<and>* ones u (v - 1) \<and>* zero v\<rbrace>" (is "?P u (v - 1) (ones u (v - 1))")
       
  2584   proof(induct "u" "v - 1" rule:ones_induct)
       
  2585     case (Base k)
       
  2586     moreover have "\<lbrace>st i \<and>* ps v \<and>* zero v\<rbrace> ?body
       
  2587                    \<lbrace>st ?j \<and>* ps v \<and>* zero v\<rbrace>" by hsteps
       
  2588     ultimately show ?case by (auto intro!:tm.pre_condI simp:sep_conj_cond)
       
  2589   next
       
  2590     case (Step k)
       
  2591     moreover have "\<lbrace>st i \<and>* ps k \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace> 
       
  2592                      i :[ (if_zero ?j ; move_right ; jmp i) ]: ?j
       
  2593                    \<lbrace>st ?j \<and>* ps v \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace>"
       
  2594     proof -
       
  2595       have s1: "\<lbrace>st i \<and>* ps k \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace>
       
  2596                           ?body 
       
  2597                 \<lbrace>st i \<and>* ps (k + 1) \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace>"
       
  2598       proof(cases "k + 1 \<ge> v")
       
  2599         case True
       
  2600         with Step(1) have "v = k + 1" by arith
       
  2601         thus ?thesis
       
  2602           apply(simp add: one_def)
       
  2603           by hsteps
       
  2604       next
       
  2605         case False
       
  2606         hence eq_ones: "ones (k + 1) (v - 1) = 
       
  2607                          (one (k + 1) \<and>* ones ((k + 1) + 1) (v - 1))"
       
  2608           by simp
       
  2609         show ?thesis
       
  2610           apply(simp only: eq_ones)
       
  2611           by hsteps
       
  2612       qed
       
  2613       note Step(2)[step]
       
  2614       have s2: "\<lbrace>st i \<and>* ps (k + 1) \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace>
       
  2615                         ?body
       
  2616                 \<lbrace>st ?j \<and>* ps v \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace>"
       
  2617         by hsteps
       
  2618       from tm.sequencing [OF s1 s2, step] 
       
  2619       show ?thesis 
       
  2620         by (auto simp:sep_conj_ac)
       
  2621     qed
       
  2622     ultimately show ?case by simp
       
  2623   qed
       
  2624 qed
       
  2625 
       
  2626 lemma hoare_right_until_zero_gen[step]: 
       
  2627   assumes "u = v" "w = x - 1"
       
  2628   shows  "\<lbrace>st i ** ps u ** ones v w ** zero x \<rbrace> 
       
  2629               i:[right_until_zero]:j
       
  2630           \<lbrace>st j ** ps x ** ones v w ** zero x \<rbrace>"
       
  2631   by (unfold assms, rule hoare_right_until_zero)
       
  2632 
       
  2633 definition "left_until_zero = 
       
  2634                  (TL start exit. 
       
  2635                   TLabel start;
       
  2636                     if_zero exit;
       
  2637                     move_left;
       
  2638                     jmp start;
       
  2639                   TLabel exit
       
  2640                  )"
       
  2641 
       
  2642 lemma hoare_left_until_zero: 
       
  2643   "\<lbrace>st i ** ps v ** zero u ** ones (u + 1) v \<rbrace> 
       
  2644      i:[left_until_zero]:j
       
  2645    \<lbrace>st j ** ps u ** zero u ** ones (u + 1) v \<rbrace>"
       
  2646 proof(unfold left_until_zero_def, 
       
  2647       intro t_hoare_local t_hoare_label, clarify, 
       
  2648       rule t_hoare_label_last, simp+)
       
  2649   fix la
       
  2650   let ?body = "i :[ (if_zero la ; move_left ; jmp i) ]: la"
       
  2651   let ?j = la
       
  2652   show "\<lbrace>st i \<and>* ps v \<and>* zero u \<and>* ones (u + 1) v\<rbrace> ?body
       
  2653         \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) v\<rbrace>"
       
  2654   proof(induct "u+1" v  rule:ones_rev_induct)
       
  2655     case (Base k)
       
  2656     thus ?case
       
  2657       by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hstep)
       
  2658   next
       
  2659     case (Step k)
       
  2660     have "\<lbrace>st i \<and>* ps k \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace> 
       
  2661                ?body
       
  2662           \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>"
       
  2663     proof(rule tm.sequencing[where q = 
       
  2664            "st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k"])
       
  2665       show "\<lbrace>st i \<and>* ps k \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace> 
       
  2666                 ?body
       
  2667             \<lbrace>st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>"
       
  2668       proof(induct "u + 1" "k - 1" rule:ones_rev_induct)
       
  2669         case Base with Step(1) have "k = u + 1" by arith
       
  2670         thus ?thesis
       
  2671           by (simp, hsteps)
       
  2672       next
       
  2673         case Step
       
  2674         show ?thesis
       
  2675           apply (unfold ones_rev[OF Step(1)], simp)
       
  2676           apply (unfold one_def)
       
  2677           by hsteps
       
  2678       qed
       
  2679     next
       
  2680       note Step(2) [step]
       
  2681       show "\<lbrace>st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace> 
       
  2682                 ?body
       
  2683             \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>" by hsteps
       
  2684     qed
       
  2685     thus ?case by (unfold ones_rev[OF Step(1)], simp)
       
  2686   qed
       
  2687 qed
       
  2688 
       
  2689 lemma hoare_left_until_zero_gen[step]: 
       
  2690   assumes "u = x" "w = v + 1"
       
  2691   shows  "\<lbrace>st i ** ps u ** zero v ** ones w x \<rbrace> 
       
  2692                i:[left_until_zero]:j
       
  2693           \<lbrace>st j ** ps v ** zero v ** ones w x \<rbrace>"
       
  2694   by (unfold assms, rule hoare_left_until_zero)
       
  2695 
       
  2696 definition "right_until_one = 
       
  2697                  (TL start exit. 
       
  2698                   TLabel start;
       
  2699                      if_one exit;
       
  2700                      move_right;
       
  2701                      jmp start;
       
  2702                   TLabel exit
       
  2703                  )"
       
  2704 
       
  2705 lemma hoare_right_until_one: 
       
  2706   "\<lbrace>st i ** ps u ** zeros u (v - 1) ** one v \<rbrace> 
       
  2707      i:[right_until_one]:j
       
  2708    \<lbrace>st j ** ps v ** zeros u (v - 1) ** one v \<rbrace>"
       
  2709 proof(unfold right_until_one_def, 
       
  2710       intro t_hoare_local t_hoare_label, clarify, 
       
  2711       rule t_hoare_label_last, simp+)
       
  2712   fix la
       
  2713   let ?body = "i :[ (if_one la ; move_right ; jmp i) ]: la"
       
  2714   let ?j = la
       
  2715   show "\<lbrace>st i \<and>* ps u \<and>* zeros u (v - 1) \<and>* one v\<rbrace> ?body
       
  2716        \<lbrace>st ?j \<and>* ps v \<and>* zeros u (v - 1) \<and>* one v\<rbrace>"
       
  2717   proof(induct u "v - 1" rule:zeros_induct)
       
  2718     case (Base k)
       
  2719     thus ?case
       
  2720       by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hsteps)
       
  2721   next
       
  2722     case (Step k)
       
  2723     have "\<lbrace>st i \<and>* ps k \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace> 
       
  2724             ?body
       
  2725           \<lbrace>st ?j \<and>* ps v \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>"
       
  2726     proof(rule tm.sequencing[where q = 
       
  2727            "st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v"])
       
  2728       show "\<lbrace>st i \<and>* ps k \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace> 
       
  2729                ?body
       
  2730            \<lbrace>st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>"
       
  2731       proof(induct "k + 1" "v - 1" rule:zeros_induct)
       
  2732         case Base
       
  2733         with Step(1) have eq_v: "k + 1 = v" by arith
       
  2734         from Base show ?thesis
       
  2735           apply (simp add:sep_conj_cond, intro tm.pre_condI, simp)
       
  2736           apply (hstep, clarsimp)
       
  2737           by hsteps
       
  2738       next
       
  2739         case Step
       
  2740         thus ?thesis
       
  2741           by (simp, hsteps)
       
  2742       qed
       
  2743     next
       
  2744       note Step(2)[step]
       
  2745         show "\<lbrace>st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace> 
       
  2746                 ?body
       
  2747               \<lbrace>st ?j \<and>* ps v \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>"
       
  2748           by hsteps
       
  2749     qed
       
  2750     thus ?case by (auto simp: sep_conj_ac Step(1))
       
  2751   qed
       
  2752 qed
       
  2753 
       
  2754 lemma hoare_right_until_one_gen[step]: 
       
  2755   assumes "u = v" "w = x - 1"
       
  2756   shows
       
  2757   "\<lbrace>st i ** ps u ** zeros v w ** one x \<rbrace> 
       
  2758      i:[right_until_one]:j
       
  2759    \<lbrace>st j **  ps x ** zeros v w ** one x \<rbrace>"
       
  2760   by (unfold assms, rule hoare_right_until_one)
       
  2761 
       
  2762 definition "left_until_one = 
       
  2763                  (TL start exit. 
       
  2764                   TLabel start;
       
  2765                     if_one exit;
       
  2766                     move_left;
       
  2767                     jmp start;
       
  2768                   TLabel exit
       
  2769                  )"
       
  2770 
       
  2771 lemma hoare_left_until_one: 
       
  2772   "\<lbrace>st i ** ps v ** one u ** zeros (u + 1) v \<rbrace> 
       
  2773      i:[left_until_one]:j
       
  2774    \<lbrace>st j ** ps u ** one u ** zeros (u + 1) v \<rbrace>"
       
  2775 proof(unfold left_until_one_def, 
       
  2776       intro t_hoare_local t_hoare_label, clarify, 
       
  2777       rule t_hoare_label_last, simp+)
       
  2778   fix la
       
  2779   let ?body = "i :[ (if_one la ; move_left ; jmp i) ]: la"
       
  2780   let ?j = la
       
  2781   show "\<lbrace>st i \<and>* ps v \<and>* one u \<and>* zeros (u + 1) v\<rbrace> ?body
       
  2782         \<lbrace>st ?j \<and>* ps u \<and>* one u \<and>* zeros (u + 1) v\<rbrace>"
       
  2783   proof(induct u v rule: ones'.induct)
       
  2784     fix ia ja
       
  2785     assume h: "\<not> ja < ia \<Longrightarrow>
       
  2786              \<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace> ?body
       
  2787              \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace>"
       
  2788     show "\<lbrace>st i \<and>* ps ja \<and>* one ia \<and>* zeros (ia + 1) ja\<rbrace>  ?body
       
  2789       \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) ja\<rbrace>"
       
  2790     proof(cases "ja < ia")
       
  2791       case False
       
  2792       note lt = False
       
  2793       from h[OF this] have [step]: 
       
  2794         "\<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace> ?body
       
  2795          \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace>" .
       
  2796       show ?thesis
       
  2797       proof(cases "ja = ia")
       
  2798         case True 
       
  2799         moreover
       
  2800         have "\<lbrace>st i \<and>* ps ja \<and>* one ja\<rbrace> ?body \<lbrace>st ?j \<and>* ps ja \<and>* one ja\<rbrace>" 
       
  2801           by hsteps
       
  2802         ultimately show ?thesis by auto
       
  2803       next
       
  2804         case False
       
  2805         with lt have k1: "ia < ja" by auto       
       
  2806         from zeros_rev[of "ja" "ia + 1"] this
       
  2807         have eq_zeros: "zeros (ia + 1) ja = (zeros (ia + 1) (ja - 1) \<and>* zero ja)" 
       
  2808           by simp        
       
  2809         have s1: "\<lbrace>st i \<and>* ps ja \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>
       
  2810                       ?body
       
  2811                   \<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>"
       
  2812         proof(cases "ia + 1 \<ge> ja")
       
  2813           case True
       
  2814           from k1 True have "ja = ia + 1" by arith
       
  2815           moreover have "\<lbrace>st i \<and>* ps (ia + 1) \<and>* one (ia + 1 - 1) \<and>* zero (ia + 1)\<rbrace>  
       
  2816             i :[ (if_one ?j ; move_left ; jmp i) ]: ?j 
       
  2817                 \<lbrace>st i \<and>* ps (ia + 1 - 1) \<and>* one (ia + 1 - 1) \<and>* zero (ia + 1)\<rbrace>"
       
  2818             by (hsteps)
       
  2819           ultimately show ?thesis
       
  2820             by (simp)
       
  2821         next
       
  2822           case False
       
  2823           from zeros_rev[of "ja - 1" "ia + 1"] False
       
  2824           have k: "zeros (ia + 1) (ja - 1) = 
       
  2825                       (zeros (ia + 1) (ja - 1 - 1) \<and>* zero (ja - 1))"
       
  2826             by auto
       
  2827           show ?thesis
       
  2828             apply (unfold k, simp)
       
  2829             by hsteps
       
  2830         qed      
       
  2831         have s2: "\<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>
       
  2832                       ?body
       
  2833                   \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>"
       
  2834           by hsteps
       
  2835         from tm.sequencing[OF s1 s2, step]
       
  2836         show ?thesis 
       
  2837           apply (unfold eq_zeros)
       
  2838           by hstep
       
  2839       qed (* ccc *)
       
  2840     next
       
  2841       case True
       
  2842       thus ?thesis by (auto intro:tm.hoare_sep_false)
       
  2843     qed
       
  2844   qed
       
  2845 qed
       
  2846 
       
  2847 lemma hoare_left_until_one_gen[step]: 
       
  2848   assumes "u = x" "w = v + 1"
       
  2849   shows  "\<lbrace>st i ** ps u ** one v ** zeros w x \<rbrace> 
       
  2850               i:[left_until_one]:j
       
  2851           \<lbrace>st j ** ps v ** one v ** zeros w x \<rbrace>"
       
  2852   by (unfold assms, rule hoare_left_until_one)
       
  2853 
       
  2854 definition "left_until_double_zero = 
       
  2855             (TL start exit.
       
  2856               TLabel start;
       
  2857               if_zero exit;
       
  2858               left_until_zero;
       
  2859               move_left;
       
  2860               if_one start;
       
  2861               TLabel exit)"
       
  2862 
       
  2863 declare ones.simps[simp del]
       
  2864 
       
  2865 lemma reps_simps3: "ks \<noteq> [] \<Longrightarrow> 
       
  2866   reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)"
       
  2867 by(case_tac ks, simp, simp add: reps.simps)
       
  2868 
       
  2869 lemma cond_eqI:
       
  2870   assumes h: "b \<Longrightarrow> r = s"
       
  2871   shows "(<b> ** r) = (<b> ** s)"
       
  2872 proof(cases b)
       
  2873   case True
       
  2874   from h[OF this] show ?thesis by simp
       
  2875 next
       
  2876   case False
       
  2877   thus ?thesis
       
  2878     by (unfold sep_conj_def set_ins_def pasrt_def, auto)
       
  2879 qed
       
  2880 
       
  2881 lemma reps_rev: "ks \<noteq> [] 
       
  2882        \<Longrightarrow> reps i j (ks @ [k]) =  (reps i (j - int (k + 1) - 1 ) ks \<and>* 
       
  2883                                           zero (j - int (k + 1)) \<and>* ones (j - int k) j)"
       
  2884 proof(induct ks arbitrary: i j)
       
  2885   case Nil
       
  2886   thus ?case by simp
       
  2887 next
       
  2888   case (Cons a ks)
       
  2889   show ?case
       
  2890   proof(cases "ks = []")
       
  2891     case True
       
  2892     thus ?thesis
       
  2893     proof -
       
  2894       have eq_cond: "(j = i + int a + 2 + int k) = (-2 + (j - int k) = i + int a)" by auto
       
  2895       have "(<(-2 + (j - int k) = i + int a)> \<and>*
       
  2896             one i \<and>* ones (i + 1) (i + int a) \<and>*
       
  2897             zero (i + int a + 1) \<and>* one (i + int a + 2) \<and>* ones (3 + (i + int a)) (i + int a + 2 + int k))
       
  2898             =
       
  2899             (<(-2 + (j - int k) = i + int a)> \<and>* one i \<and>* ones (i + 1) (i + int a) \<and>*
       
  2900             zero (j - (1 + int k)) \<and>* one (j - int k) \<and>* ones (j - int k + 1) j)"
       
  2901         (is "(<?X> \<and>* ?L) = (<?X> \<and>* ?R)")
       
  2902       proof(rule cond_eqI)
       
  2903         assume h: "-2 + (j - int k) = i + int a"
       
  2904         hence eqs:  "i + int a + 1 = j - (1 + int k)" 
       
  2905                     "i + int a + 2 = j - int k"
       
  2906                     "3 + (i + int a) = j - int k + 1"
       
  2907                     "(i + int a + 2 + int k) = j"
       
  2908         by auto
       
  2909         show "?L = ?R"
       
  2910           by (unfold eqs, auto simp:sep_conj_ac)
       
  2911       qed
       
  2912       with True
       
  2913       show ?thesis
       
  2914         apply (simp del:ones_simps reps.simps)
       
  2915         apply (simp add:sep_conj_cond eq_cond)
       
  2916         by (auto simp:sep_conj_ac)
       
  2917     qed
       
  2918   next
       
  2919     case False
       
  2920     from Cons(1)[OF False, of "i + int a + 2" j] this
       
  2921     show ?thesis
       
  2922       by(simp add: reps_simps3 sep_conj_ac)
       
  2923   qed
       
  2924 qed
       
  2925 
       
  2926 lemma hoare_if_one_reps:
       
  2927   assumes nn: "ks \<noteq> []"
       
  2928   shows "\<lbrace>st i ** ps v ** reps u v ks\<rbrace> 
       
  2929            i:[if_one e]:j
       
  2930         \<lbrace>st e ** ps v ** reps u v ks\<rbrace>"
       
  2931 proof(rule rev_exhaust[of ks])
       
  2932   assume "ks = []" with nn show ?thesis by simp
       
  2933 next
       
  2934   fix y ys
       
  2935   assume eq_ks: "ks = ys @ [y]"
       
  2936   show " \<lbrace>st i \<and>* ps v \<and>* reps u v ks\<rbrace>  i :[ if_one e ]: j \<lbrace>st e \<and>* ps v \<and>* reps u v ks\<rbrace>"
       
  2937   proof(cases "ys = []")
       
  2938     case False
       
  2939     have "\<lbrace>st i \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>  i :[ if_one e ]: j \<lbrace>st e \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>"
       
  2940       apply(unfold reps_rev[OF False], simp del:ones_simps add:ones_rev)
       
  2941       by hstep
       
  2942     thus ?thesis
       
  2943       by (simp add:eq_ks)
       
  2944   next
       
  2945     case True
       
  2946     with eq_ks
       
  2947     show ?thesis
       
  2948       apply (simp del:ones_simps add:ones_rev sep_conj_cond, intro tm.pre_condI, simp)
       
  2949       by hstep
       
  2950   qed
       
  2951 qed
       
  2952 
       
  2953 lemma hoare_if_one_reps_gen[step]:
       
  2954   assumes nn: "ks \<noteq> []" "u = w"
       
  2955   shows "\<lbrace>st i ** ps u ** reps v w ks\<rbrace> 
       
  2956            i:[if_one e]:j
       
  2957         \<lbrace>st e ** ps u ** reps v w ks\<rbrace>"
       
  2958   by (unfold `u = w`, rule hoare_if_one_reps[OF `ks \<noteq> []`])
       
  2959 
       
  2960 lemma hoare_if_zero_ones_false[step]:
       
  2961   assumes "\<not> w < u" "v = w"
       
  2962   shows  "\<lbrace>st i \<and>* ps v \<and>* ones u w\<rbrace> 
       
  2963              i :[if_zero e]: j
       
  2964           \<lbrace>st j \<and>* ps v \<and>* ones u w\<rbrace>"
       
  2965   by (unfold `v = w` ones_rev[OF `\<not> w < u`], hstep)
       
  2966 
       
  2967 lemma hoare_left_until_double_zero_nil[step]:
       
  2968   assumes "u = v"
       
  2969   shows   "\<lbrace>st i ** ps u ** zero v\<rbrace> 
       
  2970                   i:[left_until_double_zero]:j
       
  2971            \<lbrace>st j ** ps u ** zero v\<rbrace>"
       
  2972   apply (unfold `u = v` left_until_double_zero_def, 
       
  2973       intro t_hoare_local t_hoare_label, clarsimp, 
       
  2974       rule t_hoare_label_last, simp+)
       
  2975   by (hsteps)
       
  2976 
       
  2977 lemma hoare_if_zero_reps_false:
       
  2978   assumes nn: "ks \<noteq> []"
       
  2979   shows "\<lbrace>st i ** ps v ** reps u v ks\<rbrace> 
       
  2980            i:[if_zero e]:j
       
  2981         \<lbrace>st j ** ps v ** reps u v ks\<rbrace>"
       
  2982 proof(rule rev_exhaust[of ks])
       
  2983   assume "ks = []" with nn show ?thesis by simp
       
  2984 next
       
  2985   fix y ys
       
  2986   assume eq_ks: "ks = ys @ [y]"
       
  2987   show " \<lbrace>st i \<and>* ps v \<and>* reps u v ks\<rbrace>  i :[ if_zero e ]: j \<lbrace>st j \<and>* ps v \<and>* reps u v ks\<rbrace>"
       
  2988   proof(cases "ys = []")
       
  2989     case False
       
  2990     have "\<lbrace>st i \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>  i :[ if_zero e ]: j \<lbrace>st j \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>"
       
  2991       apply(unfold reps_rev[OF False], simp del:ones_simps add:ones_rev)
       
  2992       by hstep
       
  2993     thus ?thesis
       
  2994       by (simp add:eq_ks)
       
  2995   next
       
  2996     case True
       
  2997     with eq_ks
       
  2998     show ?thesis
       
  2999       apply (simp del:ones_simps add:ones_rev sep_conj_cond, intro tm.pre_condI, simp)
       
  3000       by hstep
       
  3001   qed
       
  3002 qed
       
  3003 
       
  3004 lemma hoare_if_zero_reps_false_gen[step]:
       
  3005   assumes "ks \<noteq> []" "u = w"
       
  3006   shows "\<lbrace>st i ** ps u ** reps v w ks\<rbrace> 
       
  3007            i:[if_zero e]:j
       
  3008         \<lbrace>st j ** ps u ** reps v w ks\<rbrace>"
       
  3009   by (unfold `u = w`, rule hoare_if_zero_reps_false[OF `ks \<noteq> []`])
       
  3010 
       
  3011 
       
  3012 lemma hoare_if_zero_reps_false1:
       
  3013   assumes nn: "ks \<noteq> []"
       
  3014   shows "\<lbrace>st i ** ps u ** reps u v ks\<rbrace> 
       
  3015            i:[if_zero e]:j
       
  3016         \<lbrace>st j ** ps u ** reps u v ks\<rbrace>"
       
  3017 proof -
       
  3018   from nn obtain y ys where eq_ys: "ks = y#ys"
       
  3019     by (metis neq_Nil_conv)
       
  3020   show ?thesis
       
  3021     apply (unfold eq_ys)
       
  3022     by (case_tac ys, (simp, hsteps)+)
       
  3023 qed
       
  3024 
       
  3025 lemma hoare_if_zero_reps_false1_gen[step]:
       
  3026   assumes nn: "ks \<noteq> []"
       
  3027   and h: "u = w"
       
  3028   shows "\<lbrace>st i ** ps u ** reps w v ks\<rbrace> 
       
  3029            i:[if_zero e]:j
       
  3030         \<lbrace>st j ** ps u ** reps w v ks\<rbrace>"
       
  3031   by (unfold h, rule hoare_if_zero_reps_false1[OF `ks \<noteq> []`])
       
  3032 
       
  3033 lemma hoare_left_until_double_zero: 
       
  3034   assumes h: "ks \<noteq> []"
       
  3035   shows   "\<lbrace>st i ** ps v ** zero u ** zero (u + 1) ** reps (u+2) v ks\<rbrace> 
       
  3036                   i:[left_until_double_zero]:j
       
  3037            \<lbrace>st j ** ps u ** zero u ** zero (u + 1) ** reps (u+2) v ks\<rbrace>"
       
  3038 proof(unfold left_until_double_zero_def, 
       
  3039       intro t_hoare_local t_hoare_label, clarsimp, 
       
  3040       rule t_hoare_label_last, simp+)
       
  3041   fix la
       
  3042   let ?body = "i :[ (if_zero la ; left_until_zero ; move_left ; if_one i) ]: j"
       
  3043   let ?j = j
       
  3044   show "\<lbrace>st i \<and>* ps v \<and>* zero u \<and>* zero (u + 1) \<and>* reps (u + 2) v ks\<rbrace> 
       
  3045            ?body
       
  3046         \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* zero (u + 1) \<and>* reps (u + 2) v ks\<rbrace>"
       
  3047     using h
       
  3048   proof(induct ks arbitrary: v rule:rev_induct)
       
  3049     case Nil
       
  3050     with h show ?case by auto
       
  3051   next
       
  3052     case (snoc k ks)
       
  3053     show ?case
       
  3054     proof(cases "ks = []")
       
  3055       case True
       
  3056       have eq_ones: 
       
  3057         "ones (u + 2) (u + 2 + int k) = (ones (u + 2) (u + 1 + int k) \<and>* one (u + 2 + int k))"
       
  3058         by (smt ones_rev)
       
  3059       have eq_ones': "(one (u + 2) \<and>* ones (3 + u) (u + 2 + int k)) = 
       
  3060             (one (u + 2 + int k) \<and>* ones (u + 2) (u + 1 + int k))"
       
  3061         by (smt eq_ones ones.simps sep.mult_commute)
       
  3062       thus ?thesis
       
  3063         apply (insert True, simp del:ones_simps add:sep_conj_cond)
       
  3064         apply (rule tm.pre_condI, simp del:ones_simps, unfold eq_ones)
       
  3065         apply hsteps
       
  3066         apply (rule_tac p = "st j' \<and>* ps (u + 2 + int k) \<and>* zero u \<and>* 
       
  3067                              zero (u + 1) \<and>* ones (u + 2) (u + 2 + int k)" 
       
  3068                   in tm.pre_stren)
       
  3069         by (hsteps)
       
  3070     next
       
  3071       case False
       
  3072       from False have spt: "splited (ks @ [k]) ks [k]" by (unfold splited_def, auto)
       
  3073       show ?thesis
       
  3074         apply (unfold reps_splited[OF spt], simp del:ones_simps add:sep_conj_cond)
       
  3075         apply (rule tm.pre_condI, simp del:ones_simps)
       
  3076         apply (rule_tac q = "st i \<and>*
       
  3077                ps (1 + (u + int (reps_len ks))) \<and>*
       
  3078                zero u \<and>*
       
  3079                zero (u + 1) \<and>*
       
  3080                reps (u + 2) (1 + (u + int (reps_len ks))) ks \<and>*
       
  3081                zero (u + 2 + int (reps_len ks)) \<and>*
       
  3082                ones (3 + (u + int (reps_len ks))) (3 + (u + int (reps_len ks)) + int k)" in
       
  3083                tm.sequencing)
       
  3084         apply hsteps[1]
       
  3085         by (hstep snoc(1))
       
  3086     qed 
       
  3087   qed
       
  3088 qed
       
  3089 
       
  3090 lemma hoare_left_until_double_zero_gen[step]: 
       
  3091   assumes h1: "ks \<noteq> []"
       
  3092       and h: "u = y" "w = v + 1" "x = v + 2"
       
  3093   shows   "\<lbrace>st i ** ps u ** zero v ** zero w ** reps x y ks\<rbrace> 
       
  3094                   i:[left_until_double_zero]:j
       
  3095            \<lbrace>st j ** ps v ** zero v ** zero w ** reps x y ks\<rbrace>"
       
  3096   by (unfold h, rule hoare_left_until_double_zero[OF h1])
       
  3097 
       
  3098 lemma hoare_jmp_reps1:
       
  3099   assumes "ks \<noteq> []"
       
  3100   shows  "\<lbrace> st i \<and>* ps u \<and>* reps u v ks\<rbrace>
       
  3101                  i:[jmp e]:j
       
  3102           \<lbrace> st e \<and>* ps u \<and>* reps u v ks\<rbrace>"
       
  3103 proof -
       
  3104   from assms obtain k ks' where Cons:"ks = k#ks'"
       
  3105     by (metis neq_Nil_conv)
       
  3106   thus ?thesis
       
  3107   proof(cases "ks' = []")
       
  3108     case True with Cons
       
  3109     show ?thesis
       
  3110       apply(simp add:sep_conj_cond reps.simps, intro tm.pre_condI, simp add:ones_simps)
       
  3111       by (hgoto hoare_jmp_gen)
       
  3112   next
       
  3113     case False
       
  3114     show ?thesis
       
  3115       apply (unfold `ks = k#ks'` reps_simp3[OF False], simp add:ones_simps)
       
  3116       by (hgoto hoare_jmp[where p = u])
       
  3117   qed
       
  3118 qed
       
  3119 
       
  3120 lemma hoare_jmp_reps1_gen[step]:
       
  3121   assumes "ks \<noteq> []" "u = v"
       
  3122   shows  "\<lbrace> st i \<and>* ps u \<and>* reps v w ks\<rbrace>
       
  3123                  i:[jmp e]:j
       
  3124           \<lbrace> st e \<and>* ps u \<and>* reps v w ks\<rbrace>"
       
  3125   by (unfold assms, rule hoare_jmp_reps1[OF `ks \<noteq> []`])
       
  3126 
       
  3127 lemma hoare_jmp_reps:
       
  3128       "\<lbrace> st i \<and>* ps u \<and>* reps u v ks \<and>* tm (v + 1) x \<rbrace>
       
  3129                  i:[(jmp e; c)]:j
       
  3130        \<lbrace> st e \<and>* ps u \<and>* reps u v ks \<and>* tm (v + 1) x \<rbrace>"
       
  3131 proof(cases "ks")
       
  3132   case Nil
       
  3133   thus ?thesis
       
  3134     by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hsteps)
       
  3135 next
       
  3136   case (Cons k ks')
       
  3137   thus ?thesis
       
  3138   proof(cases "ks' = []")
       
  3139     case True with Cons
       
  3140     show ?thesis
       
  3141       apply(simp add:sep_conj_cond, intro tm.pre_condI, simp)
       
  3142       by (hgoto hoare_jmp[where p = u])
       
  3143   next
       
  3144     case False
       
  3145     show ?thesis
       
  3146       apply (unfold `ks = k#ks'` reps_simp3[OF False], simp)
       
  3147       by (hgoto hoare_jmp[where p = u])
       
  3148   qed
       
  3149 qed
       
  3150 
       
  3151 definition "shift_right =
       
  3152             (TL start exit.
       
  3153               TLabel start;
       
  3154                  if_zero exit;
       
  3155                  write_zero;
       
  3156                  move_right;
       
  3157                  right_until_zero;
       
  3158                  write_one;
       
  3159                  move_right;
       
  3160                  jmp start;
       
  3161               TLabel exit
       
  3162             )"
       
  3163 
       
  3164 lemma hoare_shift_right_cons:
       
  3165   assumes h: "ks \<noteq> []"
       
  3166   shows "\<lbrace>st i \<and>* ps u ** reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace> 
       
  3167             i:[shift_right]:j
       
  3168          \<lbrace>st j ** ps (v + 2) ** zero u ** reps (u + 1) (v + 1) ks ** zero (v + 2) \<rbrace>"
       
  3169 proof(unfold shift_right_def, intro t_hoare_local t_hoare_label, clarify, 
       
  3170       rule t_hoare_label_last, auto)
       
  3171   fix la
       
  3172   have eq_ones: "\<And> u k. (one (u + int k + 1) \<and>* ones (u + 1) (u + int k)) = 
       
  3173                                    (one (u + 1) \<and>* ones (2 + u) (u + 1 + int k))"
       
  3174     by (smt cond_true_eq2 ones.simps ones_rev sep.mult_assoc sep.mult_commute 
       
  3175                sep.mult_left_commute sep_conj_assoc sep_conj_commute 
       
  3176                sep_conj_cond1 sep_conj_cond2 sep_conj_cond3 sep_conj_left_commute
       
  3177                sep_conj_trivial_strip2)
       
  3178   show "\<lbrace>st i \<and>* ps u \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
       
  3179          i :[ (if_zero la ;
       
  3180                write_zero ; move_right ; right_until_zero ; write_one ; move_right ; jmp i) ]: la
       
  3181          \<lbrace>st la \<and>* ps (v + 2) \<and>* zero u \<and>* reps (u + 1) (v + 1) ks \<and>* zero (v + 2)\<rbrace>"
       
  3182     using h
       
  3183   proof(induct ks arbitrary:i u v)
       
  3184     case (Cons k ks)
       
  3185     thus ?case 
       
  3186     proof(cases "ks = []")
       
  3187       let ?j = la
       
  3188       case True
       
  3189       let ?body = "i :[ (if_zero ?j ;
       
  3190                       write_zero ;
       
  3191                       move_right ; 
       
  3192                       right_until_zero ; 
       
  3193                       write_one ; move_right ; jmp i) ]: ?j"
       
  3194       have first_interation: 
       
  3195            "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>* 
       
  3196                                                                              zero (u + int k + 2)\<rbrace> 
       
  3197                 ?body
       
  3198             \<lbrace>st i \<and>*
       
  3199              ps (u + int k + 2) \<and>*
       
  3200              one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero u \<and>* zero (u + int k + 2)\<rbrace>"
       
  3201         apply (hsteps)
       
  3202         by (simp add:sep_conj_ac, sep_cancel+, smt)
       
  3203       hence "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>* 
       
  3204                                                                              zero (u + int k + 2)\<rbrace> 
       
  3205                    ?body
       
  3206              \<lbrace>st ?j \<and>* ps (u + int k + 2) \<and>* zero u \<and>* one (u + 1) \<and>* 
       
  3207                          ones (2 + u) (u + 1 + int k) \<and>* zero (u + int k + 2)\<rbrace>"
       
  3208       proof(rule tm.sequencing)
       
  3209         show "\<lbrace>st i \<and>*
       
  3210                ps (u + int k + 2) \<and>*
       
  3211                one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero u \<and>* zero (u + int k + 2)\<rbrace> 
       
  3212                       ?body
       
  3213               \<lbrace>st ?j \<and>*
       
  3214                ps (u + int k + 2) \<and>*
       
  3215                zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>* zero (u + int k + 2)\<rbrace>"
       
  3216           apply (hgoto hoare_if_zero_true_gen)
       
  3217           by (simp add:sep_conj_ac eq_ones)
       
  3218       qed
       
  3219       with True 
       
  3220       show ?thesis
       
  3221         by (simp, simp only:sep_conj_cond, intro tm.pre_condI, auto simp:sep_conj_ac)
       
  3222     next
       
  3223       case False
       
  3224       let ?j = la
       
  3225       let ?body = "i :[ (if_zero ?j ;
       
  3226                         write_zero ;
       
  3227                         move_right ; right_until_zero ; 
       
  3228                         write_one ; move_right ; jmp i) ]: ?j"
       
  3229       have eq_ones': 
       
  3230          "(one (u + int k + 1) \<and>*
       
  3231            ones (u + 1) (u + int k) \<and>*
       
  3232            zero u \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2))
       
  3233                    =
       
  3234            (zero u \<and>*
       
  3235              ones (u + 1) (u + int k) \<and>*
       
  3236              one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2))"
       
  3237         by (simp add:eq_ones sep_conj_ac)
       
  3238       have "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>* 
       
  3239                  reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
       
  3240                     ?body
       
  3241             \<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero u \<and>* ones (u + 1) (u + int k) \<and>* 
       
  3242                  one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
       
  3243         apply (hsteps)
       
  3244         by (auto simp:sep_conj_ac, sep_cancel+, smt)
       
  3245       hence "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>* 
       
  3246                  reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
       
  3247                      ?body
       
  3248             \<lbrace>st ?j \<and>* ps (v + 2) \<and>* zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>*
       
  3249                  zero (2 + (u + int k)) \<and>* reps (3 + (u + int k)) (v + 1) ks \<and>* zero (v + 2)\<rbrace>"
       
  3250       proof(rule tm.sequencing)
       
  3251         have eq_ones': 
       
  3252           "\<And> u k. (one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 2)) =
       
  3253              (one (u + 1) \<and>* zero (2 + (u + int k)) \<and>* ones (2 + u) (u + 1 + int k))"
       
  3254           by (smt eq_ones sep.mult_assoc sep_conj_commute)
       
  3255         show "\<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero u \<and>*
       
  3256                     ones (u + 1) (u + int k) \<and>* one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* 
       
  3257                     zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
       
  3258                       ?body
       
  3259               \<lbrace>st ?j \<and>* ps (v + 2) \<and>* zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>*
       
  3260                       zero (2 + (u + int k)) \<and>* reps (3 + (u + int k)) (v + 1) ks \<and>* zero (v + 2)\<rbrace>"
       
  3261           apply (hsteps Cons.hyps)
       
  3262           by (simp add:sep_conj_ac eq_ones, sep_cancel+, smt)
       
  3263       qed
       
  3264       thus ?thesis
       
  3265         by (unfold reps_simp3[OF False], auto simp:sep_conj_ac)
       
  3266     qed 
       
  3267   qed auto
       
  3268 qed
       
  3269 
       
  3270 lemma hoare_shift_right_cons_gen[step]:
       
  3271   assumes h: "ks \<noteq> []"
       
  3272   and h1: "u = v" "x = w + 1" "y = w + 2"
       
  3273   shows "\<lbrace>st i \<and>* ps u ** reps v w ks \<and>* zero x \<and>* zero y \<rbrace> 
       
  3274             i:[shift_right]:j
       
  3275          \<lbrace>st j ** ps y ** zero v ** reps (v + 1) x ks ** zero y\<rbrace>"
       
  3276   by (unfold h1, rule hoare_shift_right_cons[OF h])
       
  3277 
       
  3278 lemma shift_right_nil [step]: 
       
  3279   assumes "u = v"
       
  3280   shows
       
  3281        "\<lbrace> st i \<and>* ps u \<and>* zero v \<rbrace>
       
  3282                i:[shift_right]:j
       
  3283         \<lbrace> st j \<and>* ps u \<and>* zero v \<rbrace>"
       
  3284   by (unfold assms shift_right_def, intro t_hoare_local t_hoare_label, clarify, 
       
  3285           rule t_hoare_label_last, simp+, hstep)
       
  3286 
       
  3287 
       
  3288 text {*
       
  3289   @{text "clear_until_zero"} is useful to implement @{text "drag"}.
       
  3290 *}
       
  3291 
       
  3292 definition "clear_until_zero = 
       
  3293              (TL start exit.
       
  3294               TLabel start;
       
  3295                  if_zero exit;
       
  3296                  write_zero;
       
  3297                  move_right;
       
  3298                  jmp start;
       
  3299               TLabel exit)"
       
  3300 
       
  3301 lemma  hoare_clear_until_zero[step]: 
       
  3302          "\<lbrace>st i ** ps u ** ones u v ** zero (v + 1)\<rbrace>
       
  3303               i :[clear_until_zero]: j
       
  3304           \<lbrace>st j ** ps (v + 1) ** zeros u v ** zero (v + 1)\<rbrace> "
       
  3305 proof(unfold clear_until_zero_def, intro t_hoare_local, rule t_hoare_label,
       
  3306     rule t_hoare_label_last, simp+)
       
  3307   let ?body = "i :[ (if_zero j ; write_zero ; move_right ; jmp i) ]: j"
       
  3308   show "\<lbrace>st i \<and>* ps u \<and>* ones u v \<and>* zero (v + 1)\<rbrace> ?body 
       
  3309         \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros u v \<and>* zero (v + 1)\<rbrace>"
       
  3310   proof(induct u v rule: zeros.induct)
       
  3311     fix ia ja
       
  3312     assume h: "\<not> ja < ia \<Longrightarrow>
       
  3313              \<lbrace>st i \<and>* ps (ia + 1) \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>  ?body
       
  3314              \<lbrace>st j \<and>* ps (ja + 1) \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>"
       
  3315     show "\<lbrace>st i \<and>* ps ia \<and>* ones ia ja \<and>* zero (ja + 1)\<rbrace> ?body
       
  3316            \<lbrace>st j \<and>* ps (ja + 1) \<and>* zeros ia ja \<and>* zero (ja + 1)\<rbrace>"
       
  3317     proof(cases "ja < ia")
       
  3318       case True
       
  3319       thus ?thesis
       
  3320         by (simp add: ones.simps zeros.simps sep_conj_ac, simp only:sep_conj_cond,
       
  3321                intro tm.pre_condI, simp, hsteps)
       
  3322     next
       
  3323       case False
       
  3324       note h[OF False, step]
       
  3325       from False have ones_eq: "ones ia ja = (one ia \<and>* ones (ia + 1) ja)"
       
  3326         by(simp add: ones.simps)
       
  3327       from False have zeros_eq: "zeros ia ja = (zero ia \<and>* zeros (ia + 1) ja)"
       
  3328         by(simp add: zeros.simps)
       
  3329       have s1: "\<lbrace>st i \<and>* ps ia \<and>* one ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>  ?body 
       
  3330                  \<lbrace>st i \<and>* ps (ia + 1) \<and>* zero ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>"
       
  3331       proof(cases "ja < ia + 1")
       
  3332         case True
       
  3333         from True False have "ja = ia" by auto
       
  3334         thus ?thesis
       
  3335           apply(simp add: ones.simps)
       
  3336           by (hsteps)
       
  3337       next
       
  3338         case False
       
  3339         from False have "ones (ia + 1) ja = (one (ia + 1) \<and>* ones (ia + 1 + 1) ja)"
       
  3340           by(simp add: ones.simps)
       
  3341         thus ?thesis
       
  3342           by (simp, hsteps)
       
  3343       qed
       
  3344       have s2: "\<lbrace>st i \<and>* ps (ia + 1) \<and>* zero ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>
       
  3345                 ?body
       
  3346                 \<lbrace>st j \<and>* ps (ja + 1) \<and>* zero ia \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>"
       
  3347         by hsteps
       
  3348       from tm.sequencing[OF s1 s2] have 
       
  3349         "\<lbrace>st i \<and>* ps ia \<and>* one ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>  ?body
       
  3350         \<lbrace>st j \<and>* ps (ja + 1) \<and>* zero ia \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>" .
       
  3351       thus ?thesis
       
  3352         unfolding ones_eq zeros_eq by(simp add: sep_conj_ac)
       
  3353     qed
       
  3354   qed
       
  3355 qed
       
  3356 
       
  3357 lemma  hoare_clear_until_zero_gen[step]: 
       
  3358   assumes "u = v" "x = w + 1"
       
  3359   shows "\<lbrace>st i ** ps u ** ones v w ** zero x\<rbrace>
       
  3360               i :[clear_until_zero]: j
       
  3361         \<lbrace>st j ** ps x ** zeros v w ** zero x\<rbrace>"
       
  3362   by (unfold assms, rule hoare_clear_until_zero)
       
  3363 
       
  3364 definition "shift_left = 
       
  3365             (TL start exit.
       
  3366               TLabel start;
       
  3367                  if_zero exit;
       
  3368                  move_left;
       
  3369                  write_one;
       
  3370                  right_until_zero;
       
  3371                  move_left;
       
  3372                  write_zero;
       
  3373                  move_right;
       
  3374                  move_right;
       
  3375                  jmp start;
       
  3376               TLabel exit)
       
  3377            "
       
  3378 
       
  3379 declare ones_simps[simp del]
       
  3380 
       
  3381 lemma hoare_move_left_reps[step]:
       
  3382   assumes "ks \<noteq> []" "u = v"
       
  3383   shows 
       
  3384     "\<lbrace>st i ** ps u ** reps v w ks\<rbrace> 
       
  3385          i:[move_left]:j
       
  3386      \<lbrace>st j ** ps (u - 1) **  reps v w ks\<rbrace>"
       
  3387 proof -
       
  3388   from `ks \<noteq> []` obtain y ys where eq_ks: "ks = y#ys"
       
  3389     by (metis neq_Nil_conv)
       
  3390   show ?thesis
       
  3391     apply (unfold assms eq_ks)
       
  3392     apply (case_tac ys, simp)
       
  3393     my_block
       
  3394       have "(ones v (v + int y)) = (one v \<and>* ones (v + 1) (v + int y))"
       
  3395         by (smt ones_step_simp)
       
  3396     my_block_end
       
  3397     apply (unfold this, hsteps)
       
  3398     by (simp add:this, hsteps)
       
  3399 qed
       
  3400 
       
  3401 lemma hoare_shift_left_cons:
       
  3402   assumes h: "ks \<noteq> []"
       
  3403   shows "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace> 
       
  3404                                    i:[shift_left]:j
       
  3405          \<lbrace>st j \<and>* ps (v + 2) \<and>* reps (u - 1) (v - 1) ks \<and>* zero v \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace>"
       
  3406 proof(unfold shift_left_def, intro t_hoare_local t_hoare_label, clarify, 
       
  3407       rule t_hoare_label_last, simp+, clarify, prune)
       
  3408   show " \<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
       
  3409              i :[ (if_zero j ;
       
  3410                    move_left ;
       
  3411                    write_one ;
       
  3412                    right_until_zero ;
       
  3413                    move_left ; write_zero ; 
       
  3414                    move_right ; move_right ; jmp i) ]: j
       
  3415          \<lbrace>st j \<and>* ps (v + 2) \<and>* reps (u - 1) (v - 1) ks \<and>* zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
       
  3416     using h
       
  3417   proof(induct ks arbitrary:i u v x)
       
  3418     case (Cons k ks)
       
  3419     thus ?case 
       
  3420     proof(cases "ks = []")
       
  3421       let ?body = "i :[ (if_zero j ;  move_left ; write_one ; right_until_zero ;
       
  3422                    move_left ; write_zero ; move_right ; move_right ; jmp i) ]: j"
       
  3423       case True 
       
  3424       have "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* (one u \<and>* ones (u + 1) (u + int k)) \<and>* 
       
  3425                                           zero (u + int k + 1) \<and>* zero (u + int k + 2)\<rbrace> 
       
  3426                          ?body
       
  3427             \<lbrace>st j \<and>* ps (u + int k + 2) \<and>* (one (u - 1) \<and>* ones u (u - 1 + int k)) \<and>*
       
  3428                        zero (u + int k) \<and>* zero (u + int k + 1) \<and>* zero (u + int k + 2)\<rbrace>"
       
  3429       apply(rule tm.sequencing [where q = "st i \<and>* ps (u + int k + 2) \<and>*
       
  3430                 (one (u - 1) \<and>* ones u (u - 1 + int k)) \<and>*
       
  3431                 zero (u + int k) \<and>* zero (u + int k + 1) \<and>* zero (u + int k + 2)"])
       
  3432           apply (hsteps)
       
  3433           apply (rule_tac p = "st j' \<and>* ps (u - 1) \<and>* ones (u - 1) (u + int k) \<and>*
       
  3434                                 zero (u + int k + 1) \<and>* zero (u + int k + 2)" 
       
  3435             in tm.pre_stren)
       
  3436           apply (hsteps)
       
  3437           my_block
       
  3438             have "(ones (u - 1) (u + int k)) = (ones (u - 1) (u + int k - 1) \<and>* one (u + int k))"
       
  3439               by (smt ones_rev)
       
  3440           my_block_end
       
  3441           apply (unfold this)
       
  3442           apply hsteps
       
  3443           apply (simp add:sep_conj_ac, sep_cancel+)
       
  3444           apply (smt ones.simps sep.mult_assoc sep_conj_commuteI)
       
  3445           apply (simp add:sep_conj_ac)+
       
  3446           apply (sep_cancel+)
       
  3447           apply (smt ones.simps sep.mult_left_commute sep_conj_commuteI this)
       
  3448           by hstep
       
  3449         with True show ?thesis
       
  3450         by (simp add:ones_simps, simp only:sep_conj_cond, intro tm.pre_condI, simp)
       
  3451     next 
       
  3452       case False
       
  3453       let ?body = "i :[ (if_zero j ; move_left ; write_one ;right_until_zero ; move_left ; 
       
  3454                                 write_zero ; move_right ; move_right ; jmp i) ]: j"
       
  3455       have "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* 
       
  3456                 zero (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
       
  3457                 ?body
       
  3458             \<lbrace>st j \<and>* ps (v + 2) \<and>* one (u - 1) \<and>* ones u (u - 1 + int k) \<and>*
       
  3459                         zero (u + int k) \<and>* reps (1 + (u + int k)) (v - 1) ks \<and>*
       
  3460                                               zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
       
  3461         apply (rule tm.sequencing[where q = "st i \<and>* ps (u + int k + 2) \<and>* 
       
  3462                   zero (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* 
       
  3463                   zero (v + 2) \<and>* one (u - 1) \<and>* ones u (u - 1 + int k) \<and>* zero (u + int k)"])
       
  3464         apply (hsteps)
       
  3465         apply (rule_tac p = "st j' \<and>* ps (u - 1) \<and>* 
       
  3466                                ones (u - 1) (u + int k) \<and>*
       
  3467                                zero (u + int k + 1) \<and>* 
       
  3468                                reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)
       
  3469             " in tm.pre_stren)
       
  3470         apply hsteps
       
  3471         my_block
       
  3472           have "(ones (u - 1) (u + int k)) = 
       
  3473             (ones (u - 1) (u + int k - 1) \<and>* one (u + int k))"
       
  3474             by (smt ones_rev)
       
  3475         my_block_end
       
  3476         apply (unfold this)
       
  3477         apply (hsteps)
       
  3478         apply (sep_cancel+)
       
  3479         apply (smt ones.simps sep.mult_assoc sep_conj_commuteI)
       
  3480         apply (sep_cancel+)
       
  3481         apply (smt ones.simps this)
       
  3482         my_block
       
  3483           have eq_u: "1 + (u + int k) = u + int k + 1" by simp
       
  3484           from Cons.hyps[OF `ks \<noteq> []`, of i "u + int k + 2" Bk v, folded zero_def] 
       
  3485           have "\<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero (u + int k + 1) \<and>*
       
  3486                             reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
       
  3487                                ?body
       
  3488                       \<lbrace>st j \<and>* ps (v + 2) \<and>*  reps (1 + (u + int k)) (v - 1) ks \<and>* 
       
  3489                                                 zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
       
  3490           by (simp add:eq_u)
       
  3491         my_block_end my_note hh[step] = this 
       
  3492         by hsteps
       
  3493       thus ?thesis
       
  3494         by (unfold reps_simp3[OF False], auto simp:sep_conj_ac ones_simps)
       
  3495     qed
       
  3496   qed auto
       
  3497 qed
       
  3498 
       
  3499 lemma hoare_shift_left_cons_gen[step]:
       
  3500   assumes h: "ks \<noteq> []"
       
  3501           "v = u - 1" "w = u" "y = x + 1" "z = x + 2"
       
  3502   shows "\<lbrace>st i \<and>* ps u \<and>* tm v vv \<and>* reps w x ks \<and>* tm y Bk \<and>* tm z Bk\<rbrace> 
       
  3503                                    i:[shift_left]:j
       
  3504          \<lbrace>st j \<and>* ps z \<and>* reps v (x - 1) ks \<and>* zero x \<and>* zero y \<and>* zero z \<rbrace>"
       
  3505   by (unfold assms, fold zero_def, rule hoare_shift_left_cons[OF `ks \<noteq> []`])
       
  3506 
       
  3507 definition "bone c1 c2 = (TL exit l_one.
       
  3508                                 if_one l_one;
       
  3509                                   (c1;
       
  3510                                    jmp exit);
       
  3511                                 TLabel l_one;
       
  3512                                       c2;
       
  3513                                 TLabel exit
       
  3514                               )"
       
  3515 
       
  3516 lemma hoare_bone_1_out:
       
  3517   assumes h: 
       
  3518         "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
       
  3519                          i:[c1]:j
       
  3520                   \<lbrace>st e \<and>* q \<rbrace>
       
  3521         "
       
  3522   shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
       
  3523               i:[(bone c1 c2)]:j
       
  3524          \<lbrace>st e \<and>* q \<rbrace>
       
  3525         "
       
  3526 apply (unfold bone_def, intro t_hoare_local)
       
  3527 apply hsteps
       
  3528 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
       
  3529 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
       
  3530 by (rule h)
       
  3531 
       
  3532 lemma hoare_bone_1:
       
  3533   assumes h: 
       
  3534         "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
       
  3535                          i:[c1]:j
       
  3536                   \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
       
  3537         "
       
  3538   shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
       
  3539               i:[(bone c1 c2)]:j
       
  3540          \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
       
  3541         "
       
  3542 proof -
       
  3543   note h[step]
       
  3544   show ?thesis
       
  3545     apply (unfold bone_def, intro t_hoare_local)
       
  3546     apply (rule t_hoare_label_last, auto)
       
  3547     apply hsteps
       
  3548     apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
       
  3549     by hsteps
       
  3550 qed
       
  3551 
       
  3552 lemma hoare_bone_2:
       
  3553   assumes h: 
       
  3554         "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
       
  3555                          i:[c2]:j
       
  3556                   \<lbrace>st j \<and>* q \<rbrace>
       
  3557         "
       
  3558   shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
       
  3559               i:[(bone c1 c2)]:j
       
  3560          \<lbrace>st j \<and>* q \<rbrace>
       
  3561         "
       
  3562 apply (unfold bone_def, intro t_hoare_local)
       
  3563 apply (rule_tac q = "st la \<and>* ps u \<and>* one u \<and>* p" in tm.sequencing)
       
  3564 apply hsteps
       
  3565 apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
       
  3566 apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
       
  3567 apply (subst tassemble_to.simps(2), intro tm.code_exI)
       
  3568 apply (subst tassemble_to.simps(4), intro tm.code_condI, simp)
       
  3569 apply (subst tassemble_to.simps(2), intro tm.code_exI)
       
  3570 apply (subst tassemble_to.simps(4), simp add:sep_conj_cond, rule tm.code_condI, simp)
       
  3571 by (rule h)
       
  3572 
       
  3573 lemma hoare_bone_2_out:
       
  3574   assumes h: 
       
  3575         "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
       
  3576                          i:[c2]:j
       
  3577                   \<lbrace>st e \<and>* q \<rbrace>
       
  3578         "
       
  3579   shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
       
  3580               i:[(bone c1 c2)]:j
       
  3581          \<lbrace>st e \<and>* q \<rbrace>
       
  3582         "
       
  3583 apply (unfold bone_def, intro t_hoare_local)
       
  3584 apply (rule_tac q = "st la \<and>* ps u \<and>* one u \<and>* p" in tm.sequencing)
       
  3585 apply hsteps
       
  3586 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
       
  3587 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
       
  3588 apply (subst tassemble_to.simps(2), intro tm.code_exI)
       
  3589 apply (subst tassemble_to.simps(4), rule tm.code_condI, simp)
       
  3590 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
       
  3591 by (rule h)
       
  3592 
       
  3593 definition "bzero c1 c2 = (TL exit l_zero.
       
  3594                                 if_zero l_zero;
       
  3595                                   (c1;
       
  3596                                    jmp exit);
       
  3597                                 TLabel l_zero;
       
  3598                                       c2;
       
  3599                                 TLabel exit
       
  3600                               )"
       
  3601 
       
  3602 lemma hoare_bzero_1:
       
  3603   assumes h[step]: 
       
  3604         "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
       
  3605                          i:[c1]:j
       
  3606                  \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
       
  3607         "
       
  3608   shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
       
  3609               i:[(bzero c1 c2)]:j
       
  3610          \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
       
  3611         "
       
  3612 apply (unfold bzero_def, intro t_hoare_local)
       
  3613 apply hsteps
       
  3614 apply (rule_tac c = " ((c1 ; jmp l) ; TLabel la ; c2 ; TLabel l)" in t_hoare_label_last, auto)
       
  3615 apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension)
       
  3616 by hsteps
       
  3617 
       
  3618 lemma hoare_bzero_1_out:
       
  3619   assumes h[step]: 
       
  3620         "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
       
  3621                          i:[c1]:j
       
  3622                  \<lbrace>st e \<and>* q \<rbrace>
       
  3623         "
       
  3624   shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
       
  3625               i:[(bzero c1 c2)]:j
       
  3626          \<lbrace>st e \<and>* q \<rbrace>
       
  3627         "
       
  3628 apply (unfold bzero_def, intro t_hoare_local)
       
  3629 apply hsteps
       
  3630 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
       
  3631 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
       
  3632 by (rule h)
       
  3633 
       
  3634 lemma hoare_bzero_2:
       
  3635   assumes h: 
       
  3636         "\<And> i j. \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
       
  3637                          i:[c2]:j
       
  3638                  \<lbrace>st j \<and>* q \<rbrace>
       
  3639         "
       
  3640   shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
       
  3641               i:[(bzero c1 c2)]:j
       
  3642          \<lbrace>st j \<and>* q \<rbrace>
       
  3643         "
       
  3644   apply (unfold bzero_def, intro t_hoare_local)
       
  3645   apply (rule_tac q = "st la \<and>* ps u \<and>* zero u \<and>* p" in tm.sequencing)
       
  3646   apply hsteps
       
  3647   apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
       
  3648   apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
       
  3649   apply (subst tassemble_to.simps(2), intro tm.code_exI)
       
  3650   apply (subst tassemble_to.simps(4))
       
  3651   apply (rule tm.code_condI, simp)
       
  3652   apply (subst tassemble_to.simps(2))
       
  3653   apply (rule tm.code_exI)
       
  3654   apply (subst tassemble_to.simps(4), simp add:sep_conj_cond)
       
  3655   apply (rule tm.code_condI, simp)
       
  3656   by (rule h)
       
  3657 
       
  3658 lemma hoare_bzero_2_out:
       
  3659   assumes h: 
       
  3660         "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
       
  3661                          i:[c2]:j
       
  3662                   \<lbrace>st e \<and>* q \<rbrace>
       
  3663         "
       
  3664   shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p\<rbrace>
       
  3665               i:[(bzero c1 c2)]:j
       
  3666          \<lbrace>st e \<and>* q \<rbrace>
       
  3667         "
       
  3668 apply (unfold bzero_def, intro t_hoare_local)
       
  3669 apply (rule_tac q = "st la \<and>* ps u \<and>* zero u \<and>* p" in tm.sequencing)
       
  3670 apply hsteps
       
  3671 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
       
  3672 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
       
  3673 apply (subst tassemble_to.simps(2), intro tm.code_exI)
       
  3674 apply (subst tassemble_to.simps(4), rule tm.code_condI, simp)
       
  3675 apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
       
  3676 by (rule h)
       
  3677 
       
  3678 definition "skip_or_set = bone (write_one; move_right; move_right)
       
  3679                                (right_until_zero; move_right)"
       
  3680 
       
  3681 lemma reps_len_split: 
       
  3682   assumes "xs \<noteq> []" "ys \<noteq> []"
       
  3683   shows "reps_len (xs @ ys) = reps_len xs + reps_len ys + 1"
       
  3684   using assms
       
  3685 proof(induct xs arbitrary:ys)
       
  3686   case (Cons x1 xs1)
       
  3687   show ?case
       
  3688   proof(cases "xs1 = []")
       
  3689     case True
       
  3690     thus ?thesis
       
  3691       by (simp add:reps_len_cons[OF `ys \<noteq> []`] reps_len_sg)
       
  3692   next
       
  3693     case False
       
  3694     hence " xs1 @ ys \<noteq> []" by simp
       
  3695     thus ?thesis
       
  3696       apply (simp add:reps_len_cons[OF `xs1@ys \<noteq> []`] reps_len_cons[OF `xs1 \<noteq> []`])
       
  3697       by (simp add: Cons.hyps[OF `xs1 \<noteq> []` `ys \<noteq> []`])
       
  3698   qed
       
  3699 qed auto
       
  3700 
       
  3701 lemma hoare_skip_or_set_set:
       
  3702   "\<lbrace> st i \<and>* ps u \<and>* zero u \<and>* zero (u + 1) \<and>* tm (u + 2) x\<rbrace>
       
  3703          i:[skip_or_set]:j
       
  3704    \<lbrace> st j \<and>* ps (u + 2) \<and>* one u \<and>* zero (u + 1) \<and>* tm (u + 2) x\<rbrace>"
       
  3705   apply(unfold skip_or_set_def)
       
  3706   apply(rule_tac q = "st j \<and>* ps (u + 2) \<and>* tm (u + 2) x \<and>* one u \<and>* zero (u + 1)" 
       
  3707     in tm.post_weaken)
       
  3708   apply(rule hoare_bone_1)
       
  3709   apply hsteps
       
  3710   by (auto simp:sep_conj_ac, sep_cancel+, smt)
       
  3711 
       
  3712 lemma hoare_skip_or_set_set_gen[step]:
       
  3713   assumes "u = v" "w = v + 1" "x = v + 2"
       
  3714   shows "\<lbrace>st i \<and>* ps u \<and>* zero v \<and>* zero w \<and>* tm x xv\<rbrace>
       
  3715                    i:[skip_or_set]:j
       
  3716          \<lbrace>st j \<and>* ps x \<and>* one v \<and>* zero w \<and>* tm x xv\<rbrace>"
       
  3717   by (unfold assms, rule hoare_skip_or_set_set)
       
  3718 
       
  3719 lemma hoare_skip_or_set_skip:
       
  3720   "\<lbrace> st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>
       
  3721          i:[skip_or_set]:j
       
  3722    \<lbrace> st j \<and>*  ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>"
       
  3723 proof -
       
  3724    show ?thesis
       
  3725      apply(unfold skip_or_set_def, unfold reps.simps, simp add:sep_conj_cond)
       
  3726      apply(rule tm.pre_condI, simp)
       
  3727      apply(rule_tac p = "st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* 
       
  3728                              zero (u + int k + 1)" 
       
  3729                    in tm.pre_stren)
       
  3730      apply (rule_tac q = "st j \<and>* ps (u + int k + 2) \<and>* 
       
  3731                           one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1)
       
  3732               " in tm.post_weaken)
       
  3733      apply (rule hoare_bone_2)
       
  3734      apply (rule_tac p = " st i \<and>* ps u \<and>* ones u (u + int k) \<and>* zero (u + int k + 1) 
       
  3735        " in tm.pre_stren)
       
  3736      apply hsteps
       
  3737      apply (simp add:sep_conj_ac, sep_cancel+, auto simp:sep_conj_ac ones_simps)
       
  3738      by (sep_cancel+, smt)
       
  3739  qed
       
  3740 
       
  3741 lemma hoare_skip_or_set_skip_gen[step]:
       
  3742   assumes "u = v" "x = w + 1"
       
  3743   shows  "\<lbrace> st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>
       
  3744                   i:[skip_or_set]:j
       
  3745           \<lbrace> st j \<and>*  ps (w + 2) \<and>* reps v w [k] \<and>* zero x\<rbrace>"
       
  3746   by (unfold assms, rule hoare_skip_or_set_skip)
       
  3747 
       
  3748 
       
  3749 definition "if_reps_z e = (move_right;
       
  3750                               bone (move_left; jmp e) (move_left)
       
  3751                              )"
       
  3752 
       
  3753 lemma hoare_if_reps_z_true:
       
  3754   assumes h: "k = 0"
       
  3755   shows 
       
  3756    "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace> 
       
  3757       i:[if_reps_z e]:j 
       
  3758     \<lbrace>st e \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>"
       
  3759   apply (unfold reps.simps, simp add:sep_conj_cond)
       
  3760   apply (rule tm.pre_condI, simp add:h)
       
  3761   apply (unfold if_reps_z_def)
       
  3762   apply (simp add:ones_simps)
       
  3763   apply (hsteps)
       
  3764   apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* zero (u + 1) \<and>* one u" in tm.pre_stren)
       
  3765   apply (rule hoare_bone_1_out)
       
  3766   by (hsteps)
       
  3767 
       
  3768 lemma hoare_if_reps_z_true_gen[step]:
       
  3769   assumes "k = 0" "u = v" "x = w + 1"
       
  3770   shows "\<lbrace>st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace> 
       
  3771                   i:[if_reps_z e]:j 
       
  3772          \<lbrace>st e \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>"
       
  3773   by (unfold assms, rule hoare_if_reps_z_true, simp)
       
  3774 
       
  3775 lemma hoare_if_reps_z_false:
       
  3776   assumes h: "k \<noteq> 0"
       
  3777   shows 
       
  3778    "\<lbrace>st i \<and>* ps u \<and>* reps u v [k]\<rbrace> 
       
  3779       i:[if_reps_z e]:j 
       
  3780     \<lbrace>st j \<and>* ps u \<and>* reps u v [k]\<rbrace>"
       
  3781 proof -
       
  3782   from h obtain k' where "k = Suc k'" by (metis not0_implies_Suc)
       
  3783   show ?thesis
       
  3784     apply (unfold `k = Suc k'`)
       
  3785     apply (simp add:sep_conj_cond, rule tm.pre_condI, simp)
       
  3786     apply (unfold if_reps_z_def)
       
  3787     apply (simp add:ones_simps)
       
  3788     apply hsteps
       
  3789     apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* one (u + 1) \<and>* one u \<and>* 
       
  3790                           ones (2 + u) (u + (1 + int k'))" in tm.pre_stren)
       
  3791     apply (rule_tac hoare_bone_2)
       
  3792     by (hsteps)
       
  3793 qed
       
  3794 
       
  3795 lemma hoare_if_reps_z_false_gen[step]:
       
  3796   assumes h: "k \<noteq> 0" "u = v"
       
  3797   shows 
       
  3798    "\<lbrace>st i \<and>* ps u \<and>* reps v w [k]\<rbrace> 
       
  3799       i:[if_reps_z e]:j 
       
  3800     \<lbrace>st j \<and>* ps u \<and>* reps v w [k]\<rbrace>"
       
  3801   by (unfold assms, rule hoare_if_reps_z_false[OF `k \<noteq> 0`])
       
  3802 
       
  3803 definition "if_reps_nz e = (move_right;
       
  3804                               bzero (move_left; jmp e) (move_left)
       
  3805                            )"
       
  3806 
       
  3807 lemma EXS_postI: 
       
  3808   assumes "\<lbrace>P\<rbrace> 
       
  3809             c
       
  3810            \<lbrace>Q x\<rbrace>"
       
  3811   shows "\<lbrace>P\<rbrace> 
       
  3812           c
       
  3813         \<lbrace>EXS x. Q x\<rbrace>"
       
  3814 by (metis EXS_intro assms tm.hoare_adjust)
       
  3815 
       
  3816 lemma hoare_if_reps_nz_true:
       
  3817   assumes h: "k \<noteq> 0"
       
  3818   shows 
       
  3819    "\<lbrace>st i \<and>* ps u \<and>* reps u v [k]\<rbrace> 
       
  3820       i:[if_reps_nz e]:j 
       
  3821     \<lbrace>st e \<and>* ps u \<and>* reps u v [k]\<rbrace>"
       
  3822 proof -
       
  3823   from h obtain k' where "k = Suc k'" by (metis not0_implies_Suc)
       
  3824   show ?thesis
       
  3825     apply (unfold `k = Suc k'`)
       
  3826     apply (unfold reps.simps, simp add:sep_conj_cond, rule tm.pre_condI, simp)
       
  3827     apply (unfold if_reps_nz_def)
       
  3828     apply (simp add:ones_simps)
       
  3829     apply hsteps
       
  3830     apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* one (u + 1) \<and>* one u \<and>*
       
  3831                             ones (2 + u) (u + (1 + int k'))" in tm.pre_stren)
       
  3832     apply (rule hoare_bzero_1_out)
       
  3833     by hsteps
       
  3834 qed
       
  3835 
       
  3836 
       
  3837 lemma hoare_if_reps_nz_true_gen[step]:
       
  3838   assumes h: "k \<noteq> 0" "u = v"
       
  3839   shows 
       
  3840    "\<lbrace>st i \<and>* ps u \<and>* reps v w [k]\<rbrace> 
       
  3841       i:[if_reps_nz e]:j 
       
  3842     \<lbrace>st e \<and>* ps u \<and>* reps v w [k]\<rbrace>"
       
  3843   by (unfold assms, rule hoare_if_reps_nz_true[OF `k\<noteq> 0`])
       
  3844 
       
  3845 lemma hoare_if_reps_nz_false:
       
  3846   assumes h: "k = 0"
       
  3847   shows 
       
  3848    "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace> 
       
  3849       i:[if_reps_nz e]:j 
       
  3850     \<lbrace>st j \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>"
       
  3851   apply (simp add:h sep_conj_cond)
       
  3852   apply (rule tm.pre_condI, simp)
       
  3853   apply (unfold if_reps_nz_def)
       
  3854   apply (simp add:ones_simps)
       
  3855   apply (hsteps)
       
  3856   apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>*  zero (u + 1) \<and>* one u" in tm.pre_stren)
       
  3857   apply (rule hoare_bzero_2)
       
  3858   by (hsteps)
       
  3859 
       
  3860 lemma hoare_if_reps_nz_false_gen[step]:
       
  3861   assumes h: "k = 0" "u = v" "x = w + 1"
       
  3862   shows 
       
  3863    "\<lbrace>st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace> 
       
  3864       i:[if_reps_nz e]:j 
       
  3865     \<lbrace>st j \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>"
       
  3866   by (unfold assms, rule hoare_if_reps_nz_false, simp)
       
  3867 
       
  3868 definition "skip_or_sets n = tpg_fold (replicate n skip_or_set)"
       
  3869 
       
  3870 
       
  3871 
       
  3872 lemma hoare_skip_or_sets_set:
       
  3873   shows "\<lbrace>st i \<and>* ps u \<and>* zeros u (u + int (reps_len (replicate (Suc n) 0))) \<and>* 
       
  3874                                   tm (u + int (reps_len (replicate (Suc n) 0)) + 1) x\<rbrace> 
       
  3875             i:[skip_or_sets (Suc n)]:j 
       
  3876          \<lbrace>st j \<and>* ps (u + int (reps_len (replicate (Suc n) 0)) + 1) \<and>* 
       
  3877                      reps' u  (u + int (reps_len (replicate (Suc n) 0))) (replicate (Suc n) 0) \<and>*
       
  3878                                  tm (u + int (reps_len (replicate (Suc n) 0)) + 1) x \<rbrace>"
       
  3879 proof(induct n arbitrary:i j u x)
       
  3880   case 0
       
  3881   from 0 show ?case
       
  3882     apply (simp add:reps'_def reps_len_def reps_ctnt_len_def reps_sep_len_def reps.simps)
       
  3883     apply (unfold skip_or_sets_def, simp add:tpg_fold_sg)
       
  3884     apply hsteps
       
  3885     by (auto simp:sep_conj_ac, smt cond_true_eq2 ones.simps sep_conj_left_commute)
       
  3886 next
       
  3887     case (Suc n)
       
  3888     { fix n
       
  3889       have "listsum (replicate n (Suc 0)) = n"
       
  3890         by (induct n, auto)
       
  3891     } note eq_sum = this
       
  3892     have eq_len: "\<And>n. n \<noteq> 0 \<Longrightarrow> reps_len (replicate (Suc n) 0) = reps_len (replicate n 0) + 2"
       
  3893       by (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def)
       
  3894     have eq_zero: "\<And> u v. (zeros u (u + int (v + 2))) = 
       
  3895            (zeros u (u + (int v)) \<and>* zero (u + (int v) + 1) \<and>* zero (u + (int v) + 2))"
       
  3896       by (smt sep.mult_assoc zeros_rev)
       
  3897     hence eq_z: 
       
  3898       "zeros u (u + int (reps_len (replicate (Suc (Suc n)) 0)))  = 
       
  3899        (zeros u (u + int (reps_len (replicate (Suc n) 0))) \<and>*
       
  3900        zero ((u + int (reps_len (replicate (Suc n) 0))) + 1) \<and>* 
       
  3901        zero ((u + int (reps_len (replicate (Suc n) 0))) + 2))
       
  3902       " by (simp only:eq_len)
       
  3903     have hh: "\<And>x. (replicate (Suc (Suc n)) x) = (replicate (Suc n) x) @ [x]"
       
  3904       by (metis replicate_Suc replicate_append_same)
       
  3905     have hhh: "replicate (Suc n) skip_or_set \<noteq> []" "[skip_or_set] \<noteq> []" by auto
       
  3906     have eq_code: 
       
  3907           "(i :[ skip_or_sets (Suc (Suc n)) ]: j) = 
       
  3908            (i :[ (skip_or_sets (Suc n); skip_or_set) ]: j)"
       
  3909     proof(unfold skip_or_sets_def)
       
  3910       show "i :[ tpg_fold (replicate (Suc (Suc n)) skip_or_set) ]: j =
       
  3911                i :[ (tpg_fold (replicate (Suc n) skip_or_set) ; skip_or_set) ]: j"
       
  3912         apply (insert tpg_fold_app[OF hhh, of i j], unfold hh)
       
  3913         by (simp only:tpg_fold_sg)
       
  3914     qed
       
  3915     have "Suc n \<noteq> 0" by simp
       
  3916     show ?case 
       
  3917       apply (unfold eq_z eq_code)
       
  3918       apply (hstep Suc(1))
       
  3919       apply (unfold eq_len[OF `Suc n \<noteq> 0`])
       
  3920       apply hstep
       
  3921       apply (auto simp:sep_conj_ac)[1]
       
  3922       apply (sep_cancel+, prune) 
       
  3923       apply (fwd abs_ones)
       
  3924       apply ((fwd abs_reps')+, simp add:int_add_ac)
       
  3925       by (metis replicate_append_same)
       
  3926   qed
       
  3927 
       
  3928 lemma hoare_skip_or_sets_set_gen[step]:
       
  3929   assumes h: "p2 = p1" 
       
  3930              "p3 = p1 + int (reps_len (replicate (Suc n) 0))"
       
  3931              "p4 = p3 + 1"
       
  3932   shows "\<lbrace>st i \<and>* ps p1 \<and>* zeros p2 p3 \<and>* tm p4 x\<rbrace> 
       
  3933             i:[skip_or_sets (Suc n)]:j 
       
  3934          \<lbrace>st j \<and>* ps p4 \<and>* reps' p2  p3 (replicate (Suc n) 0) \<and>* tm p4 x\<rbrace>"
       
  3935   apply (unfold h)
       
  3936   by (rule hoare_skip_or_sets_set)
       
  3937 
       
  3938 declare reps.simps[simp del]
       
  3939 
       
  3940 lemma hoare_skip_or_sets_skip:
       
  3941   assumes h: "n < length ks"
       
  3942   shows "\<lbrace>st i \<and>* ps u \<and>* reps' u v (take n ks) \<and>* reps' (v + 1) w [ks!n] \<rbrace> 
       
  3943             i:[skip_or_sets (Suc n)]:j 
       
  3944          \<lbrace>st j \<and>* ps (w+1) \<and>* reps' u v (take n ks) \<and>* reps' (v + 1) w [ks!n]\<rbrace>"
       
  3945   using h
       
  3946 proof(induct n arbitrary: i j u v w ks)
       
  3947   case 0
       
  3948   show ?case 
       
  3949     apply (subst (1 5) reps'_def, simp add:sep_conj_cond, intro tm.pre_condI, simp)
       
  3950     apply (unfold skip_or_sets_def, simp add:tpg_fold_sg)
       
  3951     apply (unfold reps'_def, simp del:reps.simps)
       
  3952     apply hsteps
       
  3953     by (sep_cancel+, smt+)
       
  3954 next
       
  3955   case (Suc n)
       
  3956   from `Suc n < length ks` have "n < length ks" by auto
       
  3957   note h =  Suc(1) [OF this]
       
  3958   show ?case 
       
  3959     my_block
       
  3960       from `Suc n < length ks` 
       
  3961       have eq_take: "take (Suc n) ks = take n ks @ [ks!n]"
       
  3962         by (metis not_less_eq not_less_iff_gr_or_eq take_Suc_conv_app_nth)
       
  3963     my_block_end
       
  3964     apply (unfold this)
       
  3965     apply (subst reps'_append, simp add:sep_conj_exists, rule tm.precond_exI)
       
  3966     my_block
       
  3967       have "(i :[ skip_or_sets (Suc (Suc n)) ]: j) = 
       
  3968                  (i :[ (skip_or_sets (Suc n); skip_or_set )]: j)"
       
  3969       proof -
       
  3970         have eq_rep: 
       
  3971           "(replicate (Suc (Suc n)) skip_or_set) = ((replicate (Suc n) skip_or_set) @ [skip_or_set])"
       
  3972           by (metis replicate_Suc replicate_append_same)
       
  3973         have "replicate (Suc n) skip_or_set \<noteq> []" "[skip_or_set] \<noteq> []" by auto
       
  3974         from tpg_fold_app[OF this]
       
  3975         show ?thesis
       
  3976           by (unfold skip_or_sets_def eq_rep, simp del:replicate.simps add:tpg_fold_sg)
       
  3977       qed
       
  3978     my_block_end
       
  3979     apply (unfold this)
       
  3980     my_block
       
  3981        fix i j m 
       
  3982        have "\<lbrace>st i \<and>* ps u \<and>* (reps' u (m - 1) (take n ks) \<and>* reps' m v [ks ! n])\<rbrace> 
       
  3983                             i :[ (skip_or_sets (Suc n)) ]: j
       
  3984              \<lbrace>st j \<and>* ps (v + 1) \<and>* (reps' u (m - 1) (take n ks) \<and>* reps' m v [ks ! n])\<rbrace>"
       
  3985                   apply (rule h[THEN tm.hoare_adjust])
       
  3986                   by (sep_cancel+, auto)
       
  3987     my_block_end my_note h_c1 = this
       
  3988     my_block
       
  3989       fix j' j m 
       
  3990       have "\<lbrace>st j' \<and>* ps (v + 1) \<and>* reps' (v + 1) w [ks ! Suc n]\<rbrace> 
       
  3991                           j' :[ skip_or_set ]: j
       
  3992             \<lbrace>st j \<and>* ps (w + 1) \<and>* reps' (v + 1) w [ks ! Suc n]\<rbrace>"
       
  3993         apply (unfold reps'_def, simp)
       
  3994         apply (rule hoare_skip_or_set_skip[THEN tm.hoare_adjust])
       
  3995         by (sep_cancel+, smt)+
       
  3996     my_block_end
       
  3997     apply (hstep h_c1 this)+ 
       
  3998     by ((fwd abs_reps'), simp, sep_cancel+)
       
  3999 qed
       
  4000 
       
  4001 lemma hoare_skip_or_sets_skip_gen[step]:
       
  4002   assumes h: "n < length ks" "u = v" "x = w + 1"
       
  4003   shows "\<lbrace>st i \<and>* ps u \<and>* reps' v w (take n ks) \<and>* reps' x y [ks!n] \<rbrace> 
       
  4004             i:[skip_or_sets (Suc n)]:j 
       
  4005          \<lbrace>st j \<and>* ps (y+1) \<and>* reps' v w (take n ks) \<and>* reps' x y [ks!n]\<rbrace>"
       
  4006   by (unfold assms, rule hoare_skip_or_sets_skip[OF `n < length ks`])
       
  4007 
       
  4008 lemma fam_conj_interv_simp:
       
  4009     "(fam_conj {(ia::int)<..} p) = ((p (ia + 1)) \<and>* fam_conj {ia + 1 <..} p)"
       
  4010 by (smt Collect_cong fam_conj_insert_simp greaterThan_def 
       
  4011         greaterThan_eq_iff greaterThan_iff insertI1 
       
  4012         insert_compr lessThan_iff mem_Collect_eq)
       
  4013 
       
  4014 lemma zeros_fam_conj:
       
  4015   assumes "u \<le> v"
       
  4016   shows "(zeros u v \<and>* fam_conj {v<..} zero) = fam_conj {u - 1<..} zero"
       
  4017 proof -
       
  4018   have "{u - 1<..v} ## {v <..}" by (auto simp:set_ins_def)
       
  4019   from fam_conj_disj_simp[OF this, symmetric]
       
  4020   have "(fam_conj {u - 1<..v} zero \<and>* fam_conj {v<..} zero) = fam_conj ({u - 1<..v} + {v<..}) zero" .
       
  4021   moreover 
       
  4022   from `u \<le> v` have eq_set: "{u - 1 <..} = {u - 1 <..v} + {v <..}" by (auto simp:set_ins_def)
       
  4023   moreover have "fam_conj {u - 1<..v} zero = zeros u v"
       
  4024   proof -
       
  4025     have "({u - 1<..v}) = ({u .. v})" by auto
       
  4026     moreover {
       
  4027       fix u v 
       
  4028       assume "u  \<le> (v::int)"
       
  4029       hence "fam_conj {u .. v} zero = zeros u v"
       
  4030       proof(induct rule:ones_induct)
       
  4031         case (Base i j)
       
  4032         thus ?case by auto
       
  4033       next
       
  4034         case (Step i j)
       
  4035         thus ?case
       
  4036         proof(cases "i = j") 
       
  4037           case True
       
  4038           show ?thesis
       
  4039             by (unfold True, simp add:fam_conj_simps)
       
  4040         next
       
  4041           case False 
       
  4042           with `i \<le> j` have hh: "i + 1 \<le> j" by auto
       
  4043           hence eq_set: "{i..j} = (insert i {i + 1 .. j})"
       
  4044             by (smt simp_from_to)
       
  4045           have "i \<notin> {i + 1 .. j}" by simp
       
  4046           from fam_conj_insert_simp[OF this, folded eq_set]
       
  4047           have "fam_conj {i..j} zero = (zero i \<and>* fam_conj {i + 1..j} zero)" .
       
  4048           with Step(2)[OF hh] Step
       
  4049           show ?thesis by simp
       
  4050         qed
       
  4051       qed
       
  4052     } 
       
  4053     moreover note this[OF `u  \<le> v`]
       
  4054     ultimately show ?thesis by simp
       
  4055   qed
       
  4056   ultimately show ?thesis by smt
       
  4057 qed
       
  4058 
       
  4059 declare replicate.simps [simp del]
       
  4060 
       
  4061 lemma hoare_skip_or_sets_comb:
       
  4062   assumes "length ks \<le> n"
       
  4063   shows "\<lbrace>st i \<and>* ps u \<and>* reps u v ks \<and>* fam_conj {v<..} zero\<rbrace> 
       
  4064                 i:[skip_or_sets (Suc n)]:j 
       
  4065          \<lbrace>st j \<and>* ps ((v + int (reps_len (list_ext n ks)) - int (reps_len ks))+ 2) \<and>* 
       
  4066           reps' u (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) (list_ext n ks) \<and>*
       
  4067           fam_conj {(v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1)<..} zero \<rbrace>"
       
  4068 proof(cases "ks = []")
       
  4069   case True
       
  4070   show ?thesis
       
  4071     apply (subst True, simp only:reps.simps sep_conj_cond)
       
  4072     apply (rule tm.pre_condI, simp)
       
  4073     apply (rule_tac p = "st i \<and>* ps (v + 1) \<and>*
       
  4074             zeros (v + 1) (v + 1 + int (reps_len (replicate (Suc n) 0))) \<and>*
       
  4075             tm (v + 2 + int (reps_len (replicate (Suc n) 0))) Bk \<and>* 
       
  4076             fam_conj {(v + 2 + int (reps_len (replicate (Suc n) 0)))<..} zero
       
  4077       " in tm.pre_stren)
       
  4078     apply hsteps
       
  4079     apply (auto simp:sep_conj_ac)[1]
       
  4080     apply (auto simp:sep_conj_ac)[2]
       
  4081     my_block
       
  4082       from True have "(list_ext n ks) = (replicate (Suc n) 0)"
       
  4083         by (metis append_Nil diff_zero list.size(3) list_ext_def)
       
  4084     my_block_end my_note le_red = this
       
  4085     my_block
       
  4086       from True have "(reps_len ks) = 0"
       
  4087         by (metis reps_len_nil)
       
  4088     my_block_end
       
  4089     apply (unfold this le_red, simp)
       
  4090     my_block
       
  4091       have "v + 2 + int (reps_len (replicate (Suc n) 0)) = 
       
  4092             v + int (reps_len (replicate (Suc n) 0)) + 2" by smt
       
  4093     my_block_end my_note eq_len = this
       
  4094     apply (unfold this)
       
  4095     apply (sep_cancel+)
       
  4096     apply (fold zero_def)
       
  4097     apply (subst fam_conj_interv_simp, simp)
       
  4098     apply (simp only:int_add_ac)
       
  4099     apply (simp only:sep_conj_ac, sep_cancel+)
       
  4100     my_block
       
  4101       have "v + 1 \<le> (2 + (v + int (reps_len (replicate (Suc n) 0))))" by simp
       
  4102       from zeros_fam_conj[OF this]
       
  4103       have "(fam_conj {v<..} zero) = (zeros (v + 1) (2 + (v + int (reps_len (replicate (Suc n) 0)))) \<and>*
       
  4104                                         fam_conj {2 + (v + int (reps_len (replicate (Suc n) 0)))<..} zero)"
       
  4105         by simp
       
  4106     my_block_end
       
  4107     apply (subst (asm) this, simp only:int_add_ac, sep_cancel+)
       
  4108     by (smt cond_true_eq2 sep.mult_assoc sep.mult_commute 
       
  4109             sep.mult_left_commute sep_conj_assoc sep_conj_commute 
       
  4110          sep_conj_left_commute zeros.simps zeros_rev)
       
  4111 next 
       
  4112   case False
       
  4113   show ?thesis
       
  4114     my_block
       
  4115       have "(i:[skip_or_sets (Suc n)]:j) = 
       
  4116               (i:[(skip_or_sets (length ks);  skip_or_sets (Suc n - length ks))]:j)"
       
  4117         apply (unfold skip_or_sets_def)
       
  4118         my_block
       
  4119           have "(replicate (Suc n) skip_or_set) = 
       
  4120                    (replicate (length ks) skip_or_set @ (replicate (Suc n - length ks) skip_or_set))"
       
  4121             by (smt assms replicate_add)
       
  4122         my_block_end
       
  4123         apply (unfold this, rule tpg_fold_app, simp add:False)
       
  4124         by (insert `length ks \<le> n`, simp)
       
  4125     my_block_end
       
  4126     apply (unfold this)
       
  4127     my_block
       
  4128       from False have "length ks = (Suc (length ks - 1))" by simp
       
  4129     my_block_end
       
  4130     apply (subst (1) this)
       
  4131     my_block
       
  4132       from False
       
  4133       have "(reps u v ks \<and>* fam_conj {v<..} zero) =
       
  4134             (reps' u (v + 1) ks \<and>* fam_conj {v+1<..} zero)"
       
  4135         apply (unfold reps'_def, simp)
       
  4136         by (subst fam_conj_interv_simp, simp add:sep_conj_ac)
       
  4137     my_block_end
       
  4138     apply (unfold this) 
       
  4139     my_block
       
  4140       fix i j
       
  4141       have "\<lbrace>st i \<and>* ps u \<and>* reps' u (v + 1) ks \<rbrace> 
       
  4142                 i :[ skip_or_sets (Suc (length ks - 1))]: j
       
  4143             \<lbrace>st j \<and>* ps (v + 2) \<and>* reps' u (v + 1) ks \<rbrace>"
       
  4144         my_block
       
  4145           have "ks = take (length ks - 1) ks @ [ks!(length ks - 1)]"
       
  4146             by (smt False drop_0 drop_eq_Nil id_take_nth_drop)  
       
  4147         my_block_end my_note eq_ks = this
       
  4148         apply (subst (1) this)
       
  4149         apply (unfold reps'_append, simp add:sep_conj_exists, rule tm.precond_exI)
       
  4150         my_block
       
  4151           from False have "(length ks - Suc 0) < length ks"
       
  4152             by (smt `length ks = Suc (length ks - 1)`)
       
  4153         my_block_end
       
  4154         apply hsteps
       
  4155         apply (subst eq_ks, unfold reps'_append, simp only:sep_conj_exists)
       
  4156         by (rule_tac x = m in EXS_intro, simp add:sep_conj_ac, sep_cancel+, smt)
       
  4157     my_block_end
       
  4158     apply (hstep this)
       
  4159     my_block
       
  4160       fix u n
       
  4161       have "(fam_conj {u <..} zero) = 
       
  4162          (zeros (u + 1) (u + int n + 1) \<and>* tm (u + int n + 2) Bk \<and>* fam_conj {(u + int n + 2)<..} zero)"
       
  4163         my_block
       
  4164           have "u + 1 \<le> (u + int n + 2)" by auto
       
  4165           from zeros_fam_conj[OF this, symmetric]
       
  4166           have "fam_conj {u<..} zero = (zeros (u + 1) (u + int n + 2) \<and>* fam_conj {u + int n + 2<..} zero)"
       
  4167             by simp
       
  4168         my_block_end
       
  4169         apply (subst this)
       
  4170         my_block
       
  4171           have "(zeros (u + 1) (u + int n + 2)) = 
       
  4172                    ((zeros (u + 1) (u + int n + 1) \<and>* tm (u + int n + 2) Bk))"
       
  4173             by (smt zero_def zeros_rev)
       
  4174         my_block_end
       
  4175         by (unfold this, auto simp:sep_conj_ac)
       
  4176     my_block_end
       
  4177     apply (subst (1) this[of _ "(reps_len (replicate (Suc (n - length ks)) 0))"])
       
  4178     my_block
       
  4179       from `length ks \<le> n`
       
  4180       have "Suc n - length ks = Suc (n - length ks)" by auto 
       
  4181     my_block_end my_note eq_suc = this
       
  4182     apply (subst this)
       
  4183     apply hsteps
       
  4184     apply (simp add: sep_conj_ac this, sep_cancel+)
       
  4185     apply (fwd abs_reps')+
       
  4186     my_block
       
  4187       have "(int (reps_len (replicate (Suc (n - length ks)) 0))) =
       
  4188             (int (reps_len (list_ext n ks)) - int (reps_len ks) - 1)"
       
  4189         apply (unfold list_ext_def eq_suc)
       
  4190         my_block
       
  4191           have "replicate (Suc (n - length ks)) 0 \<noteq> []" by simp
       
  4192         my_block_end
       
  4193         by (unfold reps_len_split[OF False this], simp)
       
  4194     my_block_end
       
  4195     apply (unfold this)
       
  4196     my_block
       
  4197       from `length ks \<le> n`
       
  4198       have "(ks @ replicate (Suc (n - length ks)) 0) =  (list_ext n ks)"
       
  4199         by (unfold list_ext_def, simp)
       
  4200     my_block_end
       
  4201     apply (unfold this, simp)
       
  4202     apply (subst fam_conj_interv_simp, unfold zero_def, simp, simp add:int_add_ac sep_conj_ac)
       
  4203     by (sep_cancel+, smt)
       
  4204 qed
       
  4205 
       
  4206 lemma hoare_skip_or_sets_comb_gen:
       
  4207   assumes "length ks \<le> n" "u = v" "w = x"
       
  4208   shows "\<lbrace>st i \<and>* ps u \<and>* reps v w ks \<and>* fam_conj {x<..} zero\<rbrace> 
       
  4209                 i:[skip_or_sets (Suc n)]:j 
       
  4210          \<lbrace>st j \<and>* ps ((x + int (reps_len (list_ext n ks)) - int (reps_len ks))+ 2) \<and>* 
       
  4211           reps' u (x + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) (list_ext n ks) \<and>*
       
  4212           fam_conj {(x + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1)<..} zero \<rbrace>"
       
  4213   by (unfold assms, rule hoare_skip_or_sets_comb[OF `length ks \<le> n`])
       
  4214 
       
  4215 definition "locate n = (skip_or_sets (Suc n);
       
  4216                         move_left;
       
  4217                         move_left;
       
  4218                         left_until_zero;
       
  4219                         move_right
       
  4220                        )"
       
  4221 
       
  4222 lemma list_ext_tail_expand:
       
  4223   assumes h: "length ks \<le> a"
       
  4224   shows "list_ext a ks = take a (list_ext a ks) @ [(list_ext a ks)!a]"
       
  4225 proof -
       
  4226   let ?l = "list_ext a ks"
       
  4227   from h have eq_len: "length ?l = Suc a"
       
  4228     by (smt list_ext_len_eq)
       
  4229   hence "?l \<noteq> []" by auto
       
  4230   hence "?l = take (length ?l - 1) ?l @ [?l!(length ?l - 1)]"
       
  4231     by (metis `length (list_ext a ks) = Suc a` diff_Suc_1 le_refl 
       
  4232                     lessI take_Suc_conv_app_nth take_all)
       
  4233   from this[unfolded eq_len]
       
  4234   show ?thesis by simp
       
  4235 qed
       
  4236 
       
  4237 lemma reps'_nn_expand:
       
  4238   assumes "xs \<noteq> []"
       
  4239   shows "(reps' u v xs) = (reps u (v - 1) xs \<and>* zero v)"
       
  4240   by (metis assms reps'_def)
       
  4241 
       
  4242 lemma sep_conj_st1: "(p \<and>* st t \<and>* q) = (st t \<and>* p \<and>* q)"
       
  4243   by (simp only:sep_conj_ac)
       
  4244 
       
  4245 lemma sep_conj_st2: "(p \<and>* st t) = (st t \<and>* p)"
       
  4246   by (simp only:sep_conj_ac)
       
  4247 
       
  4248 lemma sep_conj_st3: "((st t \<and>* p) \<and>* r) = (st t \<and>* p \<and>* r)"
       
  4249   by (simp only:sep_conj_ac)
       
  4250 
       
  4251 lemma sep_conj_st4: "(EXS x. (st t \<and>* r x)) = ((st t) \<and>* (EXS x. r x))"
       
  4252   apply (unfold pred_ex_def, default+)
       
  4253   apply (safe)
       
  4254   apply (sep_cancel, auto)
       
  4255   by (auto elim!: sep_conjE intro!:sep_conjI)
       
  4256 
       
  4257 lemmas sep_conj_st = sep_conj_st1 sep_conj_st2 sep_conj_st3 sep_conj_st4
       
  4258 
       
  4259 lemma sep_conj_cond3 : "(<cond1> \<and>* <cond2>) = <(cond1 \<and> cond2)>"
       
  4260   by (smt cond_eqI cond_true_eq sep_conj_commute sep_conj_empty)
       
  4261 
       
  4262 lemma sep_conj_cond4 : "(<cond1> \<and>* <cond2> \<and>* r) = (<(cond1 \<and> cond2)> \<and>* r)"
       
  4263   by (metis Hoare_tm3.sep_conj_cond3 sep_conj_assoc)
       
  4264 
       
  4265 lemmas sep_conj_cond = sep_conj_cond3 sep_conj_cond4 sep_conj_cond 
       
  4266 
       
  4267 lemma hoare_left_until_zero_reps: 
       
  4268   "\<lbrace>st i ** ps v ** zero u ** reps (u + 1) v [k]\<rbrace> 
       
  4269         i:[left_until_zero]:j
       
  4270    \<lbrace>st j ** ps u ** zero u ** reps (u + 1) v [k]\<rbrace>"
       
  4271   apply (unfold reps.simps, simp only:sep_conj_cond)
       
  4272   apply (rule tm.pre_condI, simp)
       
  4273   by hstep
       
  4274 
       
  4275 lemma hoare_left_until_zero_reps_gen[step]: 
       
  4276   assumes "u = x" "w = v + 1"
       
  4277   shows "\<lbrace>st i ** ps u ** zero v ** reps w x [k]\<rbrace> 
       
  4278                 i:[left_until_zero]:j
       
  4279          \<lbrace>st j ** ps v ** zero v ** reps w x [k]\<rbrace>"
       
  4280   by (unfold assms, rule hoare_left_until_zero_reps)
       
  4281 
       
  4282 lemma reps_lenE:
       
  4283   assumes "reps u v ks s"
       
  4284   shows "( <(v = u + int (reps_len ks) - 1)> \<and>* reps u v ks ) s"
       
  4285 proof(rule condI)
       
  4286   from reps_len_correct[OF assms] show "v = u + int (reps_len ks) - 1" .
       
  4287 next
       
  4288   from assms show "reps u v ks s" .
       
  4289 qed
       
  4290 
       
  4291 lemma condI1: 
       
  4292   assumes "p s" "b"
       
  4293   shows "(<b> \<and>* p) s"
       
  4294 proof(rule condI[OF assms(2)])
       
  4295   from  assms(1) show "p s" .
       
  4296 qed
       
  4297 
       
  4298 lemma hoare_locate_set:
       
  4299   assumes "length ks \<le> n"
       
  4300   shows "\<lbrace>st i \<and>* zero (u - 1) \<and>* ps u \<and>* reps u v ks \<and>* fam_conj {v<..} zero\<rbrace> 
       
  4301                 i:[locate n]:j 
       
  4302          \<lbrace>st j \<and>* zero (u - 1) \<and>* 
       
  4303              (EXS m w. ps m \<and>* reps' u (m - 1) (take n (list_ext n ks)) \<and>* 
       
  4304                          reps m w [(list_ext n ks)!n] \<and>* fam_conj {w<..} zero)\<rbrace>"
       
  4305 proof(cases "take n (list_ext n ks) = []")
       
  4306   case False
       
  4307   show ?thesis
       
  4308     apply (unfold locate_def)
       
  4309     apply (hstep hoare_skip_or_sets_comb_gen)
       
  4310     apply (subst (3) list_ext_tail_expand[OF `length ks \<le> n`])
       
  4311     apply (subst (1) reps'_append, simp add:sep_conj_exists)
       
  4312     apply (rule tm.precond_exI)
       
  4313     apply (subst (1) reps'_nn_expand[OF False]) 
       
  4314     apply (rule_tac p = "st j' \<and>* <(m = u + int (reps_len (take n (list_ext n ks))) + 1)> \<and>*
       
  4315             ps (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2) \<and>*
       
  4316             ((reps u (m - 1 - 1) (take n (list_ext n ks)) \<and>* zero (m - 1)) \<and>*
       
  4317              reps' m (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1)
       
  4318               [list_ext n ks ! n]) \<and>*
       
  4319             fam_conj
       
  4320              {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1<..}
       
  4321              zero \<and>*
       
  4322             zero (u - 1)" 
       
  4323       in tm.pre_stren)
       
  4324     my_block
       
  4325       have "[list_ext n ks ! n] \<noteq> []" by simp
       
  4326       from reps'_nn_expand[OF this]
       
  4327       have "(reps' m (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) [list_ext n ks ! n]) =
       
  4328                 (reps m (v + (int (reps_len (list_ext n ks)) - int (reps_len ks))) [list_ext n ks ! n] \<and>*
       
  4329                    zero (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1))" 
       
  4330         by simp
       
  4331     my_block_end 
       
  4332     apply (subst this)
       
  4333     my_block
       
  4334       have "(fam_conj {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1<..} zero) =
       
  4335              (zero (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2) \<and>* 
       
  4336               fam_conj {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2<..} zero)"
       
  4337         by (subst fam_conj_interv_simp, smt)
       
  4338     my_block_end
       
  4339     apply (unfold this) 
       
  4340     apply (simp only:sep_conj_st)
       
  4341     apply hsteps
       
  4342     apply (auto simp:sep_conj_ac)[1]
       
  4343     apply (sep_cancel+)
       
  4344     apply (rule_tac x = m in EXS_intro)
       
  4345     apply (rule_tac x = "m + int (list_ext n ks ! n)" in EXS_intro)
       
  4346     apply (simp add:sep_conj_ac del:ones_simps, sep_cancel+)
       
  4347     apply (subst (asm) sep_conj_cond)+
       
  4348     apply (erule_tac condE, clarsimp, simp add:sep_conj_ac int_add_ac)
       
  4349     apply (fwd abs_reps')
       
  4350     apply (fwd abs_reps')
       
  4351     apply (simp add:sep_conj_ac int_add_ac)
       
  4352     apply (sep_cancel+)
       
  4353     apply (subst (asm) reps'_def, subst fam_conj_interv_simp, subst fam_conj_interv_simp, 
       
  4354            simp add:sep_conj_ac int_add_ac)
       
  4355     my_block
       
  4356       fix s
       
  4357       assume h: "(reps (1 + (u + int (reps_len (take n (list_ext n ks)))))
       
  4358              (v + (- int (reps_len ks) + int (reps_len (list_ext n ks)))) [list_ext n ks ! n]) s"
       
  4359       (is "?P s")
       
  4360       from reps_len_correct[OF this] list_ext_tail_expand[OF `length ks \<le> n`]
       
  4361       have hh: "v + (- int (reps_len ks) + 
       
  4362                     int (reps_len (take n (list_ext n ks) @ [list_ext n ks ! n]))) =
       
  4363                   1 + (u + int (reps_len (take n (list_ext n ks)))) + 
       
  4364                        int (reps_len [list_ext n ks ! n]) - 1"
       
  4365         by metis
       
  4366       have "[list_ext n ks ! n] \<noteq> []" by simp
       
  4367       from hh[unfolded reps_len_split[OF False this]]
       
  4368       have "v  =  u + (int (reps_len ks)) - 1"
       
  4369         by simp
       
  4370       from condI1[where p = ?P, OF h this]
       
  4371       have "(<(v = u + int (reps_len ks) - 1)> \<and>*
       
  4372              reps (1 + (u + int (reps_len (take n (list_ext n ks)))))
       
  4373              (v + (- int (reps_len ks) + int (reps_len (list_ext n ks)))) [list_ext n ks ! n]) s" .
       
  4374     my_block_end
       
  4375     apply (fwd this, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac int_add_ac
       
  4376               reps_len_sg)
       
  4377     apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac int_add_ac
       
  4378             reps_len_sg)
       
  4379     by (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac)
       
  4380 next
       
  4381   case True
       
  4382   show ?thesis
       
  4383     apply (unfold locate_def)
       
  4384     apply (hstep hoare_skip_or_sets_comb)
       
  4385     apply (subst (3) list_ext_tail_expand[OF `length ks \<le> n`])
       
  4386     apply (subst (1) reps'_append, simp add:sep_conj_exists)
       
  4387     apply (rule tm.precond_exI)
       
  4388     my_block
       
  4389       from True `length ks \<le> n`
       
  4390       have "ks = []" "n = 0"
       
  4391         apply (metis le0 le_antisym length_0_conv less_nat_zero_code list_ext_len take_eq_Nil)
       
  4392         by (smt True length_take list.size(3) list_ext_len)
       
  4393     my_block_end
       
  4394     apply (unfold True this)
       
  4395     apply (simp add:reps'_def list_ext_def reps.simps reps_len_def reps_sep_len_def 
       
  4396                  reps_ctnt_len_def
       
  4397       del:ones_simps)
       
  4398     apply (subst sep_conj_cond)+
       
  4399     apply (rule tm.pre_condI, simp del:ones_simps)
       
  4400     apply (subst fam_conj_interv_simp, simp add:sep_conj_st del:ones_simps)
       
  4401     apply (hsteps)
       
  4402     apply (auto simp:sep_conj_ac)[1]
       
  4403     apply (sep_cancel+)
       
  4404     apply (rule_tac x = "(v + int (listsum (replicate (Suc 0) (Suc 0))))" in EXS_intro)+
       
  4405     apply (simp only:sep_conj_ac, sep_cancel+)
       
  4406     apply (auto)
       
  4407     apply (subst fam_conj_interv_simp)
       
  4408     apply (subst fam_conj_interv_simp)
       
  4409     by smt
       
  4410 qed
       
  4411 
       
  4412 lemma hoare_locate_set_gen[step]:
       
  4413   assumes "length ks \<le> n" 
       
  4414            "u = v - 1" "v = w" "x = y"
       
  4415   shows "\<lbrace>st i \<and>* zero u \<and>* ps v \<and>* reps w x ks \<and>* fam_conj {y<..} zero\<rbrace> 
       
  4416                 i:[locate n]:j 
       
  4417          \<lbrace>st j \<and>* zero u \<and>* 
       
  4418              (EXS m w. ps m \<and>* reps' v (m - 1) (take n (list_ext n ks)) \<and>* 
       
  4419                          reps m w [(list_ext n ks)!n] \<and>* fam_conj {w<..} zero)\<rbrace>"
       
  4420   by (unfold assms, rule hoare_locate_set[OF `length ks \<le> n`])
       
  4421 
       
  4422 lemma hoare_locate_skip: 
       
  4423   assumes h: "n < length ks"
       
  4424   shows 
       
  4425    "\<lbrace>st i \<and>* ps u \<and>* zero (u - 1) \<and>* reps' u (v - 1) (take n ks) \<and>* reps' v w [ks!n] \<and>* tm (w + 1) x\<rbrace> 
       
  4426       i:[locate n]:j 
       
  4427     \<lbrace>st j \<and>* ps v \<and>* zero (u - 1) \<and>* reps' u (v - 1) (take n ks) \<and>* reps' v w [ks!n] \<and>* tm (w + 1) x\<rbrace>"
       
  4428 proof -
       
  4429   show ?thesis
       
  4430     apply (unfold locate_def)
       
  4431     apply hsteps
       
  4432     apply (subst (2 4) reps'_def, simp add:reps.simps sep_conj_cond del:ones_simps)
       
  4433     apply (intro tm.pre_condI, simp del:ones_simps)
       
  4434     apply hsteps
       
  4435     apply (case_tac "(take n ks) = []", simp add:reps'_def sep_conj_cond del:ones_simps)
       
  4436     apply (rule tm.pre_condI, simp del:ones_simps)
       
  4437     apply hsteps
       
  4438     apply (simp del:ones_simps add:reps'_def)
       
  4439     by hsteps
       
  4440 qed
       
  4441 
       
  4442 
       
  4443 lemma hoare_locate_skip_gen[step]: 
       
  4444   assumes "n < length ks"
       
  4445           "v = u - 1" "w = u" "x = y - 1" "z' = z + 1"
       
  4446   shows 
       
  4447    "\<lbrace>st i \<and>* ps u \<and>* tm v Bk \<and>* reps' w x (take n ks) \<and>* reps' y z [ks!n] \<and>* tm z' vx\<rbrace> 
       
  4448       i:[locate n]:j 
       
  4449     \<lbrace>st j \<and>* ps y \<and>* tm v Bk \<and>* reps' w x (take n ks) \<and>* reps' y z [ks!n] \<and>* tm z' vx\<rbrace>"
       
  4450   by (unfold assms, fold zero_def, rule hoare_locate_skip[OF `n < length ks`])
       
  4451 
       
  4452 definition "Inc a = locate a; 
       
  4453                     right_until_zero; 
       
  4454                     move_right;
       
  4455                     shift_right;
       
  4456                     move_left;
       
  4457                     left_until_double_zero;
       
  4458                     write_one;
       
  4459                     left_until_double_zero;
       
  4460                     move_right;
       
  4461                     move_right
       
  4462                     "
       
  4463 
       
  4464 lemma ones_int_expand: "(ones m (m + int k)) = (one m \<and>* ones (m + 1) (m + int k))"
       
  4465   by (simp add:ones_simps)
       
  4466 
       
  4467 lemma reps_splitedI:
       
  4468   assumes h1: "(reps u v ks1 \<and>* zero (v + 1) \<and>* reps (v + 2) w ks2) s"
       
  4469   and h2: "ks1 \<noteq> []"
       
  4470   and h3: "ks2 \<noteq> []"
       
  4471   shows "(reps u w (ks1 @ ks2)) s"
       
  4472 proof - 
       
  4473   from h2 h3
       
  4474   have "splited (ks1 @ ks2) ks1 ks2" by (auto simp:splited_def)
       
  4475   from h1 obtain s1 where 
       
  4476     "(reps u v ks1) s1" by (auto elim:sep_conjE)
       
  4477   from h1 obtain s2 where 
       
  4478     "(reps (v + 2) w ks2) s2" by (auto elim:sep_conjE)
       
  4479   from reps_len_correct[OF `(reps u v ks1) s1`] 
       
  4480   have eq_v: "v = u + int (reps_len ks1) - 1" .
       
  4481   from reps_len_correct[OF `(reps (v + 2) w ks2) s2`]
       
  4482   have eq_w: "w = v + 2 + int (reps_len ks2) - 1" .
       
  4483   from h1
       
  4484   have "(reps u (u + int (reps_len ks1) - 1) ks1 \<and>*
       
  4485          zero (u + int (reps_len ks1)) \<and>* reps (u + int (reps_len ks1) + 1) w ks2) s"
       
  4486     apply (unfold eq_v eq_w[unfolded eq_v])
       
  4487     by (sep_cancel+, smt)
       
  4488   thus ?thesis
       
  4489     by(unfold reps_splited[OF `splited (ks1 @ ks2) ks1 ks2`], simp)
       
  4490 qed
       
  4491 
       
  4492 lemma reps_sucI:
       
  4493   assumes h: "(reps u v (xs@[x]) \<and>* one (1 + v)) s"
       
  4494   shows "(reps u (1 + v) (xs@[Suc x])) s"
       
  4495 proof(cases "xs = []")
       
  4496   case True
       
  4497   from h obtain s' where "(reps u v (xs@[x])) s'" by (auto elim:sep_conjE)
       
  4498   from reps_len_correct[OF this] have " v = u + int (reps_len (xs @ [x])) - 1" .
       
  4499   with True have eq_v: "v = u + int x" by (simp add:reps_len_sg)
       
  4500   have eq_one1: "(one (1 + (u + int x)) \<and>* ones (u + 1) (u + int x)) = ones (u + 1) (1 + (u + int x))"
       
  4501     by (smt ones_rev sep.mult_commute)
       
  4502   from h show ?thesis
       
  4503     apply (unfold True, simp add:eq_v reps.simps sep_conj_cond sep_conj_ac ones_rev)
       
  4504     by (sep_cancel+, simp add: eq_one1, smt)
       
  4505 next
       
  4506   case False
       
  4507   from h obtain s1 s2 where hh: "(reps u v (xs@[x])) s1" "s = s1 + s2" "s1 ## s2" "one (1 + v) s2"
       
  4508     by (auto elim:sep_conjE)
       
  4509   from hh(1)[unfolded reps_rev[OF False]]
       
  4510   obtain s11 s12 s13 where hhh:
       
  4511     "(reps u (v - int (x + 1) - 1) xs) s11"
       
  4512     "(zero (v - int (x + 1))) s12" "(ones (v - int x) v) s13"
       
  4513     "s11 ## (s12 + s13)" "s12 ## s13" "s1 = s11 + s12 + s13"
       
  4514     apply (atomize_elim)
       
  4515     apply(elim sep_conjE)+
       
  4516     apply (rule_tac x = xa in exI)
       
  4517     apply (rule_tac x = xaa in exI)
       
  4518     apply (rule_tac x = ya in exI)
       
  4519     apply (intro conjI, assumption+)
       
  4520     by (auto simp:set_ins_def)
       
  4521   show ?thesis
       
  4522   proof(rule reps_splitedI[where v = "(v - int (x + 1) - 1)"])
       
  4523     show "(reps u (v - int (x + 1) - 1) xs \<and>* zero (v - int (x + 1) - 1 + 1) \<and>* 
       
  4524                                     reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x]) s"
       
  4525     proof(rule sep_conjI)
       
  4526       from hhh(1) show "reps u (v - int (x + 1) - 1) xs s11" .
       
  4527     next
       
  4528       show "(zero (v - int (x + 1) - 1 + 1) \<and>* reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x]) (s12 + (s13 + s2))"
       
  4529       proof(rule sep_conjI)
       
  4530         from hhh(2) show "zero (v - int (x + 1) - 1 + 1) s12" by smt
       
  4531       next
       
  4532         from hh(4) hhh(3)
       
  4533         show "reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x] (s13 + s2)"
       
  4534           apply (simp add:reps.simps del:ones_simps add:ones_rev)
       
  4535           by (smt hh(3) hh(4) hhh(4) hhh(5) hhh(6) sep_add_disjD sep_conjI sep_disj_addI1)
       
  4536       next
       
  4537         show "s12 ## s13 + s2" 
       
  4538           by (metis hh(3) hhh(4) hhh(5) hhh(6) sep_add_commute sep_add_disjD 
       
  4539               sep_add_disjI2 sep_disj_addD sep_disj_addD1 sep_disj_addI1 sep_disj_commuteI)
       
  4540       next
       
  4541         show "s12 + (s13 + s2) = s12 + (s13 + s2)" by metis 
       
  4542       qed
       
  4543     next
       
  4544       show "s11 ## s12 + (s13 + s2)"
       
  4545         by (metis hh(3) hhh(4) hhh(5) hhh(6) sep_disj_addD1 sep_disj_addI1 sep_disj_addI3)
       
  4546     next
       
  4547       show "s = s11 + (s12 + (s13 + s2))"
       
  4548         by (smt hh(2) hh(3) hhh(4) hhh(5) hhh(6) sep_add_assoc sep_add_commute 
       
  4549              sep_add_disjD sep_add_disjI2 sep_disj_addD1 sep_disj_addD2 
       
  4550               sep_disj_addI1 sep_disj_addI3 sep_disj_commuteI)
       
  4551     qed
       
  4552   next
       
  4553     from False show "xs \<noteq> []" .
       
  4554   next
       
  4555     show "[Suc x] \<noteq> []" by simp
       
  4556   qed
       
  4557 qed
       
  4558 
       
  4559 lemma cond_expand: "(<cond> \<and>* p) s = (cond \<and> (p s))"
       
  4560   by (metis (full_types) condD pasrt_def sep_conj_commuteI 
       
  4561              sep_conj_sep_emptyI sep_empty_def sep_globalise)
       
  4562 
       
  4563 lemma ones_rev1:
       
  4564   assumes "\<not> (1 + n) < m"
       
  4565   shows "(ones m n \<and>* one (1 + n)) = (ones m (1 + n))"
       
  4566   by (insert ones_rev[OF assms, simplified], simp)
       
  4567 
       
  4568 lemma reps_one_abs:
       
  4569   assumes "(reps u v [k] \<and>* one w) s"
       
  4570           "w = v + 1"
       
  4571   shows "(reps u w [Suc k]) s"
       
  4572   using assms unfolding assms
       
  4573   apply (simp add:reps.simps sep_conj_ac)
       
  4574   apply (subst (asm) sep_conj_cond)+
       
  4575   apply (erule condE, simp)
       
  4576   by (simp add:ones_rev sep_conj_ac, sep_cancel+, smt)
       
  4577 
       
  4578 lemma reps'_reps_abs:
       
  4579   assumes "(reps' u v xs \<and>* reps w x ys) s"
       
  4580           "w = v + 1"  "ys \<noteq> []"
       
  4581   shows "(reps u x (xs@ys)) s"
       
  4582 proof(cases "xs = []")
       
  4583   case False
       
  4584   with assms
       
  4585   have h: "splited (xs@ys) xs ys" by (simp add:splited_def)
       
  4586   from assms(1)[unfolded assms(2)]
       
  4587   show ?thesis
       
  4588     apply (unfold reps_splited[OF h])
       
  4589     apply (insert False, unfold reps'_def, simp)
       
  4590     apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+)
       
  4591     by (erule condE, simp)
       
  4592 next
       
  4593   case True
       
  4594   with assms
       
  4595   show ?thesis
       
  4596     apply (simp add:reps'_def)
       
  4597     by (erule condE, simp)
       
  4598 qed
       
  4599 
       
  4600 lemma reps_one_abs1:
       
  4601   assumes "(reps u v (xs@[k]) \<and>* one w) s"
       
  4602           "w = v + 1"
       
  4603   shows "(reps u w (xs@[Suc k])) s"
       
  4604 proof(cases "xs = []")
       
  4605   case True
       
  4606   with assms reps_one_abs
       
  4607   show ?thesis by simp
       
  4608 next
       
  4609   case False
       
  4610   hence "splited (xs@[k]) xs [k]" by (simp add:splited_def)
       
  4611   from assms(1)[unfolded reps_splited[OF this] assms(2)]
       
  4612   show ?thesis
       
  4613     apply (fwd reps_one_abs)
       
  4614     apply (fwd reps_reps'_abs) 
       
  4615     apply (fwd reps'_reps_abs)
       
  4616     by (simp add:assms)
       
  4617 qed
       
  4618   
       
  4619 lemma tm_hoare_inc00: 
       
  4620   assumes h: "a < length ks \<and> ks ! a = v"
       
  4621   shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace> 
       
  4622     i :[ Inc a ]: j
       
  4623     \<lbrace>st j \<and>*
       
  4624      ps u \<and>*
       
  4625      zero (u - 2) \<and>*
       
  4626      zero (u - 1) \<and>*
       
  4627      reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) (ks[a := Suc v]) \<and>*
       
  4628      fam_conj {(ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1)<..} zero\<rbrace>"
       
  4629   (is "\<lbrace> ?P \<rbrace> ?code \<lbrace> ?Q \<rbrace>")
       
  4630 proof -
       
  4631   from h have "a < length ks" "ks ! a = v" by auto
       
  4632   from list_nth_expand[OF `a < length ks`]
       
  4633   have eq_ks: "ks = take a ks @ [ks!a] @ drop (Suc a) ks" .
       
  4634   from `a < length ks` have "ks \<noteq> []" by auto
       
  4635   hence "(reps u ia ks \<and>* zero (ia + 1)) = reps' u (ia + 1) ks"
       
  4636     by (simp add:reps'_def)
       
  4637   also from eq_ks have "\<dots> = reps' u (ia + 1) (take a ks @ [ks!a] @ drop (Suc a) ks)" by simp
       
  4638   also have "\<dots>  = (EXS m. reps' u (m - 1) (take a ks) \<and>* 
       
  4639                      reps' m (ia + 1) (ks ! a # drop (Suc a) ks))"
       
  4640     by (simp add:reps'_append)
       
  4641   also have "\<dots> = (EXS m. reps' u (m - 1) (take a ks) \<and>* 
       
  4642                      reps' m (ia + 1) ([ks ! a] @ drop (Suc a) ks))"
       
  4643     by simp
       
  4644   also have "\<dots> = (EXS m ma. reps' u (m - 1) (take a ks) \<and>*
       
  4645                        reps' m (ma - 1) [ks ! a] \<and>* reps' ma (ia + 1) (drop (Suc a) ks))"
       
  4646     by (simp only:reps'_append sep_conj_exists)
       
  4647   finally have eq_s: "(reps u ia ks \<and>* zero (ia + 1)) = \<dots>" .
       
  4648   { fix m ma
       
  4649     have eq_u: "-1 + u = u - 1" by smt
       
  4650     have " \<lbrace>st i \<and>*
       
  4651             ps u \<and>*
       
  4652             zero (u - 2) \<and>*
       
  4653             zero (u - 1) \<and>*
       
  4654             (reps' u (m - 1) (take a ks) \<and>*
       
  4655              reps' m (ma - 1) [ks ! a] \<and>* reps' ma (ia + 1) (drop (Suc a) ks)) \<and>*
       
  4656             fam_conj {ia + 1<..} zero\<rbrace> 
       
  4657            i :[ Inc a ]: j
       
  4658            \<lbrace>st j \<and>*
       
  4659             ps u \<and>*
       
  4660             zero (u - 2) \<and>*
       
  4661             zero (u - 1) \<and>*
       
  4662             reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) (ks[a := Suc v]) \<and>*
       
  4663             fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1<..} zero\<rbrace>"
       
  4664     proof(cases "(drop (Suc a) ks) = []")
       
  4665       case True
       
  4666       { fix hc
       
  4667         have eq_1: "(1 + (m + int (ks ! a))) = (m + int (ks ! a) + 1)" by simp
       
  4668         have eq_2: "take a ks @ [Suc (ks ! a)] = ks[a := Suc v]"
       
  4669           apply (subst (3) eq_ks, unfold True, simp)
       
  4670           by (metis True append_Nil2 eq_ks h upd_conv_take_nth_drop)
       
  4671         assume h: "(fam_conj {1 + (m + int (ks ! a))<..} zero \<and>* 
       
  4672                       reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks ! a)])) hc"
       
  4673         hence "(fam_conj {m + int (ks ! a) + 1<..} zero \<and>* reps u (m + int (ks ! a) + 1) (ks[a := Suc v])) hc"
       
  4674           by (unfold eq_1 eq_2 , sep_cancel+)
       
  4675       } note eq_fam = this
       
  4676       show ?thesis
       
  4677         apply (unfold Inc_def, subst (3) reps'_def, simp add:True sep_conj_cond)
       
  4678         apply (intro tm.pre_condI, simp)
       
  4679         apply (subst fam_conj_interv_simp, simp, subst (3) zero_def)
       
  4680         apply hsteps
       
  4681         apply (subst reps'_sg, simp add:sep_conj_cond del:ones_simps)
       
  4682         apply (rule tm.pre_condI, simp del:ones_simps)
       
  4683         apply hsteps
       
  4684         apply (rule_tac p = "
       
  4685           st j' \<and>* ps (1 + (m + int (ks ! a))) \<and>* zero (u - 1) \<and>* zero (u - 2) \<and>*
       
  4686                    reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks!a)]) 
       
  4687                             \<and>* fam_conj {1 + (m + int (ks ! a))<..} zero
       
  4688           " in tm.pre_stren)
       
  4689         apply (hsteps)
       
  4690         apply (simp add:sep_conj_ac list_ext_lt[OF `a < length ks`], sep_cancel+)
       
  4691         apply (fwd eq_fam, sep_cancel+)
       
  4692         apply (simp del:ones_simps add:sep_conj_ac)
       
  4693         apply (sep_cancel+, prune)
       
  4694         apply ((fwd abs_reps')+, simp)
       
  4695         apply (fwd reps_one_abs abs_reps')+
       
  4696         apply (subst (asm) reps'_def, simp)
       
  4697         by (subst fam_conj_interv_simp, simp add:sep_conj_ac)
       
  4698     next 
       
  4699       case False
       
  4700       then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'"
       
  4701         by (metis append_Cons append_Nil list.exhaust)
       
  4702       from `a < length ks`
       
  4703       have eq_ks: "ks[a := Suc v] = (take a ks @ [Suc (ks ! a)]) @ (drop (Suc a) ks)"
       
  4704         apply (fold `ks!a = v`)
       
  4705         by (metis append_Cons append_Nil append_assoc upd_conv_take_nth_drop)
       
  4706       show ?thesis
       
  4707         apply (unfold Inc_def)
       
  4708         apply (unfold Inc_def eq_drop reps'_append, simp add:sep_conj_exists del:ones_simps)
       
  4709         apply (rule tm.precond_exI, subst (2) reps'_sg)
       
  4710         apply (subst sep_conj_cond)+
       
  4711         apply (subst (1) ones_int_expand)
       
  4712         apply (rule tm.pre_condI, simp del:ones_simps)
       
  4713         apply hsteps
       
  4714         (* apply (hsteps hoare_locate_skip_gen[OF `a < length ks`]) *)
       
  4715         apply (subst reps'_sg, simp add:sep_conj_cond del:ones_simps)
       
  4716         apply (rule tm.pre_condI, simp del:ones_simps)
       
  4717         apply hsteps
       
  4718         apply (rule_tac p = "st j' \<and>*
       
  4719                 ps (2 + (m + int (ks ! a))) \<and>*
       
  4720                 reps (2 + (m + int (ks ! a))) ia (drop (Suc a) ks) \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>*
       
  4721                 reps u (m + int (ks ! a)) (take a ks @ [ks!a]) \<and>* zero (1 + (m + int (ks ! a))) \<and>*
       
  4722                 zero (u - 2) \<and>* zero (u - 1) \<and>* fam_conj {ia + 2<..} zero
       
  4723           " in tm.pre_stren)
       
  4724         apply (hsteps hoare_shift_right_cons_gen[OF False]
       
  4725                 hoare_left_until_double_zero_gen[OF False])
       
  4726         apply (rule_tac p = 
       
  4727           "st j' \<and>* ps (1 + (m + int (ks ! a))) \<and>*
       
  4728           zero (u - 2) \<and>* zero (u - 1) \<and>* 
       
  4729           reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks ! a)]) \<and>*
       
  4730           zero (2 + (m + int (ks ! a))) \<and>*
       
  4731           reps (3 + (m + int (ks ! a))) (ia + 1) (drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero
       
  4732           " in tm.pre_stren)
       
  4733         apply (hsteps)
       
  4734         apply (simp add:sep_conj_ac, sep_cancel+)
       
  4735         apply (unfold list_ext_lt[OF `a < length ks`], simp)
       
  4736         apply (fwd abs_reps')+ 
       
  4737         apply(fwd reps'_reps_abs)
       
  4738         apply (subst eq_ks, simp)
       
  4739         apply (sep_cancel+) 
       
  4740         apply (thin_tac "mb = 4 + (m + (int (ks ! a) + int k'))")
       
  4741         apply (thin_tac "ma = 2 + (m + int (ks ! a))", prune)
       
  4742         apply (simp add: int_add_ac sep_conj_ac, sep_cancel+)
       
  4743         apply (fwd reps_one_abs1, subst fam_conj_interv_simp, simp, sep_cancel+, smt)
       
  4744         apply (fwd abs_ones)+
       
  4745         apply (fwd abs_reps')
       
  4746         apply (fwd abs_reps')
       
  4747         apply (fwd abs_reps')
       
  4748         apply (fwd abs_reps')
       
  4749         apply (unfold eq_drop, simp add:int_add_ac sep_conj_ac)
       
  4750         apply (sep_cancel+)
       
  4751         apply (fwd  reps'_abs[where xs = "take a ks"])
       
  4752         apply (fwd reps'_abs[where xs = "[k']"])
       
  4753         apply (unfold reps'_def, simp add:int_add_ac sep_conj_ac)
       
  4754         apply (sep_cancel+)
       
  4755         by (subst (asm) fam_conj_interv_simp, simp, smt)
       
  4756       qed
       
  4757   } note h = this
       
  4758   show ?thesis
       
  4759     apply (subst fam_conj_interv_simp)
       
  4760     apply (rule_tac p = "st i \<and>*  ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* 
       
  4761                               (reps u ia ks \<and>* zero (ia + 1)) \<and>* fam_conj {ia + 1<..} zero" 
       
  4762       in tm.pre_stren)
       
  4763     apply (unfold eq_s, simp only:sep_conj_exists)
       
  4764     apply (intro tm.precond_exI h)
       
  4765     by (sep_cancel+, unfold eq_s, simp)
       
  4766 qed
       
  4767 
       
  4768 declare ones_simps [simp del]
       
  4769 
       
  4770 lemma tm_hoare_inc01:
       
  4771   assumes "length ks \<le> a \<and> v = 0"
       
  4772   shows 
       
  4773    "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace> 
       
  4774        i :[ Inc a ]: j
       
  4775     \<lbrace>st j \<and>*
       
  4776      ps u \<and>*
       
  4777      zero (u - 2) \<and>*
       
  4778      zero (u - 1) \<and>*
       
  4779      reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) ((list_ext a ks)[a := Suc v]) \<and>*
       
  4780      fam_conj {(ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1)<..} zero\<rbrace>"
       
  4781 proof -
       
  4782   from assms have "length ks \<le> a" "v = 0" by auto
       
  4783   show ?thesis
       
  4784     apply (rule_tac p = "
       
  4785       st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* (reps u ia ks \<and>* <(ia = u + int (reps_len ks) - 1)>) \<and>* 
       
  4786              fam_conj {ia<..} zero
       
  4787       " in tm.pre_stren)
       
  4788     apply (subst sep_conj_cond)+
       
  4789     apply (rule tm.pre_condI, simp)
       
  4790     apply (unfold Inc_def)
       
  4791     apply hstep
       
  4792     (* apply (hstep hoare_locate_set_gen[OF `length ks \<le> a`]) *)
       
  4793     apply (simp only:sep_conj_exists)
       
  4794     apply (intro tm.precond_exI)
       
  4795     my_block
       
  4796       fix m w
       
  4797       have "reps m w [list_ext a ks ! a] =
       
  4798             (ones m (m + int (list_ext a ks ! a)) \<and>* <(w = m + int (list_ext a ks ! a))>)"
       
  4799         by (simp add:reps.simps)
       
  4800     my_block_end
       
  4801     apply (unfold this)
       
  4802     apply (subst sep_conj_cond)+
       
  4803     apply (rule tm.pre_condI, simp)
       
  4804     apply (subst fam_conj_interv_simp)
       
  4805     apply (hsteps)
       
  4806     apply (subst fam_conj_interv_simp, simp)
       
  4807     apply (hsteps)
       
  4808     apply (rule_tac p = "st j' \<and>* ps (m + int (list_ext a ks ! a) + 1) \<and>*
       
  4809                            zero (u - 2) \<and>* zero (u - 1) \<and>* 
       
  4810                            reps u (m + int (list_ext a ks ! a) + 1) 
       
  4811                                 ((take a (list_ext a ks))@[Suc (list_ext a ks ! a)]) \<and>*
       
  4812                            fam_conj {(m + int (list_ext a ks ! a) + 1)<..} zero
       
  4813                          " in tm.pre_stren)
       
  4814     apply (hsteps)
       
  4815     apply (simp add:sep_conj_ac, sep_cancel+)
       
  4816     apply (unfold `v = 0`, prune)
       
  4817     my_block
       
  4818       from `length ks \<le> a` have "list_ext a ks ! a = 0"
       
  4819         by (metis le_refl list_ext_tail)
       
  4820       from `length ks \<le> a` have "a < length (list_ext a ks)"
       
  4821         by (metis list_ext_len)
       
  4822       from reps_len_suc[OF this] 
       
  4823       have eq_len: "int (reps_len (list_ext a ks)) = 
       
  4824                         int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)])) - 1" 
       
  4825         by smt
       
  4826       fix m w hc
       
  4827       assume h: "(fam_conj {m + int (list_ext a ks ! a) + 1<..} zero \<and>*
       
  4828                  reps u (m + int (list_ext a ks ! a) + 1) (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)]))
       
  4829                  hc"
       
  4830       then obtain s where 
       
  4831         "(reps u (m + int (list_ext a ks ! a) + 1) (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)])) s"
       
  4832         by (auto dest!:sep_conjD)
       
  4833       from reps_len_correct[OF this]
       
  4834       have "m  = u + int (reps_len (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)])) 
       
  4835                         - int (list_ext a ks ! a) - 2" by smt
       
  4836       from h [unfolded this]
       
  4837       have "(fam_conj {u + int (reps_len (list_ext a ks))<..} zero \<and>*
       
  4838            reps u (u + int (reps_len (list_ext a ks))) (list_ext a ks[a := Suc 0]))
       
  4839            hc"
       
  4840         apply (unfold eq_len, simp)
       
  4841         my_block
       
  4842           from `a < length (list_ext a ks)`
       
  4843           have "take a (list_ext a ks) @ [Suc (list_ext a ks ! a)] = 
       
  4844                 list_ext a ks[a := Suc (list_ext a ks ! a)]"
       
  4845             by (smt `list_ext a ks ! a = 0` assms length_take list_ext_tail_expand list_update_length)
       
  4846         my_block_end
       
  4847         apply (unfold this)
       
  4848         my_block
       
  4849           have "-1 + (u + int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)]))) = 
       
  4850                 u + (int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)])) - 1)" by simp
       
  4851         my_block_end
       
  4852         apply (unfold this)
       
  4853         apply (sep_cancel+)
       
  4854         by (unfold `(list_ext a ks ! a) = 0`, simp)
       
  4855     my_block_end
       
  4856     apply (rule this, assumption)
       
  4857     apply (simp only:sep_conj_ac, sep_cancel+)+
       
  4858     apply (fwd abs_reps')+
       
  4859     apply (fwd reps_one_abs) 
       
  4860     apply (fwd reps'_reps_abs)
       
  4861     apply (simp add:int_add_ac sep_conj_ac)
       
  4862     apply (sep_cancel+)
       
  4863     apply (subst fam_conj_interv_simp, simp add:sep_conj_ac, smt)
       
  4864     apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp)
       
  4865     by (sep_cancel+)
       
  4866 qed
       
  4867 
       
  4868 definition "Dec a e  = (TL continue. 
       
  4869                           (locate a; 
       
  4870                            if_reps_nz continue;
       
  4871                            left_until_double_zero;
       
  4872                            move_right;
       
  4873                            move_right;
       
  4874                            jmp e);
       
  4875                           (TLabel continue;
       
  4876                            right_until_zero; 
       
  4877                            move_left;
       
  4878                            write_zero;
       
  4879                            move_right;
       
  4880                            move_right;
       
  4881                            shift_left;
       
  4882                            move_left;
       
  4883                            move_left;
       
  4884                            move_left;
       
  4885                            left_until_double_zero;
       
  4886                            move_right;
       
  4887                            move_right))"
       
  4888 
       
  4889 lemma cond_eq: "((<b> \<and>* p) s) = (b \<and> (p s))"
       
  4890 proof
       
  4891   assume "(<b> \<and>* p) s"
       
  4892   from condD[OF this] show " b \<and> p s" .
       
  4893 next
       
  4894   assume "b \<and> p s"
       
  4895   hence b and "p s" by auto
       
  4896   from `b` have "(<b>) 0" by (auto simp:pasrt_def)
       
  4897   moreover have "s = 0 + s" by auto
       
  4898   moreover have "0 ## s" by auto
       
  4899   moreover note `p s`
       
  4900   ultimately show "(<b> \<and>* p) s" by (auto intro!:sep_conjI)
       
  4901 qed
       
  4902 
       
  4903 lemma tm_hoare_dec_fail00:
       
  4904   assumes "a < length ks \<and> ks ! a = 0"
       
  4905   shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>  
       
  4906              i :[ Dec a e ]: j
       
  4907          \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
       
  4908           reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
       
  4909           fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"
       
  4910 proof -
       
  4911   from assms have "a < length ks" "ks!a = 0" by auto
       
  4912   from list_nth_expand[OF `a < length ks`]
       
  4913   have eq_ks: "ks = take a ks @ [ks ! a] @ drop (Suc a) ks" .
       
  4914   show ?thesis
       
  4915   proof(cases " drop (Suc a) ks = []")
       
  4916     case False
       
  4917     then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'"
       
  4918       by (metis append_Cons append_Nil list.exhaust)
       
  4919     show ?thesis
       
  4920       apply (unfold Dec_def, intro t_hoare_local)
       
  4921       apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension)
       
  4922       apply (subst (1) eq_ks)
       
  4923       my_block
       
  4924         have "(reps u ia (take a ks @ [ks ! a] @ drop (Suc a) ks) \<and>* fam_conj {ia<..} zero) = 
       
  4925               (reps' u (ia + 1) ((take a ks @ [ks ! a]) @ drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero)"
       
  4926           apply (subst fam_conj_interv_simp)
       
  4927           by (unfold reps'_def, simp add:sep_conj_ac)
       
  4928       my_block_end
       
  4929       apply (unfold this)
       
  4930       apply (subst reps'_append)
       
  4931       apply (unfold eq_drop)
       
  4932       apply (subst (2) reps'_append)
       
  4933       apply (simp only:sep_conj_exists, intro tm.precond_exI)
       
  4934       apply (subst (2) reps'_def, simp add:reps.simps ones_simps)
       
  4935       apply (subst reps'_append, simp only:sep_conj_exists, intro tm.precond_exI)
       
  4936       apply hstep
       
  4937       (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
       
  4938       my_block
       
  4939         fix m mb
       
  4940         have "(reps' mb (m - 1) [ks ! a]) = (reps mb (m - 2) [ks!a] \<and>* zero (m - 1))"
       
  4941           by (simp add:reps'_def, smt)
       
  4942       my_block_end
       
  4943       apply (unfold this)
       
  4944       apply hstep
       
  4945       (* apply (hstep hoare_if_reps_nz_false_gen[OF `ks!a = 0`]) *)
       
  4946       apply (simp only:reps.simps(2), simp add:`ks!a = 0`)
       
  4947       apply (rule_tac p = "st j'b \<and>*
       
  4948         ps mb \<and>*
       
  4949         reps u mb ((take a ks)@[ks ! a]) \<and>* <(m - 2 = mb)> \<and>*
       
  4950         zero (m - 1) \<and>*
       
  4951         zero (u - 1) \<and>*
       
  4952         one m \<and>*
       
  4953         zero (u - 2) \<and>*
       
  4954         ones (m + 1) (m + int k') \<and>*
       
  4955         <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero"
       
  4956         in tm.pre_stren)
       
  4957       apply hsteps
       
  4958       apply (simp add:sep_conj_ac, sep_cancel+) 
       
  4959       apply (subgoal_tac "m + int k' = ma - 2", simp)
       
  4960       apply (fwd abs_ones)+
       
  4961       apply (subst (asm) sep_conj_cond)+
       
  4962       apply (erule condE, auto)
       
  4963       apply (fwd abs_reps')+
       
  4964       apply (subgoal_tac "ma = m + int k' + 2", simp)
       
  4965       apply (fwd abs_reps')+
       
  4966       my_block
       
  4967         from `a < length ks`
       
  4968         have "list_ext a ks = ks" by (auto simp:list_ext_def)
       
  4969       my_block_end
       
  4970       apply (simp add:this)
       
  4971       apply (subst eq_ks, simp add:eq_drop `ks!a = 0`)
       
  4972       apply (subst (asm) reps'_def, simp)
       
  4973       apply (subst fam_conj_interv_simp, simp add:sep_conj_ac, sep_cancel+)
       
  4974       apply (metis append_Cons assms eq_Nil_appendI eq_drop eq_ks list_update_id)
       
  4975       apply (clarsimp)
       
  4976       apply (subst (asm) sep_conj_cond)+
       
  4977       apply (erule condE, clarsimp)
       
  4978       apply (subst (asm) sep_conj_cond)+
       
  4979       apply (erule condE, clarsimp)
       
  4980       apply (simp add:sep_conj_ac, sep_cancel+)
       
  4981       apply (fwd abs_reps')+
       
  4982       by (fwd reps'_reps_abs, simp add:`ks!a = 0`)
       
  4983   next 
       
  4984     case True
       
  4985     show ?thesis
       
  4986       apply (unfold Dec_def, intro t_hoare_local)
       
  4987       apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension)
       
  4988       apply (subst (1) eq_ks, unfold True, simp)
       
  4989       my_block
       
  4990         have "(reps u ia (take a ks @ [ks ! a]) \<and>* fam_conj {ia<..} zero) = 
       
  4991               (reps' u (ia + 1) (take a ks @ [ks ! a]) \<and>* fam_conj {ia + 1<..} zero)"
       
  4992           apply (unfold reps'_def, subst fam_conj_interv_simp)
       
  4993           by (simp add:sep_conj_ac)
       
  4994       my_block_end
       
  4995       apply (subst (1) this)
       
  4996       apply (subst reps'_append)
       
  4997       apply (simp only:sep_conj_exists, intro tm.precond_exI)
       
  4998       apply (subst fam_conj_interv_simp, simp) 
       
  4999       my_block
       
  5000         have "(zero (2 + ia)) = (tm (2 + ia) Bk)"
       
  5001           by (simp add:zero_def)
       
  5002       my_block_end my_note eq_z = this
       
  5003       apply hstep
       
  5004       (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
       
  5005       my_block
       
  5006         fix m 
       
  5007         have "(reps' m (ia + 1) [ks ! a]) = (reps m ia [ks!a] \<and>* zero (ia + 1))"
       
  5008           by (simp add:reps'_def)
       
  5009       my_block_end
       
  5010       apply (unfold this, prune)
       
  5011       apply hstep
       
  5012       (* apply (hstep hoare_if_reps_nz_false_gen[OF `ks!a = 0`]) *)
       
  5013       apply (simp only:reps.simps(2), simp add:`ks!a = 0`)
       
  5014       apply (rule_tac p = "st j'b \<and>* ps m \<and>* (reps u m ((take a ks)@[ks!a]) \<and>* <(ia = m)>) 
       
  5015                               \<and>* zero (ia + 1) \<and>* zero (u - 1) \<and>*  
       
  5016                               zero (2 + ia) \<and>* zero (u - 2) \<and>* fam_conj {2 + ia<..} zero"
       
  5017         in tm.pre_stren)
       
  5018       apply hsteps
       
  5019       apply (simp add:sep_conj_ac)
       
  5020       apply ((subst (asm) sep_conj_cond)+, erule condE, simp)
       
  5021       my_block
       
  5022         from `a < length ks`  have "list_ext a ks = ks" by (metis list_ext_lt) 
       
  5023       my_block_end
       
  5024       apply (unfold this, simp)
       
  5025       apply (subst fam_conj_interv_simp)
       
  5026       apply (subst fam_conj_interv_simp, simp)
       
  5027       apply (simp only:sep_conj_ac, sep_cancel+)
       
  5028       apply (subst eq_ks, unfold True `ks!a = 0`, simp)
       
  5029       apply (metis True append_Nil2 assms eq_ks list_update_same_conv) 
       
  5030       apply (simp add:sep_conj_ac)
       
  5031       apply (subst (asm) sep_conj_cond)+
       
  5032       apply (erule condE, simp, thin_tac "ia = m")
       
  5033       apply (fwd abs_reps')+
       
  5034       apply (simp add:sep_conj_ac int_add_ac, sep_cancel+)
       
  5035       apply (unfold reps'_def, simp)
       
  5036       by (metis sep.mult_commute)
       
  5037   qed
       
  5038 qed
       
  5039 
       
  5040 lemma tm_hoare_dec_fail01:
       
  5041   assumes "length ks \<le> a"
       
  5042   shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>  
       
  5043                        i :[ Dec a e ]: j
       
  5044          \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
       
  5045           reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
       
  5046           fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"
       
  5047   apply (unfold Dec_def, intro t_hoare_local)
       
  5048   apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension)
       
  5049   apply (rule_tac p = "st i \<and>* ps u \<and>* zero (u - 2) \<and>*
       
  5050                        zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero \<and>* 
       
  5051                        <(ia = u + int (reps_len ks) - 1)>" in tm.pre_stren)
       
  5052   apply hstep
       
  5053   (* apply (hstep hoare_locate_set_gen[OF `length ks \<le> a`]) *)
       
  5054   apply (simp only:sep_conj_exists, intro tm.precond_exI)
       
  5055   my_block
       
  5056     from assms
       
  5057     have "list_ext a ks ! a = 0" by (metis le_refl list_ext_tail) 
       
  5058   my_block_end my_note is_z = this
       
  5059   apply (subst fam_conj_interv_simp)
       
  5060   apply hstep
       
  5061   (* apply (hstep hoare_if_reps_nz_false_gen[OF is_z]) *)
       
  5062   apply (unfold is_z)
       
  5063   apply (subst (1) reps.simps)
       
  5064   apply (rule_tac p = "st j'b \<and>* ps m \<and>*  reps u m (take a (list_ext a ks) @ [0]) \<and>* zero (w + 1) \<and>*
       
  5065                          <(w = m + int 0)> \<and>* zero (u - 1) \<and>* 
       
  5066                          fam_conj {w + 1<..} zero \<and>* zero (u - 2) \<and>* 
       
  5067                          <(ia = u + int (reps_len ks) - 1)>" in tm.pre_stren)
       
  5068   my_block
       
  5069     have "(take a (list_ext a ks)) @ [0] \<noteq> []" by simp
       
  5070   my_block_end
       
  5071   apply hsteps
       
  5072   (* apply (hsteps hoare_left_until_double_zero_gen[OF this]) *)
       
  5073   apply (simp add:sep_conj_ac)
       
  5074   apply prune
       
  5075   apply (subst (asm) sep_conj_cond)+
       
  5076   apply (elim condE, simp add:sep_conj_ac, prune)
       
  5077   my_block
       
  5078     fix m w ha
       
  5079     assume h1: "w = m \<and> ia = u + int (reps_len ks) - 1"
       
  5080       and  h: "(ps u \<and>*
       
  5081               st e \<and>*
       
  5082               zero (u - 1) \<and>*
       
  5083               zero (m + 1) \<and>*
       
  5084               fam_conj {m + 1<..} zero \<and>* zero (u - 2) \<and>* reps u m (take a (list_ext a ks) @ [0])) ha"
       
  5085     from h1 have eq_w: "w = m" and eq_ia: "ia = u + int (reps_len ks) - 1" by auto
       
  5086     from h obtain s' where "reps u m (take a (list_ext a ks) @ [0]) s'"
       
  5087       by (auto dest!:sep_conjD)
       
  5088     from reps_len_correct[OF this] 
       
  5089     have eq_m: "m = u + int (reps_len (take a (list_ext a ks) @ [0])) - 1" .
       
  5090     from h[unfolded eq_m, simplified]
       
  5091     have "(ps u \<and>*
       
  5092                 st e \<and>*
       
  5093                 zero (u - 1) \<and>*
       
  5094                 zero (u - 2) \<and>*
       
  5095                 fam_conj {u + (-1 + int (reps_len (list_ext a ks)))<..} zero \<and>*
       
  5096                 reps u (u + (-1 + int (reps_len (list_ext a ks)))) (list_ext a ks[a := 0])) ha"
       
  5097       apply (sep_cancel+)
       
  5098       apply (subst fam_conj_interv_simp, simp)
       
  5099       my_block
       
  5100         from `length ks \<le> a` have "list_ext a ks[a := 0] = list_ext a ks"
       
  5101           by (metis is_z list_update_id)
       
  5102       my_block_end
       
  5103       apply (unfold this)
       
  5104       my_block
       
  5105         from `length ks \<le> a` is_z 
       
  5106         have "take a (list_ext a ks) @ [0] = list_ext a ks"
       
  5107           by (metis list_ext_tail_expand)
       
  5108       my_block_end
       
  5109       apply (unfold this)
       
  5110       by (simp add:sep_conj_ac, sep_cancel+, smt)
       
  5111   my_block_end
       
  5112   apply (rule this, assumption)
       
  5113   apply (sep_cancel+)[1]
       
  5114   apply (subst (asm) sep_conj_cond)+
       
  5115   apply (erule condE, prune, simp)
       
  5116   my_block
       
  5117     fix s m
       
  5118     assume "(reps' u (m - 1) (take a (list_ext a ks)) \<and>* ones m m \<and>* zero (m + 1)) s"
       
  5119     hence "reps' u (m + 1) (take a (list_ext a ks) @ [0]) s"
       
  5120       apply (unfold reps'_append)
       
  5121       apply (rule_tac x = m in EXS_intro)
       
  5122       by (subst (2) reps'_def, simp add:reps.simps)
       
  5123   my_block_end
       
  5124   apply (rotate_tac 1, fwd this)
       
  5125   apply (subst (asm) reps'_def, simp add:sep_conj_ac)
       
  5126   my_block
       
  5127     fix s
       
  5128     assume h: "(st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* 
       
  5129                    reps u ia ks \<and>* fam_conj {ia<..} zero) s"
       
  5130     then obtain s' where "reps u ia ks s'" by (auto dest!:sep_conjD)
       
  5131     from reps_len_correct[OF this] have eq_ia: "ia = u + int (reps_len ks) - 1" .
       
  5132     from h
       
  5133     have "(st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>*
       
  5134            fam_conj {ia<..} zero \<and>* <(ia = u + int (reps_len ks) - 1)>) s"
       
  5135       by (unfold eq_ia, simp)
       
  5136   my_block_end
       
  5137   by (rule this, assumption)
       
  5138 
       
  5139 lemma t_hoare_label1: 
       
  5140       "(\<And>l. l = i \<Longrightarrow> \<lbrace>st l \<and>* p\<rbrace>  l :[ c l ]: j \<lbrace>st k \<and>* q\<rbrace>) \<Longrightarrow>
       
  5141              \<lbrace>st l \<and>* p \<rbrace> 
       
  5142                i:[(TLabel l; c l)]:j
       
  5143              \<lbrace>st k \<and>* q\<rbrace>"
       
  5144 by (unfold tassemble_to.simps, intro tm.code_exI tm.code_condI, clarify, auto)
       
  5145 
       
  5146 lemma tm_hoare_dec_fail1:
       
  5147   assumes "a < length ks \<and> ks ! a = 0 \<or> length ks \<le> a"
       
  5148   shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>  
       
  5149                       i :[ Dec a e ]: j
       
  5150          \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
       
  5151           reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
       
  5152          fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"
       
  5153   using assms
       
  5154 proof
       
  5155   assume "a < length ks \<and> ks ! a = 0"
       
  5156   thus ?thesis
       
  5157     by (rule tm_hoare_dec_fail00)
       
  5158 next
       
  5159   assume "length ks \<le> a"
       
  5160   thus ?thesis
       
  5161     by (rule tm_hoare_dec_fail01)
       
  5162 qed
       
  5163 
       
  5164 lemma shift_left_nil_gen[step]:
       
  5165   assumes "u = v"
       
  5166   shows "\<lbrace>st i \<and>* ps u \<and>* zero v\<rbrace> 
       
  5167               i :[shift_left]:j
       
  5168          \<lbrace>st j \<and>* ps u \<and>* zero v\<rbrace>"
       
  5169  apply(unfold assms shift_left_def, intro t_hoare_local t_hoare_label, clarify, 
       
  5170                  rule t_hoare_label_last, simp, clarify, prune, simp)
       
  5171  by hstep
       
  5172 
       
  5173 lemma tm_hoare_dec_suc1: 
       
  5174   assumes "a < length ks \<and> ks ! a = Suc v"
       
  5175   shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace> 
       
  5176                     i :[ Dec a e ]: j
       
  5177          \<lbrace>st j \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
       
  5178              reps u (ia - 1) (list_ext a ks[a := v]) \<and>*
       
  5179              fam_conj {ia - 1<..} zero\<rbrace>"
       
  5180 proof -
       
  5181   from assms have "a < length ks" " ks ! a = Suc v" by auto
       
  5182   from list_nth_expand[OF `a < length ks`]
       
  5183   have eq_ks: "ks = take a ks @ [ks ! a] @ drop (Suc a) ks" .
       
  5184   show ?thesis
       
  5185   proof(cases " drop (Suc a) ks = []")
       
  5186     case False
       
  5187     then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'"
       
  5188       by (metis append_Cons append_Nil list.exhaust)
       
  5189     show ?thesis
       
  5190       apply (unfold Dec_def, intro t_hoare_local)
       
  5191       apply (subst tassemble_to.simps(2), rule tm.code_exI)
       
  5192       apply (subst (1) eq_ks)
       
  5193       my_block
       
  5194         have "(reps u ia (take a ks @ [ks ! a] @ drop (Suc a) ks) \<and>* fam_conj {ia<..} zero) = 
       
  5195               (reps' u (ia + 1) ((take a ks @ [ks ! a]) @ drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero)"
       
  5196           apply (subst fam_conj_interv_simp)
       
  5197           by (unfold reps'_def, simp add:sep_conj_ac)
       
  5198       my_block_end
       
  5199       apply (unfold this)
       
  5200       apply (subst reps'_append)
       
  5201       apply (unfold eq_drop)
       
  5202       apply (subst (2) reps'_append)
       
  5203       apply (simp only:sep_conj_exists, intro tm.precond_exI)
       
  5204       apply (subst (2) reps'_def, simp add:reps.simps ones_simps)
       
  5205       apply (subst reps'_append, simp only:sep_conj_exists, intro tm.precond_exI)
       
  5206       apply (rule_tac q =
       
  5207        "st l \<and>*
       
  5208         ps mb \<and>*
       
  5209         zero (u - 1) \<and>*
       
  5210         reps' u (mb - 1) (take a ks) \<and>*
       
  5211         reps' mb (m - 1) [ks ! a] \<and>*
       
  5212         one m \<and>*
       
  5213         zero (u - 2) \<and>*
       
  5214         ones (m + 1) (m + int k') \<and>*
       
  5215         <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero"
       
  5216       in tm.sequencing)
       
  5217       apply (rule tm.code_extension)
       
  5218       apply hstep
       
  5219       (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
       
  5220       apply (subst (2) reps'_def, simp)
       
  5221       my_block
       
  5222         fix i j l m mb
       
  5223         from `ks!a = (Suc v)` have "ks!a \<noteq> 0" by simp
       
  5224         from hoare_if_reps_nz_true[OF this, where u = mb and v = "m - 2"]
       
  5225         have "\<lbrace>st i \<and>* ps mb \<and>* reps mb (-2 + m) [ks ! a]\<rbrace>  
       
  5226                         i :[ if_reps_nz l ]: j
       
  5227               \<lbrace>st l \<and>* ps mb \<and>* reps mb (-2 + m) [ks ! a]\<rbrace>"
       
  5228           by smt
       
  5229       my_block_end
       
  5230       apply (hgoto this)
       
  5231       apply (simp add:sep_conj_ac, sep_cancel+)
       
  5232       apply (subst reps'_def, simp add:sep_conj_ac)
       
  5233       apply (rule tm.code_extension1)
       
  5234       apply (rule t_hoare_label1, simp, prune)
       
  5235       apply (subst (2) reps'_def, simp add:reps.simps)
       
  5236       apply (rule_tac p = "st j' \<and>* ps mb \<and>* zero (u - 1) \<and>* reps' u (mb - 1) (take a ks) \<and>*
       
  5237         ((ones mb (mb + int (ks ! a)) \<and>* <(-2 + m = mb + int (ks ! a))>) \<and>* zero (mb + int (ks ! a) + 1)) \<and>*
       
  5238           one (mb + int (ks ! a) + 2) \<and>* zero (u - 2) \<and>* 
       
  5239           ones (mb + int (ks ! a) + 3) (mb + int (ks ! a) + int k' + 2) \<and>*
       
  5240         <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero
       
  5241         " in tm.pre_stren)
       
  5242       apply hsteps 
       
  5243       (* apply (simp add:sep_conj_ac) *)
       
  5244       apply (unfold `ks!a = Suc v`)
       
  5245       my_block
       
  5246         fix mb
       
  5247         have "(ones mb (mb + int (Suc v))) = (ones mb (mb + int v) \<and>* one (mb + int (Suc v)))"
       
  5248           by (simp add:ones_rev)
       
  5249       my_block_end
       
  5250       apply (unfold this, prune)
       
  5251       apply hsteps
       
  5252       apply (rule_tac p = "st j'a \<and>* 
       
  5253                ps (mb + int (Suc v) + 2) \<and>* zero (mb + int (Suc v) + 1) \<and>*
       
  5254                reps (mb + int (Suc v) + 2) ia (drop (Suc a) ks) \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>*
       
  5255         zero (mb + int (Suc v)) \<and>*
       
  5256         ones mb (mb + int v) \<and>*
       
  5257         zero (u - 1) \<and>*
       
  5258         reps' u (mb - 1) (take a ks) \<and>*
       
  5259         zero (u - 2) \<and>* fam_conj {ia + 2<..} zero
       
  5260         " in tm.pre_stren) 
       
  5261       apply hsteps
       
  5262       (* apply (hsteps hoare_shift_left_cons_gen[OF False]) *)
       
  5263       apply (rule_tac p = "st j'a \<and>* ps (ia - 1) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* 
       
  5264                            reps u (ia - 1) (take a ks @ [v] @ drop (Suc a) ks) \<and>*
       
  5265                            zero ia \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>*
       
  5266                            fam_conj {ia + 2<..} zero
       
  5267         " in tm.pre_stren)
       
  5268       apply hsteps
       
  5269       apply (simp add:sep_conj_ac)
       
  5270       apply (subst fam_conj_interv_simp)
       
  5271       apply (subst fam_conj_interv_simp)
       
  5272       apply (subst fam_conj_interv_simp)
       
  5273       apply (simp add:sep_conj_ac)
       
  5274       apply (sep_cancel+)
       
  5275       my_block
       
  5276         have "take a ks @ v # drop (Suc a) ks = list_ext a ks[a := v]"
       
  5277         proof -
       
  5278           from `a < length ks` have "list_ext a ks = ks" by (metis list_ext_lt)
       
  5279           hence "list_ext a ks[a:=v] = ks[a:=v]" by simp
       
  5280           moreover from `a < length ks` have "ks[a:=v] = take a ks @ v # drop (Suc a) ks"
       
  5281             by (metis upd_conv_take_nth_drop)
       
  5282           ultimately show ?thesis by metis
       
  5283         qed
       
  5284       my_block_end
       
  5285       apply (unfold this, sep_cancel+, smt)
       
  5286       apply (simp add:sep_conj_ac)
       
  5287       apply (fwd abs_reps')+
       
  5288       apply (simp add:sep_conj_ac int_add_ac)
       
  5289       apply (sep_cancel+)
       
  5290       apply (subst (asm) reps'_def, simp add:sep_conj_ac)
       
  5291       apply (subst (asm) sep_conj_cond)+
       
  5292       apply (erule condE, clarsimp)
       
  5293       apply (simp add:sep_conj_ac, sep_cancel+)
       
  5294       apply (fwd abs_ones)+
       
  5295       apply (fwd abs_reps')+
       
  5296       apply (subst (asm) reps'_def, simp)
       
  5297       apply (subst (asm) fam_conj_interv_simp)
       
  5298       apply (simp add:sep_conj_ac int_add_ac eq_drop reps'_def)
       
  5299       apply (subst (asm) sep_conj_cond)+
       
  5300       apply (erule condE, clarsimp)
       
  5301       by (simp add:sep_conj_ac int_add_ac)
       
  5302   next
       
  5303     case True
       
  5304     show ?thesis
       
  5305       apply (unfold Dec_def, intro t_hoare_local)
       
  5306       apply (subst tassemble_to.simps(2), rule tm.code_exI)
       
  5307       apply (subst (1) eq_ks, simp add:True)
       
  5308       my_block
       
  5309         have "(reps u ia (take a ks @ [ks ! a]) \<and>* fam_conj {ia<..} zero) = 
       
  5310               (reps' u (ia + 1) (take a ks @ [ks ! a]) \<and>* fam_conj {ia + 1<..} zero)"
       
  5311           apply (subst fam_conj_interv_simp)
       
  5312           by (unfold reps'_def, simp add:sep_conj_ac)
       
  5313       my_block_end
       
  5314       apply (unfold this)
       
  5315       apply (subst reps'_append)
       
  5316       apply (simp only:sep_conj_exists, intro tm.precond_exI)
       
  5317       apply (rule_tac q = "st l \<and>* ps m \<and>* zero (u - 1) \<and>* reps' u (m - 1) (take a ks) \<and>*
       
  5318             reps' m (ia + 1) [ks ! a] \<and>* zero (2 + ia) \<and>* zero (u - 2) \<and>* fam_conj {2 + ia<..} zero"
       
  5319              in tm.sequencing)
       
  5320       apply (rule tm.code_extension)
       
  5321       apply (subst fam_conj_interv_simp, simp)
       
  5322       apply hsteps
       
  5323       (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
       
  5324       my_block
       
  5325         fix m
       
  5326         have "(reps' m (ia + 1) [ks ! a]) = 
       
  5327               (reps m ia [ks!a] \<and>* zero (ia + 1))"
       
  5328           by (unfold reps'_def, simp)
       
  5329       my_block_end
       
  5330       apply (unfold this)
       
  5331       my_block
       
  5332         fix i j l m
       
  5333         from `ks!a = (Suc v)` have "ks!a \<noteq> 0" by simp
       
  5334       my_block_end
       
  5335       apply (hgoto hoare_if_reps_nz_true_gen)
       
  5336       apply (rule tm.code_extension1)
       
  5337       apply (rule t_hoare_label1, simp)
       
  5338       apply (thin_tac "la = j'", prune)
       
  5339       apply (subst (1) reps.simps)
       
  5340       apply (subst sep_conj_cond)+
       
  5341       apply (rule tm.pre_condI, simp)
       
  5342       apply hsteps
       
  5343       apply (unfold `ks!a = Suc v`)
       
  5344       my_block
       
  5345         fix m
       
  5346         have "(ones m (m + int (Suc v))) = (ones m (m + int v) \<and>* one (m + int (Suc v)))"
       
  5347           by (simp add:ones_rev)
       
  5348       my_block_end
       
  5349       apply (unfold this)
       
  5350       apply hsteps 
       
  5351       apply (rule_tac p = "st j'a \<and>* ps (m + int v) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* 
       
  5352                            reps u (m + int v) (take a ks @ [v]) \<and>* zero (m + (1 + int v)) \<and>*
       
  5353                            zero (2 + (m + int v)) \<and>* zero (3 + (m + int v)) \<and>*
       
  5354                            fam_conj {3 + (m + int v)<..} zero
       
  5355         " in tm.pre_stren)
       
  5356       apply hsteps
       
  5357       apply (simp add:sep_conj_ac, sep_cancel+)
       
  5358       my_block
       
  5359         have "take a ks @ [v] = list_ext a ks[a := v]"
       
  5360         proof -
       
  5361           from True `a < length ks` have "ks = take a ks @ [ks!a]"
       
  5362             by (metis append_Nil2 eq_ks)
       
  5363           hence "ks[a:=v] = take a ks @ [v]"
       
  5364             by (metis True `a < length ks` upd_conv_take_nth_drop)
       
  5365           moreover from `a < length ks` have "list_ext a ks = ks"
       
  5366             by (metis list_ext_lt)
       
  5367           ultimately show ?thesis by simp
       
  5368         qed
       
  5369       my_block_end my_note eq_l = this
       
  5370       apply (unfold this)
       
  5371       apply (subst fam_conj_interv_simp)
       
  5372       apply (subst fam_conj_interv_simp)
       
  5373       apply (subst fam_conj_interv_simp)
       
  5374       apply (simp add:sep_conj_ac, sep_cancel, smt)
       
  5375       apply (simp add:sep_conj_ac int_add_ac)+
       
  5376       apply (sep_cancel+)
       
  5377       apply (fwd abs_reps')+
       
  5378       apply (fwd reps'_reps_abs)
       
  5379       by (simp add:eq_l)
       
  5380   qed
       
  5381 qed
       
  5382 
       
  5383 definition "cfill_until_one = (TL start exit.
       
  5384                                 TLabel start;
       
  5385                                   if_one exit;
       
  5386                                   write_one;
       
  5387                                   move_left;
       
  5388                                   jmp start;
       
  5389                                 TLabel exit
       
  5390                                )"
       
  5391 
       
  5392 lemma hoare_cfill_until_one:
       
  5393    "\<lbrace>st i \<and>* ps v \<and>* one (u - 1) \<and>* zeros u v\<rbrace> 
       
  5394               i :[ cfill_until_one ]: j
       
  5395     \<lbrace>st j \<and>* ps (u - 1) \<and>* ones (u - 1) v \<rbrace>"
       
  5396 proof(induct u v rule:zeros_rev_induct)
       
  5397   case (Base x y)
       
  5398   thus ?case
       
  5399     apply (subst sep_conj_cond)+
       
  5400     apply (rule tm.pre_condI, simp add:ones_simps)
       
  5401     apply (unfold cfill_until_one_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
       
  5402     by hstep
       
  5403 next
       
  5404   case (Step x y)
       
  5405   show ?case
       
  5406     apply (rule_tac q = "st i \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1) \<and>* one y" in tm.sequencing)
       
  5407     apply (subst cfill_until_one_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
       
  5408     apply hsteps
       
  5409     my_block
       
  5410       fix i j l
       
  5411       have "\<lbrace>st i \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1)\<rbrace>  
       
  5412               i :[ jmp l ]: j
       
  5413             \<lbrace>st l \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1)\<rbrace>"
       
  5414         apply (case_tac "(y - 1) < x", simp add:zeros_simps)
       
  5415         apply (subst sep_conj_cond)+
       
  5416         apply (rule tm.pre_condI, simp)
       
  5417         apply hstep
       
  5418         apply (drule_tac zeros_rev, simp)
       
  5419         by hstep
       
  5420     my_block_end
       
  5421     apply (hstep this)
       
  5422     (* The next half *)
       
  5423     apply (hstep Step(2), simp add:sep_conj_ac, sep_cancel+)
       
  5424     by (insert Step(1), simp add:ones_rev sep_conj_ac)
       
  5425 qed
       
  5426 
       
  5427 definition "cmove = (TL start exit.
       
  5428                        TLabel start;
       
  5429                          left_until_zero;
       
  5430                          left_until_one;
       
  5431                          move_left;
       
  5432                          if_zero exit;
       
  5433                          move_right;
       
  5434                          write_zero;
       
  5435                          right_until_one;
       
  5436                          right_until_zero;
       
  5437                          write_one;
       
  5438                          jmp start;
       
  5439                      TLabel exit
       
  5440                     )"
       
  5441 
       
  5442 declare zeros.simps [simp del] zeros_simps[simp del]
       
  5443 
       
  5444 lemma hoare_cmove:
       
  5445   assumes "w \<le> k"
       
  5446   shows "\<lbrace>st i \<and>* ps (v + 2 + int w) \<and>* zero (u - 1) \<and>* 
       
  5447               reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1) \<and>*
       
  5448               one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<and>* zeros (v + 3 + int w)  (v + int(reps_len [k]) + 1)\<rbrace>
       
  5449                                  i :[cmove]: j
       
  5450           \<lbrace>st j \<and>* ps (u - 1) \<and>* zero (u - 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>*
       
  5451                                                                   reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>"
       
  5452   using assms
       
  5453 proof(induct "k - w" arbitrary: w)
       
  5454   case (0 w)
       
  5455   hence "w = k" by auto
       
  5456   show ?case
       
  5457     apply (simp add: `w = k` del:zeros.simps zeros_simps)
       
  5458     apply (unfold cmove_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
       
  5459     apply (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def del:zeros_simps zeros.simps)
       
  5460     apply (rule_tac p = "st i \<and>* ps (v + 2 + int k) \<and>* zero (u - 1) \<and>*
       
  5461                          reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>*
       
  5462                          ones (v + 2) (v + 2 + int k) \<and>* zeros (v + 3 + int k) (2 + (v + int k)) \<and>*
       
  5463                          <(u = v - int k)>" 
       
  5464       in tm.pre_stren)
       
  5465     my_block
       
  5466       fix i j
       
  5467       have "\<lbrace>st i \<and>* ps (v + 2 + int k) \<and>* zeros (u + 1) (v + 1) \<and>* ones (v + 2) (v + 2 + int k) 
       
  5468                                                              \<and>* <(u = v - int k)>\<rbrace>
       
  5469                   i :[ left_until_zero ]: j
       
  5470             \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros (u + 1) (v + 1) \<and>* ones (v + 2) (v + 2 + int k)
       
  5471                                                              \<and>* <(u = v - int k)>\<rbrace>"
       
  5472         apply (subst sep_conj_cond)+
       
  5473         apply (rule tm.pre_condI, simp)
       
  5474         my_block
       
  5475           have "(zeros (v - int k + 1) (v + 1)) = (zeros (v - int k + 1) v \<and>* zero (v + 1))"
       
  5476             by (simp only:zeros_rev, smt)
       
  5477         my_block_end
       
  5478         apply (unfold this)
       
  5479         by hsteps
       
  5480     my_block_end
       
  5481     apply (hstep this)
       
  5482     my_block
       
  5483       fix i j 
       
  5484       have "\<lbrace>st i \<and>* ps (v + 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1)\<rbrace> 
       
  5485                 i :[left_until_one]:j 
       
  5486             \<lbrace>st j \<and>* ps u \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1)\<rbrace>"
       
  5487         apply (simp add:reps.simps ones_simps)
       
  5488         by hsteps
       
  5489     my_block_end
       
  5490     apply (hsteps this)
       
  5491     apply ((subst (asm) sep_conj_cond)+, erule condE, clarsimp)
       
  5492     apply (fwd abs_reps')+
       
  5493     apply (simp only:sep_conj_ac int_add_ac, sep_cancel+)
       
  5494     apply (simp add:int_add_ac sep_conj_ac zeros_simps)
       
  5495     apply (simp add:sep_conj_ac int_add_ac, sep_cancel+)
       
  5496     apply (fwd reps_lenE)
       
  5497     apply (subst (asm) sep_conj_cond)+
       
  5498     apply (erule condE, clarsimp)
       
  5499     apply (subgoal_tac "v  = u + int k + int (reps_len [0]) - 1", clarsimp)
       
  5500     apply (simp add:reps_len_sg)
       
  5501     apply (fwd abs_ones)+
       
  5502     apply (fwd abs_reps')+
       
  5503     apply (simp add:sep_conj_ac int_add_ac)
       
  5504     apply (sep_cancel+)
       
  5505     apply (simp add:reps.simps, smt)
       
  5506     by (clarsimp)
       
  5507 next
       
  5508   case (Suc k' w)
       
  5509   from `Suc k' = k - w` `w \<le> k` 
       
  5510   have h: "k' = k - (Suc w)" "Suc w \<le> k" by auto
       
  5511   show ?case
       
  5512     apply (rule tm.sequencing[OF _ Suc(1)[OF h(1, 2)]])
       
  5513     apply (unfold cmove_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
       
  5514     apply (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def del:zeros_simps zeros.simps)
       
  5515     my_block
       
  5516       fix i j
       
  5517       have "\<lbrace>st i \<and>* ps (v + 2 + int w) \<and>* zeros (v - int w + 1) (v + 1) \<and>*
       
  5518                                one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<rbrace> 
       
  5519                     i :[left_until_zero]: j
       
  5520             \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros (v - int w + 1) (v + 1) \<and>*
       
  5521                                one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<rbrace>"
       
  5522         my_block
       
  5523           have "(one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)) = 
       
  5524                  ones (v + 2) (v + 2 + int w)"
       
  5525             by (simp only:ones_simps, smt)
       
  5526         my_block_end
       
  5527         apply (unfold this)
       
  5528         my_block
       
  5529           have "(zeros (v - int w + 1) (v + 1)) = (zeros (v - int w + 1) v \<and>*  zero (v + 1))"
       
  5530             by (simp only:zeros_rev, simp)
       
  5531         my_block_end
       
  5532         apply (unfold this)
       
  5533         by hsteps
       
  5534     my_block_end
       
  5535     apply (hstep this)
       
  5536     my_block
       
  5537       fix i j
       
  5538       have "\<lbrace>st i \<and>* ps (v + 1) \<and>* reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1)\<rbrace> 
       
  5539                  i :[left_until_one]: j 
       
  5540             \<lbrace>st j \<and>* ps (v - int w) \<and>* reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1)\<rbrace>"
       
  5541         apply (simp add:reps.simps ones_rev)
       
  5542         apply (subst sep_conj_cond)+
       
  5543         apply (rule tm.pre_condI, clarsimp)
       
  5544         apply (subgoal_tac "u + int (k - w) = v - int w", simp)
       
  5545         defer
       
  5546         apply simp
       
  5547         by hsteps
       
  5548     my_block_end
       
  5549     apply (hstep this)
       
  5550     my_block
       
  5551       have "(reps u (v - int w) [k - w]) = (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))"
       
  5552         apply (subst (1 2) reps.simps)
       
  5553         apply (subst sep_conj_cond)+
       
  5554         my_block
       
  5555           have "((v - int w = u + int (k - w))) =
       
  5556                 (v - (1 + int w) = u + int (k - Suc w))"
       
  5557             apply auto
       
  5558             apply (smt Suc.prems h(2))
       
  5559             by (smt Suc.prems h(2))
       
  5560         my_block_end
       
  5561         apply (simp add:this)
       
  5562         my_block
       
  5563           fix b p q
       
  5564           assume "(b \<Longrightarrow> (p::tassert) = q)"
       
  5565           have "(<b> \<and>* p) = (<b> \<and>* q)"
       
  5566             by (metis `b \<Longrightarrow> p = q` cond_eqI)
       
  5567         my_block_end
       
  5568         apply (rule this)
       
  5569         my_block
       
  5570           assume "v - (1 + int w) = u + int (k - Suc w)"
       
  5571           hence "v = 1 + int w +  u + int (k - Suc w)" by auto
       
  5572         my_block_end
       
  5573         apply (simp add:this)
       
  5574         my_block
       
  5575           have "\<not> (u + int (k - w)) < u" by auto
       
  5576         my_block_end
       
  5577         apply (unfold ones_rev[OF this])
       
  5578         my_block
       
  5579           from Suc (2, 3) have "(u + int (k - w) - 1) = (u + int (k - Suc w))"
       
  5580             by auto
       
  5581         my_block_end
       
  5582         apply (unfold this)
       
  5583         my_block
       
  5584           from Suc (2, 3) have "(u + int (k - w)) =  (1 + (u + int (k - Suc w)))"
       
  5585             by auto
       
  5586         my_block_end
       
  5587         by (unfold this, simp)
       
  5588     my_block_end
       
  5589     apply (unfold this)
       
  5590     my_block
       
  5591       fix i j
       
  5592       have "\<lbrace>st i \<and>* ps (v - int w) \<and>*
       
  5593                         (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))\<rbrace> 
       
  5594                  i :[ move_left]: j
       
  5595             \<lbrace>st j \<and>* ps (v - (1 + int w)) \<and>*
       
  5596                         (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))\<rbrace>"
       
  5597         apply (simp add:reps.simps ones_rev)
       
  5598         apply (subst sep_conj_cond)+
       
  5599         apply (rule tm.pre_condI, clarsimp)
       
  5600         apply (subgoal_tac " u + int (k - Suc w) = v - (1 + int w)", simp)
       
  5601         defer
       
  5602         apply simp
       
  5603         apply hsteps
       
  5604         by (simp add:sep_conj_ac, sep_cancel+, smt)
       
  5605     my_block_end
       
  5606     apply (hstep this)
       
  5607     my_block
       
  5608       fix i' j'
       
  5609       have "\<lbrace>st i' \<and>* ps (v - (1 + int w)) \<and>* reps u (v - (1 + int w)) [k - Suc w]\<rbrace> 
       
  5610                i' :[ if_zero j ]: j'
       
  5611             \<lbrace>st j' \<and>* ps (v - (1 + int w)) \<and>* reps u (v - (1 + int w)) [k - Suc w]\<rbrace>"
       
  5612         apply (simp add:reps.simps ones_rev)
       
  5613         apply (subst sep_conj_cond)+
       
  5614         apply (rule tm.pre_condI, clarsimp)
       
  5615         apply (subgoal_tac " u + int (k - Suc w) = v - (1 + int w)", simp)
       
  5616         defer
       
  5617         apply simp
       
  5618         by hstep
       
  5619     my_block_end
       
  5620     apply (hstep this)
       
  5621     my_block
       
  5622       fix i j
       
  5623       have "\<lbrace>st i \<and>* ps (v - (1 + int w)) \<and>*  reps u (v - (1 + int w)) [k - Suc w]\<rbrace> 
       
  5624                 i :[ move_right ]: j 
       
  5625             \<lbrace>st j \<and>* ps (v - int w) \<and>*  reps u (v - (1 + int w)) [k - Suc w] \<rbrace>"
       
  5626         apply (simp add:reps.simps ones_rev)
       
  5627         apply (subst sep_conj_cond)+
       
  5628         apply (rule tm.pre_condI, clarsimp)
       
  5629         apply (subgoal_tac " u + int (k - Suc w) =  v - (1 + int w)", simp)
       
  5630         defer
       
  5631         apply simp
       
  5632         by hstep
       
  5633     my_block_end
       
  5634     apply (hsteps this)
       
  5635     my_block
       
  5636       fix i j
       
  5637       have "\<lbrace>st i \<and>* ps (v - int w) \<and>*  one (v + 2) \<and>* 
       
  5638                          zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)\<rbrace> 
       
  5639                  i :[right_until_one]: j
       
  5640             \<lbrace>st j \<and>* ps (v + 2) \<and>*  one (v + 2) \<and>*  zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)\<rbrace>"
       
  5641         my_block
       
  5642           have "(zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)) = 
       
  5643                     (zeros (v - int w) (v + 1))"
       
  5644             by (simp add:zeros_simps)
       
  5645         my_block_end
       
  5646         apply (unfold this)
       
  5647         by hsteps
       
  5648     my_block_end
       
  5649     apply (hstep this)
       
  5650     my_block
       
  5651       from Suc(2, 3) have "w < k" by auto
       
  5652       hence "(zeros (v + 3 + int w) (2 + (v + int k))) = 
       
  5653                   (zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)))"
       
  5654         by (simp add:zeros_simps)
       
  5655     my_block_end
       
  5656     apply (unfold this)
       
  5657     my_block
       
  5658       fix i j
       
  5659       have "\<lbrace>st i \<and>* ps (v + 2) \<and>* zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)) \<and>* 
       
  5660                                                         one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)\<rbrace>
       
  5661                 i :[right_until_zero]: j
       
  5662             \<lbrace>st j \<and>* ps (v + 3 + int w) \<and>* zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)) \<and>* 
       
  5663                                                         one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)\<rbrace>"
       
  5664         my_block
       
  5665           have "(one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)) =
       
  5666                 (ones (v + 2) (v + 2 + int w))"
       
  5667             by (simp add:ones_simps, smt)
       
  5668         my_block_end
       
  5669         apply (unfold this)
       
  5670         by hsteps
       
  5671     my_block_end
       
  5672     apply (hsteps this, simp only:sep_conj_ac)
       
  5673     apply (sep_cancel+, simp add:sep_conj_ac)
       
  5674     my_block
       
  5675       fix s
       
  5676       assume "(zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)) s"
       
  5677       hence "zeros (v - int w) (v + 1) s"
       
  5678         by (simp add:zeros_simps)
       
  5679     my_block_end
       
  5680     apply (fwd this)
       
  5681     my_block
       
  5682       fix s
       
  5683       assume "(one (v + 3 + int w) \<and>* ones (v + 3) (v + 2 + int w)) s"
       
  5684       hence "ones (v + 3) (3 + (v + int w)) s"
       
  5685         by (simp add:ones_rev sep_conj_ac, smt)
       
  5686     my_block_end
       
  5687     apply (fwd this)
       
  5688     by (simp add:sep_conj_ac, smt)
       
  5689 qed
       
  5690 
       
  5691 definition "cinit = (right_until_zero; move_right; write_one)"
       
  5692 
       
  5693 definition "copy = (cinit; cmove; move_right; move_right; right_until_one; move_left; move_left; cfill_until_one)"
       
  5694 
       
  5695 lemma hoare_copy:
       
  5696   shows
       
  5697    "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
       
  5698                                                      zeros (v + 2) (v + int(reps_len [k]) + 1)\<rbrace>
       
  5699                                   i :[copy]: j
       
  5700     \<lbrace>st j \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>* 
       
  5701                                                       reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>"
       
  5702   apply (unfold copy_def)
       
  5703   my_block
       
  5704     fix i j
       
  5705     have 
       
  5706        "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1) \<and>* zeros (v + 2) (v + int(reps_len [k]) + 1)\<rbrace>
       
  5707                       i :[cinit]: j
       
  5708         \<lbrace>st j \<and>* ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
       
  5709                                            one (v + 2) \<and>* zeros (v + 3) (v + int(reps_len [k]) + 1)\<rbrace>"
       
  5710       apply (unfold cinit_def)
       
  5711       apply (simp add:reps.simps)
       
  5712       apply (subst sep_conj_cond)+
       
  5713       apply (rule tm.pre_condI, simp)
       
  5714       apply hsteps
       
  5715       apply (simp add:sep_conj_ac)
       
  5716       my_block
       
  5717         have "(zeros (u + int k + 2) (u + int k + int (reps_len [k]) + 1)) = 
       
  5718               (zero (u + int k + 2) \<and>*  zeros (u + int k + 3) (u + int k + int (reps_len [k]) + 1))"
       
  5719           by (smt reps_len_sg zeros_step_simp)
       
  5720       my_block_end
       
  5721       apply (unfold this)
       
  5722       apply hstep
       
  5723       by (simp add:sep_conj_ac, sep_cancel+, smt)
       
  5724   my_block_end
       
  5725   apply (hstep this)
       
  5726   apply (rule_tac p = "st j' \<and>* ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
       
  5727           one (v + 2) \<and>* zeros (v + 3) (v + int (reps_len [k]) + 1) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
       
  5728             <(v = u + int (reps_len [k]) - 1)>
       
  5729     " in tm.pre_stren)
       
  5730   my_block
       
  5731     fix i j
       
  5732     from hoare_cmove[where w = 0 and k = k and i = i and j = j and v = v and u = u]
       
  5733     have "\<lbrace>st i \<and>* ps (v + 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
       
  5734                                             one (v + 2) \<and>* zeros (v + 3) (v + int(reps_len [k]) + 1)\<rbrace>
       
  5735                       i :[cmove]: j
       
  5736           \<lbrace>st j \<and>* ps (u - 1) \<and>* zero (u - 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>*
       
  5737                                                        reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>"
       
  5738       by (auto simp:ones_simps zeros_simps)
       
  5739   my_block_end
       
  5740   apply (hstep this)
       
  5741   apply (hstep, simp)
       
  5742   my_block
       
  5743     have "reps u u [0] = one u" by (simp add:reps.simps ones_simps)
       
  5744   my_block_end my_note eq_repsz = this
       
  5745   apply (unfold this)
       
  5746   apply (hstep)
       
  5747   apply (subst reps.simps, simp add: ones_simps)
       
  5748   apply hsteps
       
  5749   apply (subst sep_conj_cond)+
       
  5750   apply (rule tm.pre_condI, simp del:zeros.simps zeros_simps)
       
  5751   apply (thin_tac "int (reps_len [k]) = 1 + int k \<and> v = u + int (reps_len [k]) - 1")
       
  5752   my_block
       
  5753     have "(zeros (u + 1) (u + int k + 1)) = (zeros (u + 1) (u + int k) \<and>* zero (u + int k + 1))"
       
  5754       by (simp only:zeros_rev, smt)
       
  5755   my_block_end
       
  5756   apply (unfold this)
       
  5757   apply (hstep, simp)
       
  5758   my_block
       
  5759     fix i j
       
  5760     from hoare_cfill_until_one[where v = "u + int k" and u = "u + 1"]
       
  5761     have "\<lbrace>st i \<and>* ps (u + int k) \<and>* one u \<and>* zeros (u + 1) (u + int k)\<rbrace> 
       
  5762               i :[ cfill_until_one ]: j
       
  5763           \<lbrace>st j \<and>* ps u \<and>* ones u (u + int k) \<rbrace>"
       
  5764       by simp
       
  5765   my_block_end
       
  5766   apply (hstep this, simp add:sep_conj_ac reps.simps ones_simps)
       
  5767   apply (simp add:sep_conj_ac reps.simps ones_simps)
       
  5768   apply (subst sep_conj_cond)+
       
  5769   apply (subst (asm) sep_conj_cond)+
       
  5770   apply (rule condI)
       
  5771   apply (erule condE, simp)
       
  5772   apply (simp add: reps_len_def reps_sep_len_def reps_ctnt_len_def)
       
  5773   apply (sep_cancel+)
       
  5774   by (erule condE, simp)
       
  5775 
       
  5776 end