added FMap theory and adapted tm-theory
authorChristian Urban <christian dot urban at kcl dot ac dot uk>
Tue, 29 Apr 2014 15:26:48 +0100 (2014-04-29)
changeset 19 087d82632852
parent 18 d826899bc424
child 20 e04123f4bacc
added FMap theory and adapted tm-theory
thys/FMap.thy
thys/Hoare_tm2.thy
thys/Hoare_tm3.thy
thys/UF_Rec.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys/FMap.thy	Tue Apr 29 15:26:48 2014 +0100
@@ -0,0 +1,358 @@
+theory FMap
+  imports Main "~~/src/HOL/Quotient_Examples/FSet" "~~/src/HOL/Library/DAList"
+begin
+
+subsubsection {* The type of finite maps *}
+
+typedef ('a, 'b) fmap  (infixr "f\<rightharpoonup>" 1) = "{x :: 'a \<rightharpoonup> 'b. finite (dom x) }"
+  proof show "empty \<in> {x. finite (dom x)}" by simp qed
+
+setup_lifting type_definition_fmap
+
+lift_definition fdom :: "'key f\<rightharpoonup> 'value \<Rightarrow> 'key set" is "dom" ..
+
+lift_definition fran :: "'key f\<rightharpoonup> 'value \<Rightarrow> 'value set" is "ran" ..
+
+lift_definition lookup :: "'key f\<rightharpoonup> 'value \<Rightarrow> 'key \<Rightarrow> 'value option" is "(\<lambda> x. x)" ..
+
+abbreviation the_lookup (infix "f!" 55)
+  where "m f! x \<equiv> the (lookup m x)"
+
+lift_definition fempty :: "'key f\<rightharpoonup> 'value" ("f\<emptyset>") is Map.empty by simp
+
+lemma fempty_fdom[simp]: "fdom f\<emptyset> = {}"
+  by (transfer, auto)
+
+lemma fdomIff: "(a : fdom m) = (lookup m a \<noteq> None)"
+ by (transfer, auto)
+
+lemma lookup_not_fdom: "x \<notin> fdom m \<Longrightarrow> lookup m x = None"
+  by (auto iff:fdomIff)
+
+lemma finite_range:
+  assumes "finite (dom m)"
+  shows "finite (ran m)"
+  apply (rule finite_subset[OF _ finite_imageI[OF assms, of "\<lambda> x . the (m x)"]])
+  by (auto simp add: ran_def dom_def image_def)
+
+lemma finite_fdom[simp]: "finite (fdom m)"
+  by transfer
+
+lemma finite_fran[simp]: "finite (fran m)"
+  by (transfer, rule finite_range)
+
+lemma fmap_eqI[intro]:
+  assumes "fdom a = fdom b"
+  and "\<And> x. x \<in> fdom a \<Longrightarrow> a f! x = b f! x"
+  shows "a = b"
+using assms
+proof(transfer)
+  fix a b :: "'a \<rightharpoonup> 'b"
+  assume d: "dom a = dom b"
+  assume eq: "\<And> x. x \<in> dom a \<Longrightarrow> the (a x) = the (b x)"
+  show "a = b"
+  proof
+    fix x
+    show "a x = b x"
+    proof(cases "a x")
+    case None
+      hence "x \<notin> dom a" by (simp add: dom_def)
+      hence "x \<notin> dom b" using d by simp
+      hence " b x = None"  by (simp add: dom_def)
+      thus ?thesis using None by simp
+    next
+    case (Some y)
+      hence d': "x \<in> dom ( a)" by (simp add: dom_def)
+      hence "the ( a x) = the ( b x)" using eq by auto
+      moreover
+      have "x \<in> dom ( b)" using Some d' d by simp
+      then obtain y' where " b x = Some y'" by (auto simp add: dom_def)
+      ultimately
+      show " a x =  b x" using Some by auto
+    qed
+  qed
+qed
+
+subsubsection {* Updates *}
+
+lift_definition
+  fmap_upd :: "'key f\<rightharpoonup> 'value \<Rightarrow> 'key \<Rightarrow> 'value \<Rightarrow> 'key f\<rightharpoonup> 'value" ("_'(_ f\<mapsto> _')" [900,900]900)
+  is "\<lambda> m x v. m( x \<mapsto> v)"  by simp
+
+lemma fmap_upd_fdom[simp]: "fdom (h (x f\<mapsto> v)) = insert x (fdom h)"
+  by (transfer, auto)
+
+lemma the_lookup_fmap_upd[simp]: "lookup (h (x f\<mapsto> v)) x = Some v"
+  by (transfer, auto)
+
+lemma the_lookup_fmap_upd_other[simp]: "x' \<noteq> x \<Longrightarrow> lookup (h (x f\<mapsto> v)) x' = lookup h x'"
+  by (transfer, auto)
+
+lemma fmap_upd_overwrite[simp]: "f (x f\<mapsto> y) (x f\<mapsto> z) = f (x f\<mapsto> z)"
+  by (transfer, auto) 
+
+lemma fmap_upd_twist: "a \<noteq> c \<Longrightarrow> (m(a f\<mapsto> b))(c f\<mapsto> d) = (m(c f\<mapsto> d))(a f\<mapsto> b)"
+  apply (rule fmap_eqI)
+  apply auto[1]
+  apply (case_tac "x = a", auto)
+  apply (case_tac "x = c", auto)
+  done
+
+subsubsection {* Restriction *}
+
+lift_definition fmap_restr :: "'a set \<Rightarrow> 'a f\<rightharpoonup> 'b \<Rightarrow> 'a f\<rightharpoonup> 'b"
+  is "\<lambda> S m. (if finite S then (restrict_map m S) else empty)" by auto
+
+lemma lookup_fmap_restr[simp]: "finite S \<Longrightarrow> x \<in> S \<Longrightarrow> lookup (fmap_restr S m) x = lookup m x"
+  by (transfer, auto)
+
+lemma fdom_fmap_restr[simp]: "finite S \<Longrightarrow> fdom (fmap_restr S m) = fdom m \<inter> S"
+  by (transfer, simp)
+
+lemma fmap_restr_fmap_restr[simp]:
+ "finite d1 \<Longrightarrow> finite d2 \<Longrightarrow> fmap_restr d1 (fmap_restr d2 x) = fmap_restr (d1 \<inter> d2) x"
+ by (transfer, auto simp add: restrict_map_def)
+
+lemma fmap_restr_fmap_restr_subset:
+ "finite d2 \<Longrightarrow> d1 \<subseteq> d2 \<Longrightarrow> fmap_restr d1 (fmap_restr d2 x) = fmap_restr d1 x"
+ by (metis Int_absorb2 finite_subset fmap_restr_fmap_restr)
+
+lemma fmap_restr_useless: "finite S \<Longrightarrow> fdom m \<subseteq> S \<Longrightarrow> fmap_restr S m = m"
+  by (rule fmap_eqI, auto)
+
+lemma fmap_restr_not_finite:
+  "\<not> finite S \<Longrightarrow> fmap_restr S \<rho> = f\<emptyset>"
+  by (transfer, simp)
+
+lemma fmap_restr_fmap_upd: "x \<in> S \<Longrightarrow> finite S \<Longrightarrow> fmap_restr S (m1(x f\<mapsto> v)) = (fmap_restr S m1)(x f\<mapsto> v)"
+  apply (rule fmap_eqI)
+  apply auto[1]
+  apply (case_tac "xa = x")
+  apply auto
+  done
+
+subsubsection {* Deleting *}
+
+lift_definition fmap_delete :: "'a \<Rightarrow> 'a f\<rightharpoonup> 'b \<Rightarrow> 'a f\<rightharpoonup> 'b"
+  is "\<lambda> x m. m(x := None)" by auto
+
+lemma fdom_fmap_delete[simp]:
+  "fdom (fmap_delete x m) = fdom m - {x}"
+  by (transfer, auto)
+
+lemma fmap_delete_fmap_upd[simp]:
+  "fmap_delete x (m(x f\<mapsto> v)) = fmap_delete x m"
+  by (transfer, simp)
+
+lemma fmap_delete_noop:
+  "x \<notin> fdom m \<Longrightarrow> fmap_delete x m = m"
+  by (transfer, auto)
+
+lemma fmap_upd_fmap_delete[simp]: "x \<in> fdom \<Gamma> \<Longrightarrow> (fmap_delete x \<Gamma>)(x f\<mapsto> \<Gamma> f! x) = \<Gamma>"
+  by (transfer, auto)
+
+lemma fran_fmap_upd[simp]:
+  "fran (m(x f\<mapsto> v)) = insert v (fran (fmap_delete x m))"
+by (transfer, auto simp add: ran_def)
+ 
+subsubsection {* Addition (merging) of finite maps *}
+
+lift_definition fmap_add :: "'a f\<rightharpoonup> 'b \<Rightarrow> 'a f\<rightharpoonup> 'b \<Rightarrow> 'a f\<rightharpoonup> 'b" (infixl "f++" 100) 
+  is "map_add" by auto
+
+lemma fdom_fmap_add[simp]: "fdom (m1 f++ m2) = fdom m1 \<union> fdom m2"
+  by (transfer, auto)
+
+lemma lookup_fmap_add1[simp]: "x \<in> fdom m2 \<Longrightarrow> lookup (m1 f++ m2) x = lookup m2 x"
+  by (transfer, auto)
+
+lemma lookup_fmap_add2[simp]:  "x \<notin> fdom m2 \<Longrightarrow> lookup (m1 f++ m2) x = lookup m1 x"
+  apply transfer
+  by (metis map_add_dom_app_simps(3))
+
+lemma [simp]: "\<rho> f++ f\<emptyset> = \<rho>"
+  by (transfer, auto)
+
+lemma fmap_add_overwrite: "fdom m1 \<subseteq> fdom m2 \<Longrightarrow> m1 f++ m2 = m2"
+  apply transfer
+  apply rule
+  apply (case_tac "x \<in> dom m2")
+  apply (auto simp add: map_add_dom_app_simps(1))
+  done
+
+lemma fmap_add_upd_swap: 
+  "x \<notin> fdom \<rho>' \<Longrightarrow> \<rho>(x f\<mapsto> z) f++ \<rho>' = (\<rho> f++ \<rho>')(x f\<mapsto> z)"
+  apply transfer
+  by (metis map_add_upd_left)
+
+lemma fmap_add_upd: 
+  "\<rho> f++ (\<rho>'(x f\<mapsto> z)) = (\<rho> f++ \<rho>')(x f\<mapsto> z)"
+  apply transfer
+  by (metis map_add_upd)
+
+lemma fmap_restr_add: "fmap_restr S (m1 f++ m2) = fmap_restr S m1 f++ fmap_restr S m2"
+  apply (cases "finite S")
+  apply (rule fmap_eqI)
+  apply auto[1]
+  apply (case_tac "x \<in> fdom m2")
+  apply auto
+  apply (simp add: fmap_restr_not_finite)
+  done
+
+subsubsection {* Conversion from associative lists *}
+
+lift_definition fmap_of :: "('a \<times> 'b) list \<Rightarrow> 'a f\<rightharpoonup> 'b"
+  is map_of by (rule finite_dom_map_of)
+
+lemma fmap_of_Nil[simp]: "fmap_of [] = f\<emptyset>"
+ by (transfer, simp)
+
+lemma fmap_of_Cons[simp]: "fmap_of (p # l) = (fmap_of l)(fst p f\<mapsto> snd p)" 
+  by (transfer, simp)
+
+lemma fmap_of_append[simp]: "fmap_of (l1 @ l2) = fmap_of l2 f++ fmap_of l1"
+  by (transfer, simp)
+
+lemma lookup_fmap_of[simp]:
+  "lookup (fmap_of m) x = map_of m x"
+  by (transfer, auto)
+
+lemma fmap_delete_fmap_of[simp]:
+  "fmap_delete x (fmap_of m) = fmap_of (AList.delete x m)"
+  by (transfer, metis delete_conv')
+
+subsubsection {* Less-than-relation for extending finite maps *}
+
+instantiation fmap :: (type,type) order
+begin
+  definition "\<rho> \<le> \<rho>' = ((fdom \<rho> \<subseteq> fdom \<rho>') \<and> (\<forall>x \<in> fdom \<rho>. lookup \<rho> x = lookup \<rho>' x))"
+  definition "(\<rho>::'a f\<rightharpoonup> 'b) < \<rho>' = (\<rho> \<noteq> \<rho>' \<and> \<rho> \<le> \<rho>')"
+
+  lemma fmap_less_eqI[intro]:
+    assumes assm1: "fdom \<rho> \<subseteq> fdom \<rho>'"
+      and assm2:  "\<And> x. \<lbrakk> x \<in> fdom \<rho> ; x \<in> fdom \<rho>'  \<rbrakk> \<Longrightarrow> \<rho> f! x = \<rho>' f! x "
+     shows "\<rho> \<le> \<rho>'"
+   unfolding less_eq_fmap_def
+   apply rule
+   apply fact
+   apply rule+
+   apply (frule subsetD[OF `_ \<subseteq> _`])
+   apply (frule  assm2)
+   apply (auto iff: fdomIff)
+   done
+  
+  lemma fmap_less_eqD:
+    assumes "\<rho> \<le> \<rho>'"
+    assumes "x \<in> fdom \<rho>"
+    shows "lookup \<rho> x = lookup \<rho>' x"
+    using assms
+    unfolding less_eq_fmap_def by auto
+  
+  lemma fmap_antisym: assumes  "(x:: 'a f\<rightharpoonup> 'b) \<le> y" and "y \<le> x" shows "x = y "
+  proof(rule fmap_eqI[rule_format])
+      show "fdom x = fdom y" using `x \<le> y` and `y \<le> x` unfolding less_eq_fmap_def by auto
+      
+      fix v
+      assume "v \<in> fdom x"
+      hence "v \<in> fdom y" using `fdom _ = _` by simp
+  
+      thus "x f! v = y f! v"
+        using `x \<le> y` `v \<in> fdom x` unfolding less_eq_fmap_def by simp
+    qed
+  
+  lemma fmap_trans: assumes  "(x:: 'a f\<rightharpoonup> 'b) \<le> y" and "y \<le> z" shows "x \<le> z"
+  proof
+    show "fdom x \<subseteq> fdom z" using `x \<le> y` and `y \<le> z` unfolding less_eq_fmap_def
+      by -(rule order_trans [of _ "fdom y"], auto)
+    
+    fix v
+    assume "v \<in> fdom x" and "v \<in> fdom z"
+    hence "v \<in> fdom y" using `x \<le> y`  unfolding less_eq_fmap_def by auto
+    hence "lookup y v = lookup x v"
+      using `x \<le> y` `v \<in> fdom x` unfolding less_eq_fmap_def by auto
+    moreover
+    have "lookup y v = lookup z v"
+      by (rule fmap_less_eqD[OF `y \<le> z`  `v \<in> fdom y`])
+    ultimately
+    show "x f! v = z f! v" by auto
+  qed
+  
+  instance
+    apply default
+    using fmap_antisym apply (auto simp add: less_fmap_def)[1]
+    apply (auto simp add: less_eq_fmap_def)[1]
+    using fmap_trans apply assumption
+    using fmap_antisym apply assumption
+    done
+end
+
+lemma fmap_less_fdom:
+  "\<rho>1 \<le> \<rho>2 \<Longrightarrow> fdom \<rho>1 \<subseteq> fdom \<rho>2"
+  by (metis less_eq_fmap_def)
+
+lemma fmap_less_restrict:
+  "\<rho>1 \<le> \<rho>2 \<longleftrightarrow> \<rho>1 = fmap_restr (fdom \<rho>1) \<rho>2"
+  unfolding less_eq_fmap_def
+  apply transfer
+  apply (auto simp add:restrict_map_def split:option.split_asm)
+  by (metis option.simps(3))+
+
+lemma fmap_restr_less:
+  "fmap_restr S \<rho> \<le> \<rho>"
+  unfolding less_eq_fmap_def
+  by (transfer, auto)
+
+lemma fmap_upd_less[simp, intro]:
+  "\<rho>1 \<le> \<rho>2 \<Longrightarrow> v1 = v2 \<Longrightarrow> \<rho>1(x f\<mapsto> v1) \<le> \<rho>2(x f\<mapsto> v2)"
+  apply (rule fmap_less_eqI)
+  apply (auto dest: fmap_less_fdom)[1]
+  apply (case_tac "xa = x")
+  apply (auto dest: fmap_less_eqD)
+  done
+
+lemma fmap_update_less[simp, intro]:
+  "\<rho>1 \<le> \<rho>1' \<Longrightarrow> \<rho>2 \<le> \<rho>2' \<Longrightarrow>  (fdom \<rho>2' - fdom \<rho>2) \<inter> fdom \<rho>1 = {} \<Longrightarrow> \<rho>1 f++ \<rho>2 \<le> \<rho>1' f++ \<rho>2'"
+  apply (rule fmap_less_eqI)
+  apply (auto dest: fmap_less_fdom)[1]
+  apply (case_tac "x \<in> fdom \<rho>2")
+  apply (auto dest: fmap_less_eqD fmap_less_fdom)
+  apply (metis fmap_less_eqD fmap_less_fdom lookup_fmap_add1 set_mp)
+  by (metis Diff_iff Diff_triv fmap_less_eqD lookup_fmap_add2)
+
+lemma fmap_restr_le:
+  assumes "\<rho>1 \<le> \<rho>2"
+  assumes "S1 \<subseteq> S2"
+  assumes [simp]:"finite S2"
+  shows "fmap_restr S1 \<rho>1 \<le> fmap_restr S2 \<rho>2"
+proof-
+  have [simp]: "finite S1"
+    by (rule finite_subset[OF `S1 \<subseteq> S2` `finite S2`])
+  show ?thesis
+  proof (rule fmap_less_eqI)
+    have "fdom \<rho>1 \<subseteq> fdom \<rho>2"
+      by (metis assms(1) less_eq_fmap_def)
+    thus "fdom (fmap_restr S1 \<rho>1) \<subseteq> fdom (fmap_restr S2 \<rho>2)"
+      using `S1 \<subseteq> S2`
+      by auto
+  next
+    fix x
+    assume "x \<in> fdom (fmap_restr S1 \<rho>1) "
+    hence [simp]:"x \<in> fdom \<rho>1" and [simp]:"x \<in> S1" and [simp]: "x \<in> S2"
+      by (auto intro: set_mp[OF `S1 \<subseteq> S2`])
+    have "\<rho>1 f! x = \<rho>2 f! x"
+      by (metis `x \<in> fdom \<rho>1` assms(1) less_eq_fmap_def)
+    thus "(fmap_restr S1 \<rho>1) f! x = (fmap_restr S2 \<rho>2) f! x"
+      by simp
+  qed
+qed
+  
+definition fmapdom_to_list :: "('a :: linorder) f\<rightharpoonup> 'b \<Rightarrow> 'a list"
+where
+  "fmapdom_to_list f = (THE xs. set xs = fdom f \<and> sorted xs \<and> distinct xs)"
+
+definition fmap_to_alist :: "('a :: linorder) f\<rightharpoonup> 'b \<Rightarrow> ('a \<times> 'b) list"
+where
+  "fmap_to_alist f = [(x, f f! x). x \<leftarrow> fmapdom_to_list f]"
+
+
+end
--- a/thys/Hoare_tm2.thy	Fri Apr 04 13:15:07 2014 +0100
+++ b/thys/Hoare_tm2.thy	Tue Apr 29 15:26:48 2014 +0100
@@ -6,7 +6,7 @@
 imports Hoare_gen 
         My_block 
         Data_slot
-        "~~/src/HOL/Library/FinFun_Syntax"
+        FMap
 begin
 
 
@@ -64,22 +64,33 @@
    - position of head (int)
    - tape (int \<rightharpoonup> Block)
 *)
-type_synonym tconf = "nat \<times> (nat \<Rightarrow>f tm_inst option) \<times> nat \<times> int \<times> (int \<Rightarrow>f Block option)"
+type_synonym tconf = "nat \<times> (nat f\<rightharpoonup> tm_inst) \<times> nat \<times> int \<times> (int f\<rightharpoonup> Block)"
 
 (* updates the position/tape according to an action *)
 fun 
-  next_tape :: "taction \<Rightarrow> (int \<times>  (int \<Rightarrow>f Block option)) \<Rightarrow> (int \<times>  (int \<Rightarrow>f Block option))"
+  next_tape :: "taction \<Rightarrow> (int \<times>  (int f\<rightharpoonup> Block)) \<Rightarrow> (int \<times>  (int f\<rightharpoonup> Block))"
 where 
-  "next_tape W0 (pos, m) = (pos, m(pos $:= Some Bk))" |
-  "next_tape W1 (pos, m) = (pos, m(pos $:= Some Oc))" |
+  "next_tape W0 (pos, m) = (pos, m(pos f\<mapsto> Bk))" |
+  "next_tape W1 (pos, m) = (pos, m(pos f\<mapsto> Oc))" |
   "next_tape L  (pos, m) = (pos - 1, m)" |
   "next_tape R  (pos, m) = (pos + 1, m)"
 
 fun tstep :: "tconf \<Rightarrow> tconf"
   where "tstep (faults, prog, pc, pos, m) = 
-              (case (prog $ pc) of
+              (case (prog f! pc) of
                   Some ((action0, pc0), (action1, pc1)) \<Rightarrow> 
-                     case (m $ pos) of
+                     case (m f! pos) of
+                       Some Bk \<Rightarrow> (faults, prog, pc0, next_tape action0 (pos, m)) |
+                       Some Oc \<Rightarrow> (faults, prog, pc1, next_tape action1 (pos, m)) |
+                       None \<Rightarrow> (faults + 1, prog, pc, pos, m)
+                | None \<Rightarrow> (faults + 1, prog, pc, pos, m))"
+
+
+fun tstep :: "tconf \<Rightarrow> tconf"
+  where "tstep (faults, prog, pc, pos, m) = 
+              (case (prog f! pc) of
+                  Some ((action0, pc0), (action1, pc1)) \<Rightarrow> 
+                     case (m f! pos) of
                        Some Bk \<Rightarrow> (faults, prog, pc0, next_tape action0 (pos, m)) |
                        Some Oc \<Rightarrow> (faults, prog, pc1, next_tape action1 (pos, m)) |
                        None \<Rightarrow> (faults + 1, prog, pc, pos, m)
@@ -88,19 +99,19 @@
 lemma tstep_splits: 
   "(P (tstep s)) = ((\<forall> faults prog pc pos m action0 pc0 action1 pc1. 
                           s = (faults, prog, pc, pos, m) \<longrightarrow> 
-                          prog $ pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> 
-                          m $ pos = Some Bk \<longrightarrow> P (faults, prog, pc0, next_tape action0 (pos, m))) \<and>
+                          prog f! pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> 
+                          m f! pos = Some Bk \<longrightarrow> P (faults, prog, pc0, next_tape action0 (pos, m))) \<and>
                     (\<forall> faults prog pc pos m action0 pc0 action1 pc1. 
                           s = (faults, prog, pc, pos, m) \<longrightarrow> 
-                          prog $ pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> 
-                          m $ pos = Some Oc \<longrightarrow> P (faults, prog, pc1, next_tape action1 (pos, m))) \<and>
+                          prog f! pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> 
+                          m f! pos = Some Oc \<longrightarrow> P (faults, prog, pc1, next_tape action1 (pos, m))) \<and>
                     (\<forall> faults prog pc pos m action0 pc0 action1 pc1. 
                           s = (faults, prog, pc, pos, m) \<longrightarrow> 
-                          prog $ pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> 
-                          m $ pos = None \<longrightarrow> P (faults + 1, prog, pc, pos, m)) \<and>
+                          prog f! pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> 
+                          m f! pos = None \<longrightarrow> P (faults + 1, prog, pc, pos, m)) \<and>
                     (\<forall> faults prog pc pos m . 
                           s =  (faults, prog, pc, pos, m) \<longrightarrow>
-                          prog $ pc  = None \<longrightarrow> P (faults + 1, prog, pc, pos, m))
+                          prog f! pc  = None \<longrightarrow> P (faults + 1, prog, pc, pos, m))
                    )"
   by (cases s) (auto split: option.splits Block.splits)
 
@@ -111,9 +122,9 @@
   | TPos int          (* head of TM is at position int *)
   | TFaults nat       (* there are nat faults *)
 
-definition "tprog_set prog = {TC i inst | i inst. prog $ i = Some inst}"
+definition "tprog_set prog = {TC i inst | i inst. prog f! i = Some inst}"
 definition "tpc_set pc = {TAt pc}"
-definition "tmem_set m = {TM i n | i n. m $ i = Some n}"
+definition "tmem_set m = {TM i n | i n. m f! i = Some n}"
 definition "tpos_set pos = {TPos pos}"
 definition "tfaults_set faults = {TFaults faults}"
 
@@ -170,8 +181,8 @@
 
 primrec tassemble_to :: "tpg \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> tassert" 
   where 
-  "tassemble_to (TInstr ai) i j = (sg ({TC i ai}) ** <(j = i + 1)>)" |
-  "tassemble_to (TSeq p1 p2) i j = (EXS j'. (tassemble_to p1 i j') ** (tassemble_to p2 j' j))" |
+  "tassemble_to (TInstr ai) i j = (sg ({TC i ai}) \<and>* <(j = i + 1)>)" |
+  "tassemble_to (TSeq p1 p2) i j = (EXS j'. (tassemble_to p1 i j') \<and>* (tassemble_to p2 j' j))" |
   "tassemble_to (TLocal fp) i j  = (EXS l. (tassemble_to (fp l) i j))" | 
   "tassemble_to (TLabel l) i j = <(i = j \<and> j = l)>"
 
@@ -405,21 +416,21 @@
     by (unfold tpn_set_def, auto)
 qed
 
-lemma codeD: "(st i ** sg {TC i inst} ** r) (trset_of (ft, prog, i', pos, mem))
-       \<Longrightarrow> prog $ i = Some inst"
+lemma codeD: "(st i \<and>* sg {TC i inst} ** r) (trset_of (ft, prog, i', pos, mem))
+       \<Longrightarrow> prog f! i = Some inst"
 proof -
-  assume "(st i ** sg {TC i inst} ** r) (trset_of (ft, prog, i', pos, mem))"
+  assume "(st i \<and>* sg {TC i inst} \<and>* r) (trset_of (ft, prog, i', pos, mem))"
   thus ?thesis
     apply(unfold sep_conj_def set_ins_def sg_def trset_of.simps tpn_set_def) 
     by auto
 qed
 
-lemma memD: "((tm a v) ** r) (trset_of (ft, prog, i, pos, mem))  \<Longrightarrow> mem $ a = Some v"
+lemma memD: "((tm a v) ** r) (trset_of (ft, prog, i, pos, mem))  \<Longrightarrow> mem f! a = Some v"
 proof -
   assume "((tm a v) ** r) (trset_of (ft, prog, i, pos, mem))"
   from stimes_sgD[OF this[unfolded trset_of.simps tpn_set_def tm_def]]
-  have "{TM a v} \<subseteq> {TC i inst |i inst. prog $ i = Some inst} \<union> {TAt i} \<union> 
-    {TPos pos} \<union> {TM i n |i n. mem $ i = Some n} \<union> {TFaults ft}" by simp
+  have "{TM a v} \<subseteq> {TC i inst |i inst. prog f! i = Some inst} \<union> {TAt i} \<union> 
+    {TPos pos} \<union> {TM i n |i n. mem f! i = Some n} \<union> {TFaults ft}" by simp
   thus ?thesis by auto
 qed
 
@@ -1212,20 +1223,19 @@
 
 lemma tmem_set_upd: 
   "{TM a v} \<subseteq> tmem_set mem \<Longrightarrow> 
-        tmem_set (mem(a $:=Some v')) = ((tmem_set mem) - {TM a v}) \<union> {TM a v'}"
+        tmem_set (mem(a f\<mapsto> Some v')) = ((tmem_set mem) - {TM a v}) \<union> {TM a v'}"
 apply(unfold tpn_set_def) 
 apply(auto)
-apply (metis finfun_upd_apply option.inject)
-apply (metis finfun_upd_apply_other)
-by (metis finfun_upd_apply_other option.inject)
-
+apply (metis the.simps the_lookup_fmap_upd the_lookup_fmap_upd_other)
+apply (metis the_lookup_fmap_upd_other)
+by (metis option.inject the_lookup_fmap_upd_other)
 
 lemma tmem_set_disj: "{TM a v} \<subseteq> tmem_set mem \<Longrightarrow> 
                             {TM a v'} \<inter>  (tmem_set mem - {TM a v}) = {}"
   by (unfold tpn_set_def, auto)
 
 lemma smem_upd: "((tm a v) ** r) (trset_of (f, x, y, z, mem))  \<Longrightarrow> 
-                    ((tm a v') ** r) (trset_of (f, x, y, z, mem(a $:= Some v')))"
+                    ((tm a v') ** r) (trset_of (f, x, y, z, mem(a f\<mapsto> Some v')))"
 proof -
   have eq_s: "(tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f - {TM a v}) =
     (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
@@ -1238,11 +1248,11 @@
   from h TM_in_simp have "{TM a v} \<subseteq> tmem_set mem"
     by(sep_drule stimes_sgD, auto)
   from tmem_set_upd [OF this] tmem_set_disj[OF this]
-  have h2: "tmem_set (mem(a $:= Some v')) = {TM a v'} \<union> (tmem_set mem - {TM a v})" 
+  have h2: "tmem_set (mem(a f\<mapsto> Some v')) = {TM a v'} \<union> (tmem_set mem - {TM a v})" 
            "{TM a v'} \<inter> (tmem_set mem - {TM a v}) = {}" by auto
   show ?thesis
   proof -
-    have "(tm a v' ** r) (tmem_set (mem(a $:= Some v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f)"
+    have "(tm a v' ** r) (tmem_set (mem(a f\<mapsto> Some v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f)"
     proof(rule sep_conjI)
       show "tm a v' ({TM a v'})" by (unfold tm_def sg_def, simp)
     next
@@ -1250,13 +1260,13 @@
     next
       show "{TM a v'} ## tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f"
       proof -
-        from g have " mem $ a = Some v"
+        from g have " mem f! a = Some v"
           by(sep_frule memD, simp)
         thus "?thesis"
           by(unfold tpn_set_def set_ins_def, auto)
       qed
     next
-      show "tmem_set (mem(a $:= Some v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f =
+      show "tmem_set (mem(a f\<mapsto> Some v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f =
     {TM a v'} + (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
         by (unfold h2(1) set_ins_def eq_s, auto)
     qed
@@ -1281,11 +1291,11 @@
       fix ft prog cs i' mem r
       assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* sg {TC i ((W0, j), W0, j)})
               (trset_of (ft, prog, cs, i', mem))"
-      from h have "prog $ i = Some ((W0, j), W0, j)"
+      from h have "prog f! i = Some ((W0, j), W0, j)"
         apply(rule_tac r = "r \<and>* ps p \<and>* tm p v" in codeD)
         by(simp add: sep_conj_ac)
       from h and this have stp:
-        "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, j, i', mem(i' $:= Some Bk))" (is "?x = ?y")
+        "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, j, i', mem(i' f\<mapsto> Some Bk))" (is "?x = ?y")
         apply(sep_frule psD)
         apply(sep_frule stD)
         apply(sep_frule memD, simp)
@@ -1331,12 +1341,12 @@
       fix ft prog cs i' mem r
       assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* sg {TC i ((W1, ?j), W1, ?j)})
               (trset_of (ft, prog, cs, i', mem))"
-      from h have "prog $ i = Some ((W1, ?j), W1, ?j)"
+      from h have "prog f! i = Some ((W1, ?j), W1, ?j)"
         apply(rule_tac r = "r \<and>* ps p \<and>* tm p v" in codeD)
         by(simp add: sep_conj_ac)
       from h and this have stp:
         "tm.run 1 (ft, prog, cs, i', mem) = 
-                     (ft, prog, ?j, i', mem(i' $:= Some Oc))" (is "?x = ?y")
+                     (ft, prog, ?j, i', mem(i' f\<mapsto> Some Oc))" (is "?x = ?y")
         apply(sep_frule psD)
         apply(sep_frule stD)
         apply(sep_frule memD, simp)
@@ -1383,7 +1393,7 @@
       fix ft prog cs i' mem r
       assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v2 \<and>* sg {TC i ((L, ?j), L, ?j)}) 
                        (trset_of (ft, prog, cs, i',  mem))"
-      from h have "prog $ i = Some ((L, ?j), L, ?j)"
+      from h have "prog f! i = Some ((L, ?j), L, ?j)"
         apply(rule_tac r = "r \<and>* ps p \<and>* tm p v2" in codeD)
         by(simp add: sep_conj_ac)
       from h and this have stp:
@@ -1441,7 +1451,7 @@
       fix ft prog cs i' mem r
       assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v1 \<and>* sg {TC i ((R, ?j), R, ?j)}) 
                        (trset_of (ft, prog, cs, i',  mem))"
-      from h have "prog $ i = Some ((R, ?j), R, ?j)"
+      from h have "prog f! i = Some ((R, ?j), R, ?j)"
         apply(rule_tac r = "r \<and>* ps p \<and>* tm p v1" in codeD)
         by(simp add: sep_conj_ac)
       from h and this have stp:
@@ -1497,12 +1507,12 @@
       fix ft prog cs pc mem r
       assume h: "(r \<and>* one p \<and>* ps p \<and>* st i \<and>* sg {TC i ((W0, ?j), W1, e)}) 
         (trset_of (ft, prog, cs, pc, mem))"
-      from h have k1: "prog $ i = Some ((W0, ?j), W1, e)"
+      from h have k1: "prog f! i = Some ((W0, ?j), W1, e)"
         apply(rule_tac r = "r \<and>* one p \<and>* ps p" in codeD)
         by(simp add: sep_conj_ac)
       from h have k2: "pc = p"
         by(sep_drule psD, simp)
-      from h and this have k3: "mem $ pc = Some Oc"
+      from h and this have k3: "mem f! pc = Some Oc"
         apply(unfold one_def)
         by(sep_drule memD, simp)
       from h k1 k2 k3 have stp:
@@ -1510,6 +1520,14 @@
         apply(sep_drule stD)
         apply(unfold tm.run_def)
         apply(auto)
+        apply(rule fmap_eqI)
+        apply(simp)
+        apply(subgoal_tac "p \<in> fdom mem")
+        apply(simp add: insert_absorb)
+        apply(simp add: fdomIff)
+        apply(rule_tac x="Some Oc" in exI)
+        apply(auto)[1]
+       apply(simp add: fun_eq_iff)
         by (metis finfun_upd_triv)
 
       from h k2 
@@ -1584,12 +1602,12 @@
       fix ft prog cs pc mem r
       assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* sg {TC i ((W0, ?j), W1, e)})
         (trset_of (ft, prog, cs, pc, mem))"
-      from h have k1: "prog $ i = Some ((W0, ?j), W1, e)"
+      from h have k1: "prog f! i = Some ((W0, ?j), W1, e)"
         apply(rule_tac r = "r \<and>* zero p \<and>* ps p" in codeD)
         by(simp add: sep_conj_ac)
       from h have k2: "pc = p"
         by(sep_drule psD, simp)
-      from h and this have k3: "mem $ pc = Some Bk"
+      from h and this have k3: "mem f! pc = Some Bk"
         apply(unfold zero_def)
         by(sep_drule memD, simp)
       from h k1 k2 k3 have stp:
@@ -1633,12 +1651,12 @@
       fix ft prog cs pc mem r
       assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* sg {TC i ((W0, e), W1, ?j)})
         (trset_of (ft, prog, cs, pc, mem))"
-      from h have k1: "prog $ i = Some ((W0, e), W1, ?j)"
+      from h have k1: "prog f! i = Some ((W0, e), W1, ?j)"
         apply(rule_tac r = "r \<and>* zero p \<and>* ps p" in codeD)
         by(simp add: sep_conj_ac)
       from h have k2: "pc = p"
         by(sep_drule psD, simp)
-      from h and this have k3: "mem $ pc = Some Bk"
+      from h and this have k3: "mem f! pc = Some Bk"
         apply(unfold zero_def)
         by(sep_drule memD, simp)
       from h k1 k2 k3 have stp:
@@ -1712,12 +1730,12 @@
       fix ft prog cs pc mem r
       assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p Oc \<and>* sg {TC i ((W0, e), W1, ?j)})
         (trset_of (ft, prog, cs, pc, mem))"
-      from h have k1: "prog $ i = Some ((W0, e), W1, ?j)"
+      from h have k1: "prog f! i = Some ((W0, e), W1, ?j)"
         apply(rule_tac r = "r \<and>* tm p Oc \<and>* ps p" in codeD)
         by(simp add: sep_conj_ac)
       from h have k2: "pc = p"
         by(sep_drule psD, simp)
-      from h and this have k3: "mem $ pc = Some Oc"
+      from h and this have k3: "mem f! pc = Some Oc"
         by(sep_drule memD, simp)
       from h k1 k2 k3 have stp:
         "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, ?j, pc, mem)" (is "?x = ?y")
@@ -1753,18 +1771,18 @@
   fix ft prog cs pos mem r
   assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* <(j = i + 1)> \<and>* sg {TC i ((W0, e), W1, e)})
     (trset_of (ft, prog, cs, pos, mem))"
-  from h have k1: "prog $ i = Some ((W0, e), W1, e)"
+  from h have k1: "prog f! i = Some ((W0, e), W1, e)"
     apply(rule_tac r = "r \<and>* <(j = i + 1)> \<and>* tm p v \<and>* ps p" in codeD)
     by(simp add: sep_conj_ac)
   from h have k2: "p = pos"
     by(sep_drule psD, simp)
-  from h k2 have k3: "mem $ pos = Some v"
+  from h k2 have k3: "mem f! pos = Some v"
     by(sep_drule memD, simp)
   from h k1 k2 k3 have 
     stp: "tm.run 1 (ft, prog, cs, pos, mem) = (ft, prog, e, pos, mem)" (is "?x = ?y")
     apply(sep_drule stD)
     apply(unfold tm.run_def)
-    apply(cases "mem $ pos")
+    apply(cases "mem f! pos")
     apply(simp)
     apply(cases v)
     apply(auto)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/thys/Hoare_tm3.thy	Tue Apr 29 15:26:48 2014 +0100
@@ -0,0 +1,5776 @@
+header {* 
+  Separation logic for Turing Machines
+*}
+
+theory Hoare_tm3
+imports Hoare_gen My_block Data_slot FMap
+begin
+
+notation FMap.lookup (infixl "$" 999)
+
+ML {*
+fun pretty_terms ctxt trms =
+  Pretty.block (Pretty.commas (map (Syntax.pretty_term ctxt) trms))
+*}
+
+ML {*
+structure StepRules = Named_Thms
+  (val name = @{binding "step"}
+   val description = "Theorems for hoare rules for every step")
+*}
+
+ML {*
+structure FwdRules = Named_Thms
+  (val name = @{binding "fwd"}
+   val description = "Theorems for fwd derivation of seperation implication")
+*}
+
+setup {* StepRules.setup *}
+setup {* FwdRules.setup *}
+
+method_setup prune = 
+  {* Scan.succeed (SIMPLE_METHOD' o (K (K prune_params_tac))) *} 
+  "pruning parameters"
+
+lemma int_add_C: 
+  "x + (y::int) = y + x"
+  by simp
+
+lemma int_add_A : "(x + y) + z = x + (y + (z::int))"
+  by simp
+
+lemma int_add_LC: "x + (y + (z::int)) = y + (x + z)"
+  by simp
+
+lemmas int_add_ac = int_add_A int_add_C int_add_LC
+
+
+section {* Operational Semantics of TM *}
+
+datatype taction = W0 | W1 | L | R
+
+type_synonym tstate = nat
+
+datatype Block = Oc | Bk
+
+(* the successor state when tape symbol is Bk or Oc, respectively *)
+type_synonym tm_inst = "(taction \<times> tstate) \<times> (taction \<times> tstate)"
+
+(* - number of faults (nat)
+   - TM program (nat \<rightharpoonup> tm_inst)
+   - current state (nat)
+   - position of head (int)
+   - tape (int \<rightharpoonup> Block)
+*)
+type_synonym tconf = "nat \<times> (nat f\<rightharpoonup> tm_inst) \<times> nat \<times> int \<times> (int f\<rightharpoonup> Block)"
+
+(* updates the position/tape according to an action *)
+fun 
+  next_tape :: "taction \<Rightarrow> (int \<times>  (int f\<rightharpoonup> Block)) \<Rightarrow> (int \<times>  (int f\<rightharpoonup> Block))"
+where 
+  "next_tape W0 (pos, m) = (pos, m(pos f\<mapsto> Bk))" |
+  "next_tape W1 (pos, m) = (pos, m(pos f\<mapsto> Oc))" |
+  "next_tape L  (pos, m) = (pos - 1, m)" |
+  "next_tape R  (pos, m) = (pos + 1, m)"
+
+fun tstep :: "tconf \<Rightarrow> tconf"
+  where "tstep (faults, prog, pc, pos, m) = 
+              (case (prog $ pc) of
+                  Some ((action0, pc0), (action1, pc1)) \<Rightarrow> 
+                     case (m $ pos) of
+                       Some Bk \<Rightarrow> (faults, prog, pc0, next_tape action0 (pos, m)) |
+                       Some Oc \<Rightarrow> (faults, prog, pc1, next_tape action1 (pos, m)) |
+                       None \<Rightarrow> (faults + 1, prog, pc, pos, m)
+                | None \<Rightarrow> (faults + 1, prog, pc, pos, m))"
+
+lemma tstep_splits: 
+  "(P (tstep s)) = ((\<forall> faults prog pc pos m action0 pc0 action1 pc1. 
+                          s = (faults, prog, pc, pos, m) \<longrightarrow> 
+                          prog $ pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> 
+                          m $ pos = Some Bk \<longrightarrow> P (faults, prog, pc0, next_tape action0 (pos, m))) \<and>
+                    (\<forall> faults prog pc pos m action0 pc0 action1 pc1. 
+                          s = (faults, prog, pc, pos, m) \<longrightarrow> 
+                          prog $ pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> 
+                          m $ pos = Some Oc \<longrightarrow> P (faults, prog, pc1, next_tape action1 (pos, m))) \<and>
+                    (\<forall> faults prog pc pos m action0 pc0 action1 pc1. 
+                          s = (faults, prog, pc, pos, m) \<longrightarrow> 
+                          prog $ pc = Some ((action0, pc0), (action1, pc1)) \<longrightarrow> 
+                          m $ pos = None \<longrightarrow> P (faults + 1, prog, pc, pos, m)) \<and>
+                    (\<forall> faults prog pc pos m . 
+                          s =  (faults, prog, pc, pos, m) \<longrightarrow>
+                          prog $ pc  = None \<longrightarrow> P (faults + 1, prog, pc, pos, m))
+                   )"
+  by (cases s) (auto split: option.splits Block.splits)
+
+datatype tresource = 
+    TM int Block      (* at the position int of the tape is a Bl or Oc *)
+  | TC nat tm_inst    (* at the address nat is a certain instruction *)
+  | TAt nat           (* TM is at state nat*)
+  | TPos int          (* head of TM is at position int *)
+  | TFaults nat       (* there are nat faults *)
+
+definition "tprog_set prog = {TC i inst | i inst. prog $ i = Some inst}"
+definition "tpc_set pc = {TAt pc}"
+definition "tmem_set m = {TM i n | i n. m $ i = Some n}"
+definition "tpos_set pos = {TPos pos}"
+definition "tfaults_set faults = {TFaults faults}"
+
+lemmas tpn_set_def = tprog_set_def tpc_set_def tmem_set_def tfaults_set_def tpos_set_def
+
+fun trset_of :: "tconf \<Rightarrow> tresource set"
+  where "trset_of (faults, prog, pc, pos, m) = 
+               tprog_set prog \<union> tpc_set pc \<union> tpos_set pos \<union> tmem_set m \<union> tfaults_set faults"
+
+interpretation tm: sep_exec tstep trset_of .
+
+
+
+section {* Assembly language for TMs and its program logic *}
+
+subsection {* The assembly language *}
+
+datatype tpg = 
+   TInstr tm_inst
+ | TLabel nat
+ | TSeq tpg tpg
+ | TLocal "nat \<Rightarrow> tpg"
+
+notation TLocal (binder "TL " 10)
+
+abbreviation 
+  tprog_instr :: "tm_inst \<Rightarrow> tpg" ("\<guillemotright> _" [61] 61)
+where "\<guillemotright> i \<equiv> TInstr i"
+
+abbreviation tprog_seq :: 
+  "tpg \<Rightarrow> tpg \<Rightarrow> tpg" (infixr ";" 52)
+where "c1 ; c2 \<equiv> TSeq c1 c2"
+
+definition "sg e = (\<lambda>s. s = e)"
+
+type_synonym tassert = "tresource set \<Rightarrow> bool"
+
+abbreviation 
+  t_hoare :: "tassert \<Rightarrow> tassert  \<Rightarrow> tassert \<Rightarrow> bool" ("(\<lbrace>(1_)\<rbrace>/ (_)/ \<lbrace>(1_)\<rbrace>)" 50)
+where 
+  "\<lbrace>p\<rbrace> c \<lbrace>q\<rbrace> == sep_exec.Hoare_gen tstep trset_of p c q"
+
+abbreviation it_hoare ::
+  "('a::sep_algebra \<Rightarrow> tresource set \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> (tresource set \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
+      ("(1_).(\<lbrace>(1_)\<rbrace>/ (_)/ \<lbrace>(1_)\<rbrace>)" 50)
+where "I. \<lbrace>P\<rbrace> c \<lbrace>Q\<rbrace> == sep_exec.IHoare tstep trset_of I P c Q"
+
+(*
+primrec tpg_len :: "tpg \<Rightarrow> nat" where 
+  "tpg_len (TInstr ai) = 1" |
+  "tpg_len (TSeq p1 p2) = tpg_len p1 + tpg_len " |
+  "tpg_len (TLocal fp) = tpg_len (fp 0)" |
+  "tpg_len (TLabel l) = 0" 
+*)
+
+primrec tassemble_to :: "tpg \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> tassert" 
+  where 
+  "tassemble_to (TInstr ai) i j = (sg ({TC i ai}) ** <(j = i + 1)>)" |
+  "tassemble_to (TSeq p1 p2) i j = (EXS j'. (tassemble_to p1 i j') ** (tassemble_to p2 j' j))" |
+  "tassemble_to (TLocal fp) i j  = (EXS l. (tassemble_to (fp l) i j))" | 
+  "tassemble_to (TLabel l) i j = <(i = j \<and> j = l)>"
+
+declare tassemble_to.simps [simp del]
+
+lemmas tasmp = tassemble_to.simps (2, 3, 4)
+
+abbreviation 
+  tasmb_to :: "nat \<Rightarrow> tpg \<Rightarrow> nat \<Rightarrow> tassert" ("_ :[ _ ]: _" [60, 60, 60] 60)
+  where 
+  "i :[ tpg ]: j \<equiv> tassemble_to tpg i j"
+
+lemma EXS_intro: 
+  assumes h: "(P x) s"
+  shows "(EXS x. P(x)) s"
+  by (smt h pred_ex_def sep_conj_impl)
+
+lemma EXS_elim: 
+  assumes "(EXS x. P x) s"
+  obtains x where "P x s"
+  by (metis assms pred_ex_def)
+
+lemma EXS_eq:
+  fixes x
+  assumes h: "Q (p x)" 
+  and h1: "\<And> y s. \<lbrakk>p y s\<rbrakk> \<Longrightarrow> y = x"
+  shows "p x = (EXS x. p x)"
+proof
+  fix s
+  show "p x s = (EXS x. p x) s"
+  proof
+    assume "p x s"
+    thus "(EXS x. p x) s" by (auto simp:pred_ex_def)
+  next
+    assume "(EXS x. p x) s"
+    thus "p x s"
+    proof(rule EXS_elim)
+      fix y
+      assume "p y s"
+      from this[unfolded h1[OF this]] show "p x s" .
+    qed
+  qed
+qed
+
+definition "tpg_fold tpgs = foldr TSeq (butlast tpgs) (last tpgs)"
+
+lemma tpg_fold_sg: 
+  "tpg_fold [tpg] = tpg"
+  by (simp add:tpg_fold_def)
+
+lemma tpg_fold_cons: 
+  assumes h: "tpgs \<noteq> []"
+  shows "tpg_fold (tpg#tpgs) = (tpg; (tpg_fold tpgs))"
+  using h
+proof(induct tpgs arbitrary:tpg)
+  case (Cons tpg1 tpgs1)
+  thus ?case
+  proof(cases "tpgs1 = []")
+    case True
+    thus ?thesis by (simp add:tpg_fold_def)
+  next
+    case False
+    show ?thesis
+    proof -
+      have eq_1: "butlast (tpg # tpg1 # tpgs1) = tpg # (butlast (tpg1 # tpgs1))"
+        by simp
+      from False have eq_2: "last (tpg # tpg1 # tpgs1) = last (tpg1 # tpgs1)"
+        by simp
+      have eq_3: "foldr (op ;) (tpg # butlast (tpg1 # tpgs1)) (last (tpg1 # tpgs1)) = 
+            (tpg ; (foldr (op ;) (butlast (tpg1 # tpgs1)) (last (tpg1 # tpgs1))))"
+        by simp
+      show ?thesis
+        apply (subst (1) tpg_fold_def, unfold eq_1 eq_2 eq_3)
+        by (fold tpg_fold_def, simp)
+    qed
+  qed
+qed auto
+
+lemmas tpg_fold_simps = tpg_fold_sg tpg_fold_cons
+
+lemma tpg_fold_app:
+  assumes h1: "tpgs1 \<noteq> []" 
+  and h2: "tpgs2 \<noteq> []"
+  shows "i:[(tpg_fold (tpgs1 @ tpgs2))]:j = i:[(tpg_fold (tpgs1); tpg_fold tpgs2)]:j"
+  using h1 h2
+proof(induct tpgs1 arbitrary: i j tpgs2)
+  case (Cons tpg1' tpgs1')
+  thus ?case (is "?L = ?R")
+  proof(cases "tpgs1' = []")
+    case False
+    from h2 have "(tpgs1' @ tpgs2) \<noteq> []"
+      by (metis Cons.prems(2) Nil_is_append_conv) 
+    have "?L = (i :[ tpg_fold (tpg1' # (tpgs1' @ tpgs2)) ]: j )" by simp
+    also have "\<dots> =  (i:[(tpg1'; (tpg_fold (tpgs1' @ tpgs2)))]:j )"
+      by (simp add:tpg_fold_cons[OF `(tpgs1' @ tpgs2) \<noteq> []`])
+    also have "\<dots> = ?R"
+    proof -
+      have "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) =
+              (EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>* 
+                               j' :[ tpg_fold tpgs2 ]: j)"
+      proof(default+)
+        fix s
+        assume "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
+        thus "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>*
+                  j' :[ tpg_fold tpgs2 ]: j) s"
+        proof(elim EXS_elim)
+          fix j'
+          assume "(i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
+          from this[unfolded Cons(1)[OF False Cons(3)] tassemble_to.simps]
+          show "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>*
+                           j' :[ tpg_fold tpgs2 ]: j) s"
+          proof(elim sep_conjE EXS_elim)
+            fix x y j'a xa ya
+            assume h: "(i :[ tpg1' ]: j') x"
+                      "x ## y" "s = x + y"
+                      "(j' :[ tpg_fold tpgs1' ]: j'a) xa"
+                      "(j'a :[ tpg_fold tpgs2 ]: j) ya"
+                      " xa ## ya" "y = xa + ya"
+            show "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* 
+                                j'a :[ tpg_fold tpgs1' ]: j') \<and>* j' :[ tpg_fold tpgs2 ]: j) s"
+               (is "(EXS j'. (?P j' \<and>* ?Q j')) s")
+            proof(rule EXS_intro[where x = "j'a"])
+              from `(j'a :[ tpg_fold tpgs2 ]: j) ya` have "(?Q j'a) ya" .
+              moreover have "(?P j'a) (x + xa)" 
+              proof(rule EXS_intro[where x = j'])
+                have "x + xa = x + xa" by simp
+                moreover from `x ## y` `y = xa + ya` `xa ## ya` 
+                have "x ## xa" by (metis sep_disj_addD) 
+                moreover note `(i :[ tpg1' ]: j') x` `(j' :[ tpg_fold tpgs1' ]: j'a) xa`
+                ultimately show "(i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold tpgs1' ]: j'a) (x + xa)"
+                  by (auto intro!:sep_conjI)
+              qed
+              moreover from `x##y` `y = xa + ya` `xa ## ya` 
+              have "(x + xa) ## ya"
+                by (metis sep_disj_addI1 sep_disj_commuteI)
+              moreover from `s = x + y` `y = xa + ya`
+              have "s = (x + xa) + ya"
+                by (metis h(2) h(6) sep_add_assoc sep_disj_addD1 sep_disj_addD2) 
+              ultimately show "(?P j'a \<and>* ?Q j'a) s"
+                by (auto intro!:sep_conjI)
+            qed
+          qed
+        qed
+      next
+        fix s
+        assume "(EXS j'. (EXS j'a. i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold tpgs1' ]: j') \<and>*
+                                    j' :[ tpg_fold tpgs2 ]: j) s"
+        thus "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
+        proof(elim EXS_elim sep_conjE)
+          fix j' x y j'a xa ya
+          assume h: "(j' :[ tpg_fold tpgs2 ]: j) y"
+                    "x ## y" "s = x + y" "(i :[ tpg1' ]: j'a) xa"
+                    "(j'a :[ tpg_fold tpgs1' ]: j') ya" "xa ## ya" "x = xa + ya"
+          show "(EXS j'. i :[ tpg1' ]: j' \<and>* j' :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
+          proof(rule EXS_intro[where x = j'a])
+            from `(i :[ tpg1' ]: j'a) xa` have "(i :[ tpg1' ]: j'a) xa" .
+            moreover have "(j'a :[ tpg_fold (tpgs1' @ tpgs2) ]: j) (ya + y)"
+            proof(unfold Cons(1)[OF False Cons(3)] tassemble_to.simps)
+              show "(EXS j'. j'a :[ tpg_fold tpgs1' ]: j' \<and>* j' :[ tpg_fold tpgs2 ]: j) (ya + y)"
+              proof(rule EXS_intro[where x = "j'"])
+                from `x ## y` `x = xa + ya` `xa ## ya`
+                have "ya ## y" by (metis sep_add_disjD)
+                moreover have "ya + y = ya + y" by simp
+                moreover note `(j'a :[ tpg_fold tpgs1' ]: j') ya` 
+                               `(j' :[ tpg_fold tpgs2 ]: j) y`
+                ultimately show "(j'a :[ tpg_fold tpgs1' ]: j' \<and>* 
+                                 j' :[ tpg_fold tpgs2 ]: j) (ya + y)"
+                  by (auto intro!:sep_conjI)
+              qed
+            qed
+            moreover from `s = x + y` `x = xa + ya`
+            have "s = xa + (ya + y)"
+              by (metis h(2) h(6) sep_add_assoc sep_add_disjD)
+            moreover from `xa ## ya` `x ## y` `x = xa + ya`
+            have "xa ## (ya + y)" by (metis sep_disj_addI3) 
+            ultimately show "(i :[ tpg1' ]: j'a \<and>* j'a :[ tpg_fold (tpgs1' @ tpgs2) ]: j) s"
+              by (auto intro!:sep_conjI)
+          qed
+        qed
+      qed
+      thus ?thesis 
+        by (simp add:tassemble_to.simps, unfold tpg_fold_cons[OF False], 
+             unfold tassemble_to.simps, simp)
+    qed
+    finally show ?thesis . 
+  next
+    case True
+    thus ?thesis
+      by (simp add:tpg_fold_cons[OF Cons(3)] tpg_fold_sg)
+  qed 
+qed auto
+ 
+
+subsection {* Assertions and program logic for this assembly language *}
+
+definition "st l = sg (tpc_set l)"
+definition "ps p = sg (tpos_set p)" 
+definition "tm a v = sg ({TM a v})"
+definition "one i = tm i Oc"
+definition "zero i= tm i Bk"
+definition "any i = (EXS v. tm i v)"
+
+declare trset_of.simps[simp del]
+
+lemma stimes_sgD: 
+  "(sg x \<and>* q) s \<Longrightarrow> q (s - x) \<and> x \<subseteq> s"
+  apply(erule_tac sep_conjE)
+  apply(unfold set_ins_def sg_def)
+  by (metis Diff_Int Diff_cancel Diff_empty Un_Diff sup.cobounded1 sup_bot.left_neutral sup_commute)
+  
+lemma stD: 
+  "(st i \<and>* r) (trset_of (ft, prog, i', pos, mem)) \<Longrightarrow> i' = i"
+proof -
+  assume "(st i \<and>* r) (trset_of (ft, prog, i', pos, mem))"
+  from stimes_sgD [OF this[unfolded st_def], unfolded trset_of.simps]
+  have "tpc_set i \<subseteq> tprog_set prog \<union> tpc_set i' \<union> tpos_set pos \<union>  
+            tmem_set mem \<union> tfaults_set ft" by auto
+  thus ?thesis
+    by (unfold tpn_set_def, auto)
+qed
+
+lemma psD: 
+  "(ps p \<and>* r) (trset_of (ft, prog, i', pos, mem)) \<Longrightarrow> pos = p"
+proof -
+  assume "(ps p ** r) (trset_of (ft, prog, i', pos, mem))"
+  from stimes_sgD [OF this[unfolded ps_def], unfolded trset_of.simps]
+  have "tpos_set p \<subseteq> tprog_set prog \<union> tpc_set i' \<union> 
+                       tpos_set pos \<union> tmem_set mem \<union> tfaults_set ft"
+    by simp
+  thus ?thesis
+    by (unfold tpn_set_def, auto)
+qed
+
+lemma codeD: "(st i \<and>* sg {TC i inst} \<and>* r) (trset_of (ft, prog, i', pos, mem))
+       \<Longrightarrow> prog $ i = Some inst"
+proof -
+  assume "(st i \<and>* sg {TC i inst} \<and>* r) (trset_of (ft, prog, i', pos, mem))"
+  thus ?thesis
+    apply(unfold sep_conj_def set_ins_def sg_def trset_of.simps tpn_set_def)
+    by auto
+qed
+
+lemma memD: "((tm a v) \<and>* r) (trset_of (ft, prog, i, pos, mem))  \<Longrightarrow> mem $ a = Some v"
+proof -
+  assume "((tm a v) \<and>* r) (trset_of (ft, prog, i, pos, mem))"
+  from stimes_sgD[OF this[unfolded trset_of.simps tpn_set_def tm_def]]
+  have "{TM a v} \<subseteq> {TC i inst |i inst. prog $ i = Some inst} \<union> {TAt i} \<union> 
+    {TPos pos} \<union> {TM i n |i n. mem $ i = Some n} \<union> {TFaults ft}" by simp
+  thus ?thesis by auto
+qed
+
+lemma t_hoare_seq: 
+  assumes a1: "\<And> i j. \<lbrace>st i \<and>* p\<rbrace> i:[c1]:j \<lbrace>st j \<and>* q\<rbrace>"
+  and     a2: "\<And> j k. \<lbrace>st j ** q\<rbrace> j:[c2]:k \<lbrace>st k ** r\<rbrace>" 
+  shows "\<lbrace>st i \<and>* p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>st k \<and>* r\<rbrace>"
+proof(subst tassemble_to.simps, rule tm.code_exI)
+  fix j'
+  show "\<lbrace>st i \<and>* p\<rbrace>  i:[ c1 ]:j' \<and>* j':[ c2 ]:k \<lbrace>st k \<and>* r\<rbrace>"
+  proof(rule tm.composition)
+    from a1 show "\<lbrace>st i \<and>* p\<rbrace>  i:[ c1 ]:j' \<lbrace>st j' \<and>* q\<rbrace>" by auto
+  next
+    from a2 show "\<lbrace>st j' \<and>* q\<rbrace>  j':[ c2 ]:k \<lbrace>st k \<and>* r\<rbrace>" by auto
+  qed
+qed
+
+
+lemma t_hoare_seq1:
+  assumes a1: "\<And>j'. \<lbrace>st i \<and>* p\<rbrace> i:[c1]:j' \<lbrace>st j' \<and>* q\<rbrace>"
+  assumes a2: "\<And>j'. \<lbrace>st j' \<and>* q\<rbrace> j':[c2]:k \<lbrace>st k' \<and>* r\<rbrace>"
+  shows "\<lbrace>st i \<and>* p\<rbrace> i:[(c1 ; c2)]:k \<lbrace>st k' \<and>* r\<rbrace>"
+proof(subst tassemble_to.simps, rule tm.code_exI)
+  fix j'
+  show "\<lbrace>st i \<and>* p\<rbrace>  i:[ c1 ]:j' \<and>* j':[ c2 ]:k \<lbrace>st k' \<and>* r\<rbrace>"
+  proof(rule tm.composition)
+    from a1 show "\<lbrace>st i \<and>* p\<rbrace>  i:[ c1 ]:j' \<lbrace>st j' \<and>* q\<rbrace>" by auto
+  next
+    from a2 show " \<lbrace>st j' \<and>* q\<rbrace>  j':[ c2 ]:k \<lbrace>st k' \<and>* r\<rbrace>" by auto
+  qed
+qed
+
+lemma t_hoare_seq2:
+  assumes h: "\<And>j. \<lbrace>st i ** p\<rbrace> i:[c1]:j \<lbrace>st k' \<and>* r\<rbrace>"
+  shows "\<lbrace>st i ** p\<rbrace> i:[(c1 ; c2)]:j \<lbrace>st k' ** r\<rbrace>"
+  apply (unfold tassemble_to.simps, rule tm.code_exI)
+  by (rule tm.code_extension, rule h)
+
+lemma t_hoare_local: 
+  assumes h: "(\<And>l. \<lbrace>st i \<and>* p\<rbrace>  i :[ c l ]: j \<lbrace>st k \<and>* q\<rbrace>)"
+  shows "\<lbrace>st i ** p\<rbrace> i:[TLocal c]:j \<lbrace>st k ** q\<rbrace>" using h
+  by (unfold tassemble_to.simps, intro tm.code_exI, simp)
+
+lemma t_hoare_label: 
+  assumes "\<And>l. l = i \<Longrightarrow> \<lbrace>st l \<and>* p\<rbrace>  l:[ c l ]:j \<lbrace>st k \<and>* q\<rbrace>"
+  shows "\<lbrace>st i \<and>* p\<rbrace> i:[(TLabel l; c l)]:j \<lbrace>st k \<and>* q\<rbrace>"
+using assms
+by (unfold tassemble_to.simps, intro tm.code_exI tm.code_condI, clarify, auto)
+
+primrec t_split_cmd :: "tpg \<Rightarrow> (tpg \<times> tpg option)"
+  where "t_split_cmd (\<guillemotright>inst) = (\<guillemotright>inst, None)" |
+        "t_split_cmd (TLabel l) = (TLabel l, None)" |
+        "t_split_cmd (TSeq c1 c2) = (case (t_split_cmd c2) of
+                                      (c21, Some c22) \<Rightarrow> (TSeq c1 c21, Some c22) |
+                                      (c21, None) \<Rightarrow> (c1, Some c21))" |
+        "t_split_cmd (TLocal c) = (TLocal c, None)"
+
+definition "t_last_cmd tpg = snd (t_split_cmd tpg)"
+
+declare t_last_cmd_def [simp]
+
+definition "t_blast_cmd tpg = fst (t_split_cmd tpg)"
+
+declare t_blast_cmd_def [simp]
+
+lemma "t_last_cmd (c1; c2; TLabel l) = Some (TLabel l)"
+  by simp
+
+lemma "t_blast_cmd (c1; c2; TLabel l) = (c1; c2)"
+  by simp
+
+lemma t_split_cmd_eq:
+  assumes "t_split_cmd c = (c1, Some c2)"
+  shows "i:[c]:j = i:[(c1; c2)]:j"
+  using assms
+proof(induct c arbitrary: c1 c2 i j)
+  case (TSeq cx cy)
+  from `t_split_cmd (cx ; cy) = (c1, Some c2)`
+  show ?case
+    apply (simp split:prod.splits option.splits)
+    apply (cases cy, auto split:prod.splits option.splits)
+    proof -
+      fix a
+      assume h: "t_split_cmd cy = (a, Some c2)"
+      show "i :[ (cx ; cy) ]: j = i :[ ((cx ; a) ; c2) ]: j"
+        apply (simp only: tassemble_to.simps(2) TSeq(2)[OF h] sep_conj_exists)
+        apply (simp add:sep_conj_ac)
+        by (simp add:pred_ex_def, default, auto)
+    qed
+qed auto
+
+lemma t_hoare_label_last_pre: 
+  assumes h1: "t_split_cmd c = (c', Some (TLabel l))"
+  and h2: "l = j \<Longrightarrow> \<lbrace>p\<rbrace> i:[c']:j \<lbrace>q\<rbrace>"
+  shows "\<lbrace>p\<rbrace> i:[c]:j \<lbrace>q\<rbrace>"
+by (unfold t_split_cmd_eq[OF h1], 
+    simp only:tassemble_to.simps sep_conj_cond, 
+    intro tm.code_exI tm.code_condI, insert h2, auto)
+
+lemma t_hoare_label_last: 
+  assumes h1: "t_last_cmd c = Some (TLabel l)"
+  and h2: "l = j \<Longrightarrow> \<lbrace>p\<rbrace> i:[t_blast_cmd c]:j \<lbrace>q\<rbrace>"
+  shows "\<lbrace>p\<rbrace> i:[c]:j \<lbrace>q\<rbrace>"
+proof -
+    have "t_split_cmd c = (t_blast_cmd c, t_last_cmd c)"
+      by simp
+  from t_hoare_label_last_pre[OF this[unfolded h1]] h2
+  show ?thesis by auto
+qed
+
+
+subsection {* Basic assertions for TM *}
+
+(* ones between tape position i and j *)
+function ones :: "int \<Rightarrow> int \<Rightarrow> tassert" where
+  "ones i j = (if j < i then <(i = j + 1)> 
+               else (one i) \<and>* ones (i + 1) j)"
+by auto
+
+termination 
+  by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto
+
+lemma ones_base_simp: 
+  "j < i \<Longrightarrow> ones i j = <(i = j + 1)>"
+  by simp
+
+lemma ones_step_simp: 
+  "\<not> j < i \<Longrightarrow> ones i j =  ((one i) \<and>* ones (i + 1) j)"
+  by simp
+
+lemmas ones_simps = ones_base_simp ones_step_simp
+
+declare ones.simps [simp del] ones_simps [simp]
+
+lemma ones_induct [case_names Base Step]:
+  assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
+  and h2: "\<And> i j. \<lbrakk>\<not> j < i; P (i + 1) j (ones (i + 1) j)\<rbrakk> \<Longrightarrow> P i j ((one i) \<and>* ones (i + 1) j)"
+  shows "P i j (ones i j)"
+proof(induct i j rule:ones.induct)
+  fix i j 
+  assume ih: "(\<not> j < i \<Longrightarrow> P (i + 1) j (ones (i + 1) j))"
+  show "P i j (ones i j)"
+  proof(cases "j < i")
+    case True
+    with h1 [OF True]
+    show ?thesis by auto
+  next
+    case False
+    from h2 [OF False] and ih[OF False]
+    have "P i j (one i \<and>* ones (i + 1) j)" by blast
+    with False show ?thesis by auto
+  qed
+qed
+
+function ones' ::  "int \<Rightarrow> int \<Rightarrow> tassert" where
+  "ones' i j = (if j < i then <(i = j + 1)> 
+                else ones' i (j - 1) \<and>* one j)"
+by auto
+termination by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto
+
+lemma ones_rev: "\<not> j < i \<Longrightarrow> (ones i j) = ((ones i (j - 1)) ** one j)"
+proof(induct i j rule:ones_induct)
+  case Base
+  thus ?case by auto
+next
+  case (Step i j)
+  show ?case
+  proof(cases "j < i + 1")
+    case True
+    with Step show ?thesis
+      by simp
+  next
+    case False
+    with Step show ?thesis 
+      by (auto simp:sep_conj_ac)
+  qed
+qed
+
+lemma ones_rev_induct [case_names Base Step]:
+  assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
+  and h2: "\<And> i j. \<lbrakk>\<not> j < i; P i (j - 1) (ones i (j - 1))\<rbrakk> \<Longrightarrow> P i j ((ones i (j - 1)) ** one j)"
+  shows "P i j (ones i j)"
+proof(induct i j rule:ones'.induct)
+  fix i j 
+  assume ih: "(\<not> j < i \<Longrightarrow> P i (j - 1) (ones i (j - 1)))"
+  show "P i j (ones i j)"
+  proof(cases "j < i")
+    case True
+    with h1 [OF True]
+    show ?thesis by auto
+  next
+    case False
+    from h2 [OF False] and ih[OF False]
+    have "P i j (ones i (j - 1) \<and>* one j)" by blast
+    with ones_rev and False
+    show ?thesis
+      by simp
+  qed
+qed
+
+function zeros :: "int \<Rightarrow> int \<Rightarrow> tassert" where
+  "zeros i j = (if j < i then <(i = j + 1)> else
+                (zero i) ** zeros (i + 1) j)"
+by auto
+termination by (relation "measure(\<lambda> (i::int, j). nat (j - i + 1))") auto
+
+lemma zeros_base_simp: "j < i \<Longrightarrow> zeros i j = <(i = j + 1)>"
+  by simp
+
+lemma zeros_step_simp: "\<not> j < i \<Longrightarrow> zeros i j = ((zero i) ** zeros (i + 1) j)"
+  by simp
+
+declare zeros.simps [simp del]
+lemmas zeros_simps [simp] = zeros_base_simp zeros_step_simp
+
+lemma zeros_induct [case_names Base Step]:
+  assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
+  and h2: "\<And> i j. \<lbrakk>\<not> j < i; P (i + 1) j (zeros (i + 1) j)\<rbrakk> \<Longrightarrow> 
+                                   P i j ((zero i) ** zeros (i + 1) j)"
+  shows "P i j (zeros i j)"
+proof(induct i j rule:zeros.induct)
+  fix i j 
+  assume ih: "(\<not> j < i \<Longrightarrow> P (i + 1) j (zeros (i + 1) j))"
+  show "P i j (zeros i j)"
+  proof(cases "j < i")
+    case True
+    with h1 [OF True]
+    show ?thesis by auto
+  next
+    case False
+    from h2 [OF False] and ih[OF False]
+    have "P i j (zero i \<and>* zeros (i + 1) j)" by blast
+    with False show ?thesis by auto
+  qed
+qed
+
+lemma zeros_rev: "\<not> j < i \<Longrightarrow> (zeros i j) = ((zeros i (j - 1)) \<and>* zero j)"
+proof(induct i j rule:zeros_induct)
+  case (Base i j)
+  thus ?case by auto
+next
+  case (Step i j)
+  show ?case
+  proof(cases "j < i + 1")
+    case True
+    with Step show ?thesis by auto
+  next
+    case False
+    with Step show ?thesis by (auto simp:sep_conj_ac)
+  qed
+qed
+
+lemma zeros_rev_induct [case_names Base Step]:
+  assumes h1: "\<And> i j. j < i \<Longrightarrow> P i j (<(i = j + (1::int))>)"
+  and h2: "\<And> i j. \<lbrakk>\<not> j < i; P i (j - 1) (zeros i (j - 1))\<rbrakk> \<Longrightarrow> 
+                       P i j ((zeros i (j - 1)) ** zero j)"
+  shows "P i j (zeros i j)"
+proof(induct i j rule:ones'.induct)
+  fix i j 
+  assume ih: "(\<not> j < i \<Longrightarrow> P i (j - 1) (zeros i (j - 1)))"
+  show "P i j (zeros i j)"
+  proof(cases "j < i")
+    case True
+    with h1 [OF True]
+    show ?thesis by auto
+  next
+    case False
+    from h2 [OF False] and ih[OF False]
+    have "P i j (zeros i (j - 1) \<and>* zero j)" by blast
+    with zeros_rev and False
+    show ?thesis by simp
+  qed
+qed
+
+definition "rep i j k = ((ones i (i + (int k))) \<and>* <(j = i + int k)>)"
+
+fun reps :: "int \<Rightarrow> int \<Rightarrow> nat list\<Rightarrow> tassert"
+  where
+  "reps i j [] = <(i = j + 1)>" |
+  "reps i j [k] = (ones i (i + int k) ** <(j = i + int k)>)" |
+  "reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)"
+
+lemma reps_simp3: "ks \<noteq> [] \<Longrightarrow> 
+  reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)"
+  by (cases ks, auto)
+
+definition "reps_sep_len ks = (if length ks \<le> 1 then 0 else (length ks) - 1)"
+
+definition "reps_ctnt_len ks = (\<Sum> k \<leftarrow> ks. (1 + k))"
+
+definition "reps_len ks = (reps_sep_len ks) + (reps_ctnt_len ks)"
+
+definition "splited xs ys zs = ((xs = ys @ zs) \<and> (ys \<noteq> []) \<and> (zs \<noteq> []))"
+
+lemma list_split: 
+  assumes h: "k # ks = ys @ zs"
+      and h1: "ys \<noteq> []"
+  shows "(ys = [k] \<and> zs = ks) \<or> (\<exists> ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs)"
+proof(cases ys)
+  case Nil
+  with h1 show ?thesis by auto
+next
+  case (Cons y' ys')
+  with h have "k#ks = y'#(ys' @ zs)" by simp
+  hence hh: "y' = k" "ks = ys' @ zs" by auto
+  show ?thesis
+  proof(cases "ys' = []")
+    case False
+    show ?thesis
+    proof(rule disjI2)
+      show " \<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs"
+      proof(rule exI[where x = ys'])
+        from False hh Cons show "ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs" by auto
+      qed
+    qed
+  next
+    case True
+    show ?thesis
+    proof(rule disjI1)
+      from hh True Cons
+      show "ys = [k] \<and> zs = ks" by auto
+    qed
+  qed
+qed
+
+lemma splited_cons[elim_format]: 
+  assumes h: "splited (k # ks) ys zs"
+  shows "(ys = [k] \<and> zs = ks) \<or> (\<exists> ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs)"
+proof -
+  from h have "k # ks = ys @ zs" "ys \<noteq> [] " unfolding splited_def by auto
+  from list_split[OF this]
+  have "ys = [k] \<and> zs = ks \<or> (\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs)" .
+  thus ?thesis
+  proof
+    assume " ys = [k] \<and> zs = ks" thus ?thesis by auto
+  next
+    assume "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> ks = ys' @ zs"
+    then obtain ys' where hh: "ys' \<noteq> []" "ys = k # ys'" "ks = ys' @ zs" by auto
+    show ?thesis
+    proof(rule disjI2)
+      show "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs"
+      proof(rule exI[where x = ys'])
+        from h have "zs \<noteq> []" by (unfold splited_def, simp)
+        with hh(1) hh(3)
+        have "splited ks ys' zs"
+          by (unfold splited_def, auto)
+        with hh(1) hh(2) show "ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs" by auto
+      qed
+    qed
+  qed
+qed
+
+lemma splited_cons_elim:
+  assumes h: "splited (k # ks) ys zs"
+  and h1: "\<lbrakk>ys = [k]; zs = ks\<rbrakk> \<Longrightarrow> P"
+  and h2: "\<And> ys'. \<lbrakk>ys' \<noteq> []; ys = k#ys'; splited ks ys' zs\<rbrakk> \<Longrightarrow> P"
+  shows P
+proof(rule splited_cons[OF h])
+  assume "ys = [k] \<and> zs = ks \<or> (\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs)"
+  thus P
+  proof
+    assume hh: "ys = [k] \<and> zs = ks"
+    show P
+    proof(rule h1)
+      from hh show "ys = [k]" by simp
+    next
+      from hh show "zs = ks" by simp
+    qed
+  next
+    assume "\<exists>ys'. ys' \<noteq> [] \<and> ys = k # ys' \<and> splited ks ys' zs"
+    then obtain ys' where hh: "ys' \<noteq> []" "ys = k # ys'"  "splited ks ys' zs" by auto
+    from h2[OF this]
+    show P .
+  qed
+qed
+
+lemma list_nth_expand:
+  "i < length xs \<Longrightarrow> xs = take i xs @ [xs!i] @ drop (Suc i) xs"
+  by (metis Cons_eq_appendI append_take_drop_id drop_Suc_conv_tl eq_Nil_appendI)
+
+lemma reps_len_nil: "reps_len [] = 0"
+   by (auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def)
+
+lemma reps_len_sg: "reps_len [k] = 1 + k"
+  by (auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def)
+
+lemma reps_len_cons: "ks \<noteq> [] \<Longrightarrow> (reps_len (k # ks)) = 2 + k + reps_len ks "
+proof(induct ks arbitrary:k)
+  case (Cons n ns)
+  thus ?case
+    by(cases "ns = []", 
+      auto simp:reps_len_def reps_sep_len_def reps_ctnt_len_def)
+qed auto
+
+lemma reps_len_correct:
+  assumes h: "(reps i j ks) s"
+  shows "j = i + int (reps_len ks) - 1"
+  using h
+proof(induct ks arbitrary:i j s)
+  case Nil
+  thus ?case
+    by (auto simp:reps_len_nil pasrt_def)
+next
+  case (Cons n ns)
+  thus ?case
+  proof(cases "ns = []")
+    case False
+    from Cons(2)[unfolded reps_simp3[OF False]]
+    obtain s' where "(reps (i + int n + 2) j ns) s'"
+      by (auto elim!:sep_conjE)
+    from Cons.hyps[OF this]
+    show ?thesis
+      by (unfold reps_len_cons[OF False], simp)
+  next
+    case True
+    with Cons(2)
+    show ?thesis
+      by (auto simp:reps_len_sg pasrt_def)
+  qed
+qed
+
+lemma reps_len_expand: 
+  shows "(EXS j. (reps i j ks)) = (reps i (i + int (reps_len ks) - 1) ks)"
+proof(default+)
+  fix s
+  assume "(EXS j. reps i j ks) s"
+  with reps_len_correct show "reps i (i + int (reps_len ks) - 1) ks s"
+    by (auto simp:pred_ex_def)
+next
+  fix s
+  assume "reps i (i + int (reps_len ks) - 1) ks s"
+  thus "(EXS j. reps i j ks) s"  by (auto simp:pred_ex_def)
+qed
+
+lemma reps_len_expand1: "(EXS j. (reps i j ks \<and>* r)) = (reps i (i + int (reps_len ks) - 1) ks \<and>* r)"
+by (metis reps_len_def reps_len_expand sep.mult_commute sep_conj_exists1)
+
+lemma reps_splited:
+  assumes h: "splited xs ys zs"
+  shows "reps i j xs = (reps i (i + int (reps_len ys) - 1) ys \<and>* 
+                        zero (i + int (reps_len ys)) \<and>* 
+                        reps (i + int (reps_len ys) + 1) j zs)"
+  using h
+proof(induct xs arbitrary: i j ys zs)
+  case Nil
+  thus ?case
+    by (unfold splited_def, auto)
+next
+  case (Cons k ks)
+  from Cons(2)
+  show ?case
+  proof(rule splited_cons_elim)
+    assume h: "ys = [k]" "zs = ks"
+    with Cons(2)
+    show ?thesis
+    proof(cases "ks = []")
+      case True
+      with Cons(2) have False
+        by (simp add:splited_def, cases ys, auto)
+      thus ?thesis by auto
+    next
+      case False
+      have ss: "i + int k + 1 = i + (1 + int k)"
+           "i + int k + 2 = 2 + (i + int k)" by auto
+      show ?thesis
+        by (unfold h(1), unfold reps_simp3[OF False] reps.simps(2) 
+            reps_len_sg, auto simp:sep_conj_ac,
+            unfold ss h(2), simp)
+    qed
+  next
+    fix ys'
+    assume h: "ys' \<noteq> []" "ys = k # ys'" "splited ks ys' zs"
+    hence nnks: "ks \<noteq> []"
+      by (unfold splited_def, auto)
+    have ss: "i + int k + 2 + int (reps_len ys') = 
+              i + (2 + (int k + int (reps_len ys')))" by auto
+    show ?thesis
+      by (simp add: reps_simp3[OF nnks] reps_simp3[OF h(1)] 
+                    Cons(1)[OF h(3)] h(2) 
+                    reps_len_cons[OF h(1)]
+                    sep_conj_ac, subst ss, simp)
+  qed
+qed
+
+
+subsection {* A theory of list extension *}
+
+definition "list_ext n xs = xs @ replicate ((Suc n) - length xs) 0"
+
+lemma list_ext_len_eq: "length (list_ext a xs) = length xs + (Suc a - length xs)"
+  by (metis length_append length_replicate list_ext_def)
+
+lemma list_ext_len: "a < length (list_ext a xs)"
+  by (unfold list_ext_len_eq, auto)
+
+lemma list_ext_lt: "a < length xs \<Longrightarrow> list_ext a xs = xs"
+  by (smt append_Nil2 list_ext_def replicate_0)
+
+lemma list_ext_lt_get: 
+  assumes h: "a' < length xs"
+  shows "(list_ext a xs)!a' = xs!a'"
+proof(cases "a < length xs")
+  case True
+  with h
+  show ?thesis by (auto simp:list_ext_lt)
+next
+  case False
+  with h show ?thesis
+    apply (unfold list_ext_def)
+    by (metis nth_append)
+qed
+
+lemma list_ext_get_upd: "((list_ext a xs)[a:=v])!a = v"
+  by (metis list_ext_len nth_list_update_eq)
+
+lemma nth_app: "length xs \<le> a \<Longrightarrow> (xs @ ys)!a = ys!(a - length xs)"
+  by (metis not_less nth_append)
+
+
+lemma list_ext_tail:
+  assumes h1: "length xs \<le> a"
+  and h2: "length xs \<le> a'"
+  and h3: "a' \<le> a"
+  shows "(list_ext a xs)!a' = 0"
+proof -
+  from h1 h2
+  have "a' - length xs < length (replicate (Suc a - length xs) 0)"
+    by (metis diff_less_mono h3 le_imp_less_Suc length_replicate)
+  moreover from h1 have "replicate (Suc a - length xs) 0 \<noteq> []"
+    by (smt empty_replicate)
+  ultimately have "(replicate (Suc a - length xs) 0)!(a' - length xs) = 0"
+    by (metis length_replicate nth_replicate)
+  moreover have "(xs @ (replicate (Suc a - length xs) 0))!a' = 
+            (replicate (Suc a - length xs) 0)!(a' - length xs)"
+    by (rule nth_app[OF h2])
+  ultimately show ?thesis
+    by (auto simp:list_ext_def)
+qed
+
+lemmas list_ext_simps = list_ext_lt_get list_ext_lt list_ext_len list_ext_len_eq
+
+lemma listsum_upd_suc:
+  "a < length ks \<Longrightarrow> listsum (map Suc (ks[a := Suc (ks ! a)]))= (Suc (listsum (map Suc ks)))"
+by (smt elem_le_listsum_nat 
+     length_list_update list_ext_get_upd 
+     list_update_overwrite listsum_update_nat map_update 
+     nth_equalityI nth_list_update nth_map)
+
+lemma reps_len_suc:
+  assumes "a < length ks"
+  shows "reps_len (ks[a:=Suc(ks!a)]) = 1 + reps_len ks"
+proof(cases "length ks \<le> 1")
+  case True
+  with `a < length ks` 
+  obtain k where "ks = [k]" "a = 0"
+    by (smt length_0_conv length_Suc_conv)
+  thus ?thesis
+      apply (unfold `ks = [k]` `a = 0`)
+      by (unfold reps_len_def reps_sep_len_def reps_ctnt_len_def, auto)
+next
+  case False
+  have "Suc = (op + (Suc 0))"
+    by (default, auto)
+  with listsum_upd_suc[OF `a < length ks`] False
+  show ?thesis
+     by (unfold reps_len_def reps_sep_len_def reps_ctnt_len_def, simp)
+qed
+  
+lemma ks_suc_len:
+  assumes h1: "(reps i j ks) s"
+  and h2: "ks!a = v"
+  and h3: "a < length ks"
+  and h4: "(reps i j' (ks[a:=Suc v])) s'"
+  shows "j' = j + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1"
+proof -
+  from reps_len_correct[OF h1, unfolded list_ext_len_eq]
+       reps_len_correct[OF h4, unfolded list_ext_len_eq] 
+       reps_len_suc[OF `a < length ks`] h2 h3
+  show ?thesis
+    by (unfold list_ext_lt[OF `a < length ks`], auto)
+qed
+
+lemma ks_ext_len:
+  assumes h1: "(reps i j ks) s"
+  and h3: "length ks \<le> a"
+  and h4: "reps i j' (list_ext a ks) s'"
+  shows "j' = j + int (reps_len (list_ext a ks)) - int (reps_len ks)"
+proof -
+  from reps_len_correct[OF h1, unfolded  list_ext_len_eq]
+    and reps_len_correct[OF h4, unfolded list_ext_len_eq]
+  h3
+  show ?thesis by auto
+qed
+
+definition 
+  "reps' i j ks = 
+     (if ks = [] then (<(i = j + 1)>)  else (reps i (j - 1) ks \<and>* zero j))"
+
+lemma reps'_expand: 
+  assumes h: "ks \<noteq> []"
+  shows "(EXS j. reps' i j ks) = reps' i (i + int (reps_len ks)) ks"
+proof -
+  show ?thesis
+  proof(default+)
+    fix s
+    assume "(EXS j. reps' i j ks) s"
+    with h have "(EXS j. reps i (j - 1) ks \<and>* zero j) s" 
+      by (simp add:reps'_def)
+    hence "(reps i (i + int (reps_len ks) - 1) ks \<and>* zero (i + int (reps_len ks))) s"
+    proof(elim EXS_elim)
+      fix j
+      assume "(reps i (j - 1) ks \<and>* zero j) s"
+      then obtain s1 s2 where "s = s1 + s2" "s1 ## s2" "reps i (j - 1) ks s1" "zero j s2"
+        by (auto elim!:sep_conjE)
+      from reps_len_correct[OF this(3)]
+      have "j = i + int (reps_len ks)" by auto
+      with `reps i (j - 1) ks s1` have "reps i (i + int (reps_len ks) - 1) ks s1"
+        by simp
+      moreover from `j = i + int (reps_len ks)` and `zero j s2`
+      have "zero (i + int (reps_len ks)) s2" by auto
+      ultimately show "(reps i (i + int (reps_len ks) - 1) ks \<and>* zero (i + int (reps_len ks))) s"
+        using `s = s1 + s2` `s1 ## s2` by (auto intro!:sep_conjI)
+    qed
+    thus "reps' i (i + int (reps_len ks)) ks s"
+      by (simp add:h reps'_def)
+  next
+    fix s 
+    assume "reps' i (i + int (reps_len ks)) ks s"
+    thus "(EXS j. reps' i j ks) s"
+      by (auto intro!:EXS_intro)
+  qed
+qed
+
+lemma reps'_len_correct: 
+  assumes h: "(reps' i j ks) s"
+  and h1: "ks \<noteq> []"
+  shows "(j = i + int (reps_len ks))"
+proof -
+  from h1 have "reps' i j ks s = (reps i (j - 1) ks \<and>* zero j) s" by (simp add:reps'_def)
+  from h[unfolded this]
+  obtain s' where "reps i (j - 1) ks s'"
+    by (auto elim!:sep_conjE)
+  from reps_len_correct[OF this]
+  show ?thesis by simp
+qed
+
+lemma reps'_append:
+  "reps' i j (ks1 @ ks2) = (EXS m. (reps' i (m - 1) ks1 \<and>* reps' m j ks2))"
+proof(cases "ks1 = []")
+  case True
+  thus ?thesis
+    by (auto simp:reps'_def pred_ex_def pasrt_def set_ins_def sep_conj_def)
+next
+  case False
+  show ?thesis
+  proof(cases "ks2 = []")
+    case False
+    from `ks1 \<noteq> []` and `ks2 \<noteq> []` 
+    have "splited (ks1 @ ks2) ks1 ks2" by (auto simp:splited_def)
+    from reps_splited[OF this, of i "j - 1"]
+    have eq_1: "reps i (j - 1) (ks1 @ ks2) =
+           (reps i (i + int (reps_len ks1) - 1) ks1 \<and>*
+           zero (i + int (reps_len ks1)) \<and>* 
+           reps (i + int (reps_len ks1) + 1) (j - 1) ks2)" .
+    from `ks1 \<noteq> []`
+    have eq_2: "reps' i j (ks1 @ ks2) = (reps i (j - 1) (ks1 @ ks2) \<and>* zero j)"
+      by (unfold reps'_def, simp)
+    show ?thesis
+    proof(default+)
+      fix s
+      assume "reps' i j (ks1 @ ks2) s"
+      show "(EXS m. reps' i (m - 1) ks1 \<and>* reps' m j ks2) s"
+      proof(rule EXS_intro[where x = "i + int(reps_len ks1) + 1"])
+        from `reps' i j (ks1 @ ks2) s`[unfolded eq_2 eq_1]
+        and `ks1 \<noteq> []` `ks2 \<noteq> []`
+        show "(reps' i (i + int (reps_len ks1) + 1 - 1) ks1 \<and>* 
+                         reps' (i + int (reps_len ks1) + 1) j ks2) s"
+          by (unfold reps'_def, simp, sep_cancel+)
+      qed
+    next
+      fix s
+      assume "(EXS m. reps' i (m - 1) ks1 \<and>* reps' m j ks2) s"
+      thus "reps' i j (ks1 @ ks2) s"
+      proof(elim EXS_elim)
+        fix m
+        assume "(reps' i (m - 1) ks1 \<and>* reps' m j ks2) s"
+        then obtain s1 s2 where h: 
+          "s = s1 + s2" "s1 ## s2" "reps' i (m - 1) ks1 s1"
+          " reps' m j ks2 s2" by (auto elim!:sep_conjE)
+        from reps'_len_correct[OF this(3) `ks1 \<noteq> []`]
+        have eq_m: "m = i + int (reps_len ks1) + 1" by simp
+        have "((reps i (i + int (reps_len ks1) - 1) ks1 \<and>* zero (i + int (reps_len ks1))) \<and>* 
+               ((reps (i + int (reps_len ks1) + 1) (j - 1) ks2) \<and>* zero j)) s"
+          (is "(?P \<and>* ?Q) s") 
+        proof(rule sep_conjI)
+          from h(3) eq_m `ks1 \<noteq> []` show "?P s1"
+            by (simp add:reps'_def)
+        next
+          from h(4) eq_m `ks2 \<noteq> []` show "?Q s2"
+            by (simp add:reps'_def)
+        next
+          from h(2) show "s1 ## s2" .
+        next
+          from h(1) show "s = s1 + s2" .
+        qed
+        thus "reps' i j (ks1 @ ks2) s"
+          by (unfold eq_2 eq_1, auto simp:sep_conj_ac)
+      qed
+    qed
+  next
+    case True
+    have "-1 + j = j - 1" by auto
+    with `ks1 \<noteq> []` True
+    show ?thesis
+      apply (auto simp:reps'_def pred_ex_def pasrt_def)
+      apply (unfold `-1 + j = j - 1`)
+      by (fold sep_empty_def, simp only:sep_conj_empty)
+  qed
+qed
+
+lemma reps'_sg: 
+  "reps' i j [k] = 
+       (<(j = i + int k + 1)> \<and>* ones i (i + int k) \<and>* zero j)"
+  apply (unfold reps'_def, default, auto simp:sep_conj_ac)
+  by (sep_cancel+, simp add:pasrt_def)+
+
+
+section {* Basic macros for TM *}
+
+definition "write_zero = (TL exit. \<guillemotright>((W0, exit), (W0, exit)); TLabel exit)"
+
+lemma st_upd: 
+  assumes pre: "(st i' ** r) (trset_of (f, x, i, y, z))"
+  shows "(st i'' ** r) (trset_of (f, x,  i'', y, z))"
+proof -
+  from stimes_sgD[OF pre[unfolded st_def], unfolded trset_of.simps, unfolded stD[OF pre]]
+  have "r (tprog_set x \<union> tpc_set i' \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f - tpc_set i')"
+    by blast
+  moreover have 
+    "(tprog_set x \<union> tpc_set i' \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f - tpc_set i') =
+     (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)"
+    by (unfold tpn_set_def, auto)
+  ultimately have r_rest: "r (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)"
+    by auto
+  show ?thesis
+  proof(rule sep_conjI[where Q = r, OF _ r_rest])
+    show "st i'' (tpc_set i'')" 
+      by (unfold st_def sg_def, simp)
+  next
+    show "tpc_set i'' ## tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f"
+      by (unfold tpn_set_def sep_disj_set_def, auto)
+  next
+    show "trset_of (f, x, i'', y, z) =
+             tpc_set i'' + (tprog_set x \<union> tpos_set y \<union> tmem_set z \<union> tfaults_set f)"
+      by (unfold trset_of.simps plus_set_def, auto)
+  qed
+qed
+
+lemma pos_upd: 
+  assumes pre: "(ps i ** r) (trset_of (f, x, y, i', z))"
+  shows "(ps j ** r) (trset_of (f, x, y, j, z))"
+proof -
+  from stimes_sgD[OF pre[unfolded ps_def], unfolded trset_of.simps, unfolded psD[OF pre]]
+  have "r (tprog_set x \<union> tpc_set y \<union> tpos_set i \<union> tmem_set z \<union> 
+              tfaults_set f - tpos_set i)" (is "r ?xs")
+    by blast
+  moreover have 
+    "?xs = tprog_set x \<union> tpc_set y  \<union> tmem_set z \<union> tfaults_set f"
+    by (unfold tpn_set_def, auto)
+  ultimately have r_rest: "r \<dots>"
+    by auto
+  show ?thesis
+  proof(rule sep_conjI[where Q = r, OF _ r_rest])
+    show "ps j (tpos_set j)" 
+      by (unfold ps_def sg_def, simp)
+  next
+    show "tpos_set j ## tprog_set x \<union> tpc_set y \<union> tmem_set z \<union> tfaults_set f"
+      by (unfold tpn_set_def sep_disj_set_def, auto)
+  next
+    show "trset_of (f, x, y, j, z) = 
+             tpos_set j + (tprog_set x \<union> tpc_set y \<union> tmem_set z \<union> tfaults_set f)"
+      by (unfold trset_of.simps plus_set_def, auto)
+  qed
+qed
+
+lemma TM_in_simp: "({TM a v} \<subseteq> 
+                      tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f) = 
+                             ({TM a v} \<subseteq> tmem_set mem)"
+  by (unfold tpn_set_def, auto)
+
+lemma tmem_set_upd: 
+  "{TM a v} \<subseteq> tmem_set mem \<Longrightarrow> 
+        tmem_set (mem(a f\<mapsto> v')) = ((tmem_set mem) - {TM a v}) \<union> {TM a v'}"
+apply(unfold tpn_set_def) 
+apply(auto)
+apply (metis the.simps the_lookup_fmap_upd the_lookup_fmap_upd_other)
+apply (metis the_lookup_fmap_upd_other)
+by (metis option.inject the_lookup_fmap_upd_other)
+
+lemma tmem_set_disj: "{TM a v} \<subseteq> tmem_set mem \<Longrightarrow> 
+                            {TM a v'} \<inter>  (tmem_set mem - {TM a v}) = {}"
+  by (unfold tpn_set_def, auto)
+
+lemma smem_upd: "((tm a v) ** r) (trset_of (f, x, y, z, mem))  \<Longrightarrow> 
+                    ((tm a v') ** r) (trset_of (f, x, y, z, mem(a f\<mapsto> v')))"
+proof -
+  have eq_s: "(tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f - {TM a v}) =
+    (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
+    by (unfold tpn_set_def, auto)
+  assume g: "(tm a v \<and>* r) (trset_of (f, x, y, z, mem))"
+  from this[unfolded trset_of.simps tm_def]
+  have h: "(sg {TM a v} \<and>* r) (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tmem_set mem \<union> tfaults_set f)" .
+  hence h0: "r (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
+    by(sep_drule stimes_sgD, clarify, unfold eq_s, auto)
+  from h TM_in_simp have "{TM a v} \<subseteq> tmem_set mem"
+    by(sep_drule stimes_sgD, auto)
+  from tmem_set_upd [OF this] tmem_set_disj[OF this]
+  have h2: "tmem_set (mem(a f\<mapsto> v')) = {TM a v'} \<union> (tmem_set mem - {TM a v})" 
+           "{TM a v'} \<inter> (tmem_set mem - {TM a v}) = {}" by auto
+  show ?thesis
+  proof -
+    have "(tm a v' ** r) (tmem_set (mem(a f\<mapsto> v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f)"
+    proof(rule sep_conjI)
+      show "tm a v' ({TM a v'})" by (unfold tm_def sg_def, simp)
+    next
+      from h0 show "r (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)" .
+    next
+      show "{TM a v'} ## tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f"
+      proof -
+        from g have " mem $ a = Some v"
+          by(sep_frule memD, simp)
+        thus "?thesis"
+          by(unfold tpn_set_def set_ins_def, auto)
+      qed
+    next
+      show "tmem_set (mem(a f\<mapsto> v')) \<union> tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> tfaults_set f =
+    {TM a v'} + (tprog_set x \<union> tpc_set y \<union> tpos_set z \<union> (tmem_set mem - {TM a v}) \<union> tfaults_set f)"
+        by (unfold h2(1) set_ins_def eq_s, auto)
+    qed
+    thus ?thesis 
+      apply (unfold trset_of.simps)
+      by (metis sup_commute sup_left_commute)
+  qed
+qed
+
+lemma hoare_write_zero: 
+  "\<lbrace>st i ** ps p ** tm p v\<rbrace> 
+     i:[write_zero]:j
+   \<lbrace>st j ** ps p ** tm p Bk\<rbrace>"
+proof(unfold write_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp, simp)
+  show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace>  i :[ \<guillemotright> ((W0, j), W0, j) ]: j \<lbrace>st j \<and>* ps p \<and>* tm p Bk\<rbrace>"
+  proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+        intro tm.code_condI, simp)
+    assume eq_j: "j = Suc i"
+    show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace>  sg {TC i ((W0, Suc i), W0, Suc i)} 
+          \<lbrace>st (Suc i) \<and>* ps p \<and>* tm p Bk\<rbrace>"
+    proof(fold eq_j, unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+      fix ft prog cs i' mem r
+      assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* sg {TC i ((W0, j), W0, j)})
+              (trset_of (ft, prog, cs, i', mem))"
+      from h have "prog $ i = Some ((W0, j), W0, j)"
+        apply(rule_tac r = "r \<and>* ps p \<and>* tm p v" in codeD)
+        by(simp add: sep_conj_ac)
+      from h and this have stp:
+        "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, j, i', mem(i' f\<mapsto> Bk))" (is "?x = ?y")
+        apply(sep_frule psD)
+        apply(sep_frule stD)
+        apply(sep_frule memD, simp)
+        by(cases v, unfold tm.run_def, auto)
+      from h have "i' = p"
+        by(sep_drule psD, simp)
+      with h
+      have "(r \<and>* ps p \<and>* st j \<and>* tm p Bk \<and>* sg {TC i ((W0, j), W0, j)}) (trset_of ?x)"
+        apply(unfold stp)
+        apply(sep_drule pos_upd, sep_drule st_upd, sep_drule smem_upd)
+        apply(auto simp: sep_conj_ac)
+        done
+      thus "\<exists>k. (r \<and>* ps p \<and>* st j \<and>* tm p Bk \<and>* sg {TC i ((W0, j), W0, j)}) 
+             (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
+        apply (rule_tac x = 0 in exI)
+        by auto
+    qed
+  qed
+qed
+
+lemma hoare_write_zero_gen[step]: 
+  assumes "p = q"
+  shows  "\<lbrace>st i ** ps p ** tm q v\<rbrace> 
+            i:[write_zero]:j
+          \<lbrace>st j ** ps p ** tm q Bk\<rbrace>"
+  by (unfold assms, rule hoare_write_zero)
+
+definition "write_one = (TL exit. \<guillemotright>((W1, exit), (W1, exit)); TLabel exit)"
+
+lemma hoare_write_one: 
+  "\<lbrace>st i ** ps p ** tm p v\<rbrace> 
+     i:[write_one]:j
+   \<lbrace>st j ** ps p ** tm p Oc\<rbrace>"
+proof(unfold write_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
+  fix l
+  show "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace>  i :[ \<guillemotright> ((W1, j), W1, j) ]: j \<lbrace>st j \<and>* ps p \<and>* tm p Oc\<rbrace>"
+  proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+        rule_tac tm.code_condI, simp add: sep_conj_ac)
+    let ?j = "Suc i"
+    show "\<lbrace>ps p \<and>* st i \<and>* tm p v\<rbrace>  sg {TC i ((W1, ?j), W1, ?j)} 
+          \<lbrace>ps p \<and>* st ?j \<and>* tm p Oc\<rbrace>"
+    proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+      fix ft prog cs i' mem r
+      assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* sg {TC i ((W1, ?j), W1, ?j)})
+              (trset_of (ft, prog, cs, i', mem))"
+      from h have "prog $ i = Some ((W1, ?j), W1, ?j)"
+        apply(rule_tac r = "r \<and>* ps p \<and>* tm p v" in codeD)
+        by(simp add: sep_conj_ac)
+      from h and this have stp:
+        "tm.run 1 (ft, prog, cs, i', mem) = 
+                     (ft, prog, ?j, i', mem(i' f\<mapsto> Oc))" (is "?x = ?y")
+        apply(sep_frule psD)
+        apply(sep_frule stD)
+        apply(sep_frule memD, simp)
+        by(cases v, unfold tm.run_def, auto)
+      from h have "i' = p"
+        by(sep_drule psD, simp)
+      with h
+      have "(r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W1, ?j), W1, ?j)}) (trset_of ?x)"
+        apply(unfold stp)
+        apply(sep_drule pos_upd, sep_drule st_upd, sep_drule smem_upd)
+        apply(auto simp: sep_conj_ac)
+        done
+      thus "\<exists>k. (r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W1, ?j), W1, ?j)}) 
+             (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
+        apply (rule_tac x = 0 in exI)
+        by auto
+    qed
+  qed
+qed
+
+lemma hoare_write_one_gen[step]: 
+  assumes "p = q"
+  shows  "\<lbrace>st i ** ps p ** tm q v\<rbrace> 
+              i:[write_one]:j
+          \<lbrace>st j ** ps p ** tm q Oc\<rbrace>"
+  by (unfold assms, rule hoare_write_one)
+
+definition "move_left = (TL exit . \<guillemotright>((L, exit), (L, exit)); TLabel exit)"
+
+lemma hoare_move_left: 
+  "\<lbrace>st i ** ps p ** tm p v2\<rbrace> 
+     i:[move_left]:j
+   \<lbrace>st j ** ps (p - 1) **  tm p v2\<rbrace>"
+proof(unfold move_left_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
+  fix l
+  show "\<lbrace>st i \<and>* ps p \<and>* tm p v2\<rbrace>  i :[ \<guillemotright> ((L, l), L, l) ]: l
+        \<lbrace>st l \<and>* ps (p - 1) \<and>* tm p v2\<rbrace>"
+  proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+      intro tm.code_condI, simp add: sep_conj_ac)
+    let ?j = "Suc i"
+    show "\<lbrace>ps p \<and>* st i \<and>* tm p v2\<rbrace>  sg {TC i ((L, ?j), L, ?j)} 
+          \<lbrace>st ?j \<and>* tm p v2 \<and>* ps (p - 1)\<rbrace>"
+    proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+      fix ft prog cs i' mem r
+      assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v2 \<and>* sg {TC i ((L, ?j), L, ?j)}) 
+                       (trset_of (ft, prog, cs, i',  mem))"
+      from h have "prog $ i = Some ((L, ?j), L, ?j)"
+        apply(rule_tac r = "r \<and>* ps p \<and>* tm p v2" in codeD)
+        by(simp add: sep_conj_ac)
+      from h and this have stp:
+        "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, ?j, i' - 1, mem)" (is "?x = ?y")
+        apply(sep_frule psD)
+        apply(sep_frule stD)
+        apply(sep_frule memD, simp)
+        apply(unfold tm.run_def, case_tac v2, auto)
+        done
+      from h have "i' = p"
+        by(sep_drule psD, simp)
+      with h
+      have "(r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)}) 
+               (trset_of ?x)"
+        apply(unfold stp)
+        apply(sep_drule pos_upd, sep_drule st_upd, simp)
+      proof -
+        assume "(st ?j \<and>* ps (p - 1) \<and>* r \<and>* tm p v2 \<and>* sg {TC i ((L, ?j), L, ?j)}) 
+                   (trset_of (ft, prog, ?j, p - 1, mem))"
+        thus "(r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)}) 
+                    (trset_of (ft, prog, ?j, p - 1, mem))"
+          by(simp add: sep_conj_ac)
+      qed
+      thus "\<exists>k. (r \<and>* st ?j \<and>* tm p v2 \<and>* ps (p - 1) \<and>* sg {TC i ((L, ?j), L, ?j)}) 
+             (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
+        apply (rule_tac x = 0 in exI)
+        by auto
+    qed
+  qed
+qed
+
+lemma hoare_move_left_gen[step]: 
+  assumes "p = q"
+  shows "\<lbrace>st i ** ps p ** tm q v2\<rbrace> 
+            i:[move_left]:j
+         \<lbrace>st j ** ps (p - 1) **  tm q v2\<rbrace>"
+  by (unfold assms, rule hoare_move_left)
+
+definition "move_right = (TL exit . \<guillemotright>((R, exit), (R, exit)); TLabel exit)"
+
+lemma hoare_move_right: 
+  "\<lbrace>st i ** ps p ** tm p v1 \<rbrace> 
+     i:[move_right]:j
+   \<lbrace>st j ** ps (p + 1) ** tm p v1 \<rbrace>"
+proof(unfold move_right_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
+  fix l
+  show "\<lbrace>st i \<and>* ps p \<and>* tm p v1\<rbrace>  i :[ \<guillemotright> ((R, l), R, l) ]: l
+        \<lbrace>st l \<and>* ps (p + 1) \<and>* tm p v1\<rbrace>"
+  proof(unfold tassemble_to.simps, simp only:sep_conj_cond, 
+      intro tm.code_condI, simp add: sep_conj_ac)
+    let ?j = "Suc i"
+    show "\<lbrace>ps p \<and>* st i \<and>* tm p v1\<rbrace>  sg {TC i ((R, ?j), R, ?j)} 
+          \<lbrace>st ?j \<and>* tm p v1 \<and>* ps (p + 1)\<rbrace>"
+    proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+      fix ft prog cs i' mem r
+      assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v1 \<and>* sg {TC i ((R, ?j), R, ?j)}) 
+                       (trset_of (ft, prog, cs, i',  mem))"
+      from h have "prog $ i = Some ((R, ?j), R, ?j)"
+        apply(rule_tac r = "r \<and>* ps p \<and>* tm p v1" in codeD)
+        by(simp add: sep_conj_ac)
+      from h and this have stp:
+        "tm.run 1 (ft, prog, cs, i', mem) = (ft, prog, ?j, i'+ 1, mem)" (is "?x = ?y")
+        apply(sep_frule psD)
+        apply(sep_frule stD)
+        apply(sep_frule memD, simp)
+        apply(unfold tm.run_def, case_tac v1, auto)
+        done
+      from h have "i' = p"
+        by(sep_drule psD, simp)
+      with h
+      have "(r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>* 
+                sg {TC i ((R, ?j), R, ?j)}) (trset_of ?x)"
+        apply(unfold stp)
+        apply(sep_drule pos_upd, sep_drule st_upd, simp)
+      proof -
+        assume "(st ?j \<and>* ps (p + 1) \<and>* r \<and>* tm p v1 \<and>* sg {TC i ((R, ?j), R, ?j)}) 
+                   (trset_of (ft, prog, ?j, p + 1, mem))"
+        thus "(r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>* sg {TC i ((R, ?j), R, ?j)}) 
+                    (trset_of (ft, prog, ?j, p + 1, mem))"
+          by (simp add: sep_conj_ac)
+      qed
+      thus "\<exists>k. (r \<and>* st ?j \<and>* tm p v1 \<and>* ps (p + 1) \<and>* sg {TC i ((R, ?j), R, ?j)}) 
+             (trset_of (tm.run (Suc k) (ft, prog, cs, i', mem)))"
+        apply (rule_tac x = 0 in exI)
+        by auto
+    qed
+  qed
+qed
+
+lemma hoare_move_right_gen[step]: 
+  assumes "p = q"
+  shows "\<lbrace>st i ** ps p ** tm q v1 \<rbrace> 
+           i:[move_right]:j
+         \<lbrace>st j ** ps (p + 1) ** tm q v1 \<rbrace>"
+  by (unfold assms, rule hoare_move_right)
+
+definition "if_one e = (TL exit . \<guillemotright>((W0, exit), (W1, e)); TLabel exit)"
+
+lemma hoare_if_one_true: 
+  "\<lbrace>st i ** ps p ** one p\<rbrace> 
+     i:[if_one e]:j
+   \<lbrace>st e ** ps p ** one p\<rbrace>"
+proof(unfold if_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
+  fix l
+  show " \<lbrace>st i \<and>* ps p \<and>* one p\<rbrace>  i :[ \<guillemotright> ((W0, l), W1, e) ]: l \<lbrace>st e \<and>* ps p \<and>* one p\<rbrace>"
+  proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+        intro tm.code_condI, simp add: sep_conj_ac)
+    let ?j = "Suc i"
+    show "\<lbrace>one p \<and>* ps p \<and>* st i\<rbrace>  sg {TC i ((W0, ?j), W1, e)} \<lbrace>one p \<and>* ps p \<and>* st e\<rbrace>"
+    proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+      fix ft prog cs pc mem r
+      assume h: "(r \<and>* one p \<and>* ps p \<and>* st i \<and>* sg {TC i ((W0, ?j), W1, e)}) 
+        (trset_of (ft, prog, cs, pc, mem))"
+      from h have k1: "prog $ i = Some ((W0, ?j), W1, e)"
+        apply(rule_tac r = "r \<and>* one p \<and>* ps p" in codeD)
+        by(simp add: sep_conj_ac)
+      from h have k2: "pc = p"
+        by(sep_drule psD, simp)
+      from h and this have k3: "mem $ pc = Some Oc"
+        apply(unfold one_def)
+        by(sep_drule memD, simp)
+      from h k1 k2 k3 have stp:
+        "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, e, pc, mem)" (is "?x = ?y")
+        apply(sep_drule stD)
+        apply(unfold tm.run_def)
+        apply(auto)
+        thm fmap_eqI
+        apply(rule fmap_eqI)
+        apply(simp)
+        apply(subgoal_tac "p \<in> fdom mem")
+        apply(simp add: insert_absorb)
+        apply(simp add: fdomIff)
+        by (metis the_lookup_fmap_upd the_lookup_fmap_upd_other)
+      from h k2 
+      have "(r \<and>* one p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, ?j), W1, e)})  (trset_of ?x)"
+        apply(unfold stp)
+        by(sep_drule st_upd, simp add: sep_conj_ac)
+      thus "\<exists>k.(r \<and>* one p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, ?j), W1, e)})
+             (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
+        apply (rule_tac x = 0 in exI)
+        by auto
+    qed
+  qed
+qed
+
+text {*
+  The following problematic lemma is not provable now 
+  lemma hoare_self: "\<lbrace>p\<rbrace> i :[ap]: j \<lbrace>p\<rbrace>" 
+  apply(simp add: tm.Hoare_gen_def, clarify)
+  apply(rule_tac x = 0 in exI, simp add: tm.run_def)
+  done
+*}
+
+lemma hoare_if_one_true_gen[step]: 
+  assumes "p = q"
+  shows
+  "\<lbrace>st i ** ps p ** one q\<rbrace> 
+     i:[if_one e]:j
+   \<lbrace>st e ** ps p ** one q\<rbrace>"
+  by (unfold assms, rule hoare_if_one_true)
+
+lemma hoare_if_one_true1: 
+  "\<lbrace>st i ** ps p ** one p\<rbrace> 
+     i:[(if_one e; c)]:j
+   \<lbrace>st e ** ps p ** one p\<rbrace>"
+proof(unfold tassemble_to.simps, rule tm.code_exI, 
+       simp add: sep_conj_ac tm.Hoare_gen_def, clarify)  
+  fix j' ft prog cs pos mem r
+  assume h: "(r \<and>* one p \<and>* ps p \<and>* st i \<and>* j' :[ c ]: j \<and>* i :[ if_one e ]: j') 
+    (trset_of (ft, prog, cs, pos, mem))"
+  from tm.frame_rule[OF hoare_if_one_true]
+  have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* one p \<and>* r\<rbrace>  i :[ if_one e ]: j' \<lbrace>st e \<and>* ps p \<and>* one p \<and>* r\<rbrace>"
+    by(simp add: sep_conj_ac)
+  from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h
+  have "\<exists> k. (r \<and>* one p \<and>* ps p \<and>* st e \<and>* i :[ if_one e ]: j' \<and>* j' :[ c ]: j)
+    (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+    by(auto simp: sep_conj_ac)
+  thus "\<exists>k. (r \<and>* one p \<and>* ps p \<and>* st e \<and>* j' :[ c ]: j \<and>* i :[ if_one e ]: j') 
+    (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+    by(simp add: sep_conj_ac)
+qed
+
+lemma hoare_if_one_true1_gen[step]: 
+  assumes "p = q"
+  shows
+  "\<lbrace>st i ** ps p ** one q\<rbrace> 
+     i:[(if_one e; c)]:j
+   \<lbrace>st e ** ps p ** one q\<rbrace>"
+  by (unfold assms, rule hoare_if_one_true1)
+
+lemma hoare_if_one_false: 
+  "\<lbrace>st i ** ps p ** zero p\<rbrace> 
+       i:[if_one e]:j
+   \<lbrace>st j ** ps p ** zero p\<rbrace>"
+proof(unfold if_one_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
+  show "\<lbrace>st i \<and>* ps p \<and>* zero p\<rbrace>  i :[ (\<guillemotright> ((W0, j), W1, e)) ]: j
+        \<lbrace>st j \<and>* ps p \<and>* zero p\<rbrace>"
+  proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+        intro tm.code_condI, simp add: sep_conj_ac)
+    let ?j = "Suc i"
+    show "\<lbrace>ps p \<and>* st i \<and>* zero p\<rbrace>  sg {TC i ((W0, ?j), W1, e)} \<lbrace>ps p \<and>*  zero p \<and>* st ?j \<rbrace>"
+    proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+      fix ft prog cs pc mem r
+      assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* sg {TC i ((W0, ?j), W1, e)})
+        (trset_of (ft, prog, cs, pc, mem))"
+      from h have k1: "prog $ i = Some ((W0, ?j), W1, e)"
+        apply(rule_tac r = "r \<and>* zero p \<and>* ps p" in codeD)
+        by(simp add: sep_conj_ac)
+      from h have k2: "pc = p"
+        by(sep_drule psD, simp)
+      from h and this have k3: "mem $ pc = Some Bk"
+        apply(unfold zero_def)
+        by(sep_drule memD, simp)
+      from h k1 k2 k3 have stp:
+        "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, ?j, pc, mem)" (is "?x = ?y")
+        apply(sep_drule stD)
+        apply(unfold tm.run_def)
+        apply(auto)
+        apply(rule fmap_eqI)
+        apply(simp)
+        apply(subgoal_tac "p \<in> fdom mem")
+        apply(simp add: insert_absorb)
+        apply(simp add: fdomIff)
+        by (metis the_lookup_fmap_upd the_lookup_fmap_upd_other)
+      from h k2 
+      have "(r \<and>* zero p \<and>* ps p \<and>* st ?j \<and>* sg {TC i ((W0, ?j), W1, e)})  (trset_of ?x)"
+        apply (unfold stp)
+        by (sep_drule st_upd[where i''="?j"], auto simp:sep_conj_ac)
+      thus "\<exists>k. (r \<and>* ps p \<and>* zero p \<and>* st ?j \<and>*  sg {TC i ((W0, ?j), W1, e)})
+             (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
+        by(auto simp: sep_conj_ac)
+    qed
+  qed
+qed
+
+lemma hoare_if_one_false_gen[step]: 
+  assumes "p = q"
+  shows "\<lbrace>st i ** ps p ** zero q\<rbrace> 
+             i:[if_one e]:j
+         \<lbrace>st j ** ps p ** zero q\<rbrace>"
+  by (unfold assms, rule hoare_if_one_false)
+
+definition "if_zero e = (TL exit . \<guillemotright>((W0, e), (W1, exit)); TLabel exit)"
+
+lemma hoare_if_zero_true: 
+  "\<lbrace>st i ** ps p ** zero p\<rbrace> 
+     i:[if_zero e]:j
+   \<lbrace>st e ** ps p ** zero p\<rbrace>"
+proof(unfold if_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp+)
+  fix l
+  show "\<lbrace>st i \<and>* ps p \<and>* zero p\<rbrace>  i :[ \<guillemotright> ((W0, e), W1, l) ]: l \<lbrace>st e \<and>* ps p \<and>* zero p\<rbrace>"
+  proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+        intro tm.code_condI, simp add: sep_conj_ac)
+    let ?j = "Suc i"
+    show "\<lbrace>ps p \<and>* st i \<and>* zero p\<rbrace>  sg {TC i ((W0, e), W1, ?j)} \<lbrace>ps p \<and>* st e \<and>* zero p\<rbrace>"
+    proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+      fix ft prog cs pc mem r
+      assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* sg {TC i ((W0, e), W1, ?j)})
+        (trset_of (ft, prog, cs, pc, mem))"
+      from h have k1: "prog $ i = Some ((W0, e), W1, ?j)"
+        apply(rule_tac r = "r \<and>* zero p \<and>* ps p" in codeD)
+        by(simp add: sep_conj_ac)
+      from h have k2: "pc = p"
+        by(sep_drule psD, simp)
+      from h and this have k3: "mem $ pc = Some Bk"
+        apply(unfold zero_def)
+        by(sep_drule memD, simp)
+      from h k1 k2 k3 have stp:
+        "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, e, pc, mem)" (is "?x = ?y")
+        apply(sep_drule stD)
+        apply(unfold tm.run_def)
+        apply(auto)
+        apply(rule fmap_eqI)
+        apply(simp)
+        apply(subgoal_tac "p \<in> fdom mem")
+        apply(simp add: insert_absorb)
+        apply(simp add: fdomIff)
+        by (metis the_lookup_fmap_upd the_lookup_fmap_upd_other)
+      from h k2 
+      have "(r \<and>* zero p \<and>* ps p \<and>* st e \<and>* sg {TC i ((W0, e), W1, ?j)})  (trset_of ?x)"
+        apply(unfold stp)
+        by(sep_drule st_upd, simp add: sep_conj_ac)
+      thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* zero p \<and>* sg {TC i ((W0, e), W1, ?j)})
+             (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
+        by(auto simp: sep_conj_ac)
+    qed
+  qed
+qed
+
+lemma hoare_if_zero_true_gen[step]: 
+  assumes "p = q"
+  shows
+  "\<lbrace>st i ** ps p ** zero q\<rbrace> 
+     i:[if_zero e]:j
+   \<lbrace>st e ** ps p ** zero q\<rbrace>"
+  by (unfold assms, rule hoare_if_zero_true)
+
+lemma hoare_if_zero_true1: 
+  "\<lbrace>st i ** ps p ** zero p\<rbrace> 
+     i:[(if_zero e; c)]:j
+   \<lbrace>st e ** ps p ** zero p\<rbrace>"
+ proof(unfold tassemble_to.simps, rule tm.code_exI, simp add: sep_conj_ac 
+        tm.Hoare_gen_def, clarify)  
+  fix j' ft prog cs pos mem r
+  assume h: "(r \<and>* ps p \<and>* st i \<and>* zero p \<and>* j' :[ c ]: j \<and>* i :[ if_zero e ]: j') 
+    (trset_of (ft, prog, cs, pos, mem))"
+  from tm.frame_rule[OF hoare_if_zero_true]
+  have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* zero p \<and>* r\<rbrace>  i :[ if_zero e ]: j' \<lbrace>st e \<and>* ps p \<and>* zero p \<and>* r\<rbrace>"
+    by(simp add: sep_conj_ac)
+  from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h
+  have "\<exists> k. (r \<and>* zero p \<and>* ps p \<and>* st e \<and>* i :[ if_zero e ]: j' \<and>* j' :[ c ]: j)
+    (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+    by(auto simp: sep_conj_ac)
+  thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* zero p \<and>* j' :[ c ]: j \<and>* i :[ if_zero e ]: j')  
+    (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+    by(simp add: sep_conj_ac)
+qed
+
+lemma hoare_if_zero_true1_gen[step]: 
+  assumes "p = q"
+  shows
+  "\<lbrace>st i ** ps p ** zero q\<rbrace> 
+     i:[(if_zero e; c)]:j
+   \<lbrace>st e ** ps p ** zero q\<rbrace>"
+  by (unfold assms, rule hoare_if_zero_true1)
+
+lemma hoare_if_zero_false: 
+  "\<lbrace>st i ** ps p ** tm p Oc\<rbrace> 
+     i:[if_zero e]:j
+   \<lbrace>st j ** ps p ** tm p Oc\<rbrace>"
+proof(unfold if_zero_def, intro t_hoare_local, rule t_hoare_label_last, simp, simp)
+  fix l
+  show "\<lbrace>st i \<and>* ps p \<and>* tm p Oc\<rbrace>  i :[ \<guillemotright> ((W0, e), W1, l) ]: l
+        \<lbrace>st l \<and>* ps p \<and>* tm p Oc\<rbrace>"
+  proof(unfold tassemble_to.simps, simp only:sep_conj_cond,
+      intro tm.code_condI, simp add: sep_conj_ac)
+    let ?j = "Suc i"
+    show "\<lbrace>ps p \<and>* st i \<and>* tm p Oc\<rbrace>  sg {TC i ((W0, e), W1, ?j)} 
+          \<lbrace>ps p \<and>* st ?j \<and>* tm p Oc\<rbrace>"
+    proof(unfold tassemble_to.simps tm.Hoare_gen_def sep_conj_ac, clarify)
+      fix ft prog cs pc mem r
+      assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p Oc \<and>* sg {TC i ((W0, e), W1, ?j)})
+        (trset_of (ft, prog, cs, pc, mem))"
+      from h have k1: "prog $ i = Some ((W0, e), W1, ?j)"
+        apply(rule_tac r = "r \<and>* tm p Oc \<and>* ps p" in codeD)
+        by(simp add: sep_conj_ac)
+      from h have k2: "pc = p"
+        by(sep_drule psD, simp)
+      from h and this have k3: "mem $ pc = Some Oc"
+        by(sep_drule memD, simp)
+      from h k1 k2 k3 have stp:
+        "tm.run 1 (ft, prog, cs, pc, mem) = (ft, prog, ?j, pc, mem)" (is "?x = ?y")
+        apply(sep_drule stD)
+        apply(unfold tm.run_def)
+        apply(auto)
+        apply(rule fmap_eqI)
+        apply(simp)
+        apply(subgoal_tac "p \<in> fdom mem")
+        apply(simp add: insert_absorb)
+        apply(simp add: fdomIff)
+        by (metis the_lookup_fmap_upd the_lookup_fmap_upd_other)
+      from h k2 
+      have "(r \<and>* tm p Oc \<and>* ps p \<and>* st ?j \<and>* sg {TC i ((W0, e), W1, ?j)})  (trset_of ?x)"
+        apply(unfold stp)
+        by(sep_drule st_upd, simp add: sep_conj_ac)
+      thus "\<exists>k. (r \<and>* ps p \<and>* st ?j \<and>* tm p Oc \<and>* sg {TC i ((W0, e), W1, ?j)})
+             (trset_of (tm.run (Suc k) (ft, prog, cs, pc, mem)))"
+        by(auto simp: sep_conj_ac)
+    qed
+  qed
+qed
+
+lemma hoare_if_zero_false_gen[step]: 
+  assumes "p = q"
+  shows
+  "\<lbrace>st i ** ps p ** tm q Oc\<rbrace> 
+     i:[if_zero e]:j
+   \<lbrace>st j ** ps p ** tm q Oc\<rbrace>"
+  by (unfold assms, rule hoare_if_zero_false)
+
+
+definition "jmp e = \<guillemotright>((W0, e), (W1, e))"
+
+lemma hoare_jmp: 
+  "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace>  i:[jmp e]:j \<lbrace>st e \<and>* ps p \<and>* tm p v\<rbrace>"
+proof(unfold jmp_def tm.Hoare_gen_def tassemble_to.simps sep_conj_ac, clarify)
+  fix ft prog cs pos mem r
+  assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* <(j = i + 1)> \<and>* sg {TC i ((W0, e), W1, e)})
+    (trset_of (ft, prog, cs, pos, mem))"
+  from h have k1: "prog $ i = Some ((W0, e), W1, e)"
+    apply(rule_tac r = "r \<and>* <(j = i + 1)> \<and>* tm p v \<and>* ps p" in codeD)
+    by(simp add: sep_conj_ac)
+  from h have k2: "p = pos"
+    by(sep_drule psD, simp)
+  from h k2 have k3: "mem $ pos = Some v"
+    by(sep_drule memD, simp)
+  from h k1 k2 k3 have 
+    stp: "tm.run 1 (ft, prog, cs, pos, mem) = (ft, prog, e, pos, mem)" (is "?x = ?y")
+    apply(sep_drule stD)
+    apply(unfold tm.run_def)
+    apply(cases "mem $ pos")
+    apply(simp)
+    apply(cases v)
+    apply(auto)
+    apply(rule fmap_eqI)
+    apply(simp)
+    apply(subgoal_tac "pos \<in> fdom mem")
+    apply(simp add: insert_absorb)
+    apply(simp add: fdomIff)
+    apply(metis the_lookup_fmap_upd the_lookup_fmap_upd_other)
+    apply(rule fmap_eqI)
+    apply(simp)
+    apply(subgoal_tac "pos \<in> fdom mem")
+    apply(simp add: insert_absorb)
+    apply(simp add: fdomIff)
+    apply(metis the_lookup_fmap_upd the_lookup_fmap_upd_other)
+    done
+  from h k2 
+  have "(r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* <(j = i + 1)> \<and>* 
+           sg {TC i ((W0, e), W1, e)}) (trset_of ?x)"
+    apply(unfold stp)
+    by(sep_drule st_upd, simp add: sep_conj_ac)
+  thus "\<exists> k. (r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* <(j = i + 1)> \<and>* sg {TC i ((W0, e), W1, e)})
+             (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+    apply (rule_tac x = 0 in exI)
+    by auto
+qed
+
+lemma hoare_jmp_gen[step]: 
+  assumes "p = q"
+  shows "\<lbrace>st i \<and>* ps p \<and>* tm q v\<rbrace>  i:[jmp e]:j \<lbrace>st e \<and>* ps p \<and>* tm q v\<rbrace>"
+  by (unfold assms, rule hoare_jmp)
+
+lemma hoare_jmp1: 
+  "\<lbrace>st i \<and>* ps p \<and>* tm p v\<rbrace> 
+     i:[(jmp e; c)]:j
+   \<lbrace>st e \<and>* ps p \<and>* tm p v\<rbrace>"
+proof(unfold  tassemble_to.simps, rule tm.code_exI, simp 
+              add: sep_conj_ac tm.Hoare_gen_def, clarify)
+  fix j' ft prog cs pos mem r
+  assume h: "(r \<and>* ps p \<and>* st i \<and>* tm p v \<and>* j' :[ c ]: j \<and>* i :[ jmp e ]: j') 
+    (trset_of (ft, prog, cs, pos, mem))"
+  from tm.frame_rule[OF hoare_jmp]
+  have "\<And> r. \<lbrace>st i \<and>* ps p \<and>* tm p v \<and>* r\<rbrace>  i :[ jmp e ]: j' \<lbrace>st e \<and>* ps p \<and>* tm p v \<and>* r\<rbrace>"
+    by(simp add: sep_conj_ac)
+  from this[unfolded tm.Hoare_gen_def tassemble_to.simps, rule_format, of "j' :[ c ]: j"] h
+  have "\<exists> k. (r \<and>* tm p v \<and>* ps p \<and>* st e \<and>* i :[ jmp e ]: j' \<and>* j' :[ c ]: j)
+    (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+    by(auto simp: sep_conj_ac)
+  thus "\<exists>k. (r \<and>* ps p \<and>* st e \<and>* tm p v \<and>* j' :[ c ]: j \<and>* i :[ jmp e ]: j')  
+    (trset_of (tm.run (Suc k) (ft, prog, cs, pos, mem)))"
+    by(simp add: sep_conj_ac)
+qed
+
+
+lemma hoare_jmp1_gen[step]: 
+  assumes "p = q"
+  shows "\<lbrace>st i \<and>* ps p \<and>* tm q v\<rbrace> 
+            i:[(jmp e; c)]:j
+         \<lbrace>st e \<and>* ps p \<and>* tm q v\<rbrace>"
+  by (unfold assms, rule hoare_jmp1)
+
+
+lemma condI: 
+  assumes h1: b
+  and h2: "b \<Longrightarrow> p s"
+  shows "(<b> \<and>* p) s"
+  by (metis (full_types) cond_true_eq1 h1 h2)
+
+lemma condE:
+  assumes "(<b> \<and>* p) s"
+  obtains "b" and "p s"
+proof(atomize_elim)
+  from condD[OF assms]
+  show "b \<and> p s" .
+qed
+
+
+section {* Tactics *}
+
+ML {*
+  val trace_step = Attrib.setup_config_bool @{binding trace_step} (K false)
+  val trace_fwd = Attrib.setup_config_bool @{binding trace_fwd} (K false)
+*}
+
+
+ML {*
+  val tracing  = (fn ctxt => fn str =>
+                   if (Config.get ctxt trace_step) then tracing str else ())
+  fun not_pred p = fn s => not (p s)
+  fun break_sep_conj (Const (@{const_name sep_conj},_) $ t1 $ t2 $ _) =
+         (break_sep_conj t1) @ (break_sep_conj t2)
+    | break_sep_conj (Const (@{const_name sep_conj},_) $ t1 $ t2) =
+            (break_sep_conj t1) @ (break_sep_conj t2)
+                   (* dig through eta exanded terms: *)
+    | break_sep_conj (Abs (_, _, t $ Bound 0)) = break_sep_conj t
+    | break_sep_conj t = [t];
+
+  val empty_env = (Vartab.empty, Vartab.empty)
+
+  fun match_env ctxt pat trm env = 
+            Pattern.match (ctxt |> Proof_Context.theory_of) (pat, trm) env
+
+  fun match ctxt pat trm = match_env ctxt pat trm empty_env;
+
+  val inst = Envir.subst_term;
+
+  fun term_of_thm thm = thm |>  prop_of |> HOLogic.dest_Trueprop
+
+  fun get_cmd ctxt code = 
+      let val pat = term_of @{cpat "_:[(?cmd)]:_"}
+          val pat1 = term_of @{cpat "?cmd::tpg"}
+          val env = match ctxt pat code
+      in inst env pat1 end
+
+  fun is_seq_term (Const (@{const_name TSeq}, _) $ _ $ _) = true
+    | is_seq_term _ = false
+
+  fun get_hcmd  (Const (@{const_name TSeq}, _) $ hcmd $ _) = hcmd
+    | get_hcmd hcmd = hcmd
+
+  fun last [a]  = a |
+      last (a::b) = last b
+
+  fun but_last [a] = [] |
+      but_last (a::b) = a::(but_last b)
+
+  fun foldr f [] = (fn x => x) |
+      foldr f (x :: xs) = (f x) o  (foldr f xs)
+
+  fun concat [] = [] |
+      concat (x :: xs) = x @ concat xs
+
+  fun match_any ctxt pats tm = 
+              fold 
+                 (fn pat => fn b => (b orelse Pattern.matches 
+                          (ctxt |> Proof_Context.theory_of) (pat, tm))) 
+                 pats false
+
+  fun is_ps_term (Const (@{const_name ps}, _) $ _) = true
+    | is_ps_term _ = false
+
+  fun string_of_term ctxt t = t |> Syntax.pretty_term ctxt |> Pretty.str_of
+  fun string_of_cterm ctxt ct = ct |> term_of |> string_of_term ctxt
+  fun pterm ctxt t =
+          t |> string_of_term ctxt |> tracing ctxt
+  fun pcterm ctxt ct = ct |> string_of_cterm ctxt |> tracing ctxt
+  fun string_for_term ctxt t =
+       Print_Mode.setmp (filter (curry (op =) Symbol.xsymbolsN)
+                   (print_mode_value ())) (Syntax.string_of_term ctxt) t
+         |> String.translate (fn c => if Char.isPrint c then str c else "")
+         |> Sledgehammer_Util.simplify_spaces  
+  fun string_for_cterm ctxt ct = ct |> term_of |> string_for_term ctxt
+  fun attemp tac = fn i => fn st => (tac i st) handle exn => Seq.empty
+  fun try_tac tac = fn i => fn st => (tac i st) handle exn => (Seq.single st)       
+ (* aux end *) 
+*}
+
+ML {* (* Functions specific to Hoare triples *)
+  fun get_pre ctxt t = 
+    let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"} 
+        val env = match ctxt pat t 
+    in inst env (term_of @{cpat "?P::tresource set \<Rightarrow> bool"}) end
+
+  fun can_process ctxt t = ((get_pre ctxt t; true) handle _ => false)
+
+  fun get_post ctxt t = 
+    let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"} 
+        val env = match ctxt pat t 
+    in inst env (term_of @{cpat "?Q::tresource set \<Rightarrow> bool"}) end;
+
+  fun get_mid ctxt t = 
+    let val pat = term_of @{cpat "\<lbrace>?P\<rbrace> ?c \<lbrace>?Q\<rbrace>"} 
+        val env = match ctxt pat t 
+    in inst env (term_of @{cpat "?c::tresource set \<Rightarrow> bool"}) end;
+
+  fun is_pc_term (Const (@{const_name st}, _) $ _) = true
+    | is_pc_term _ = false
+
+  fun mk_pc_term x =
+     Const (@{const_name st}, @{typ "nat \<Rightarrow> tresource set \<Rightarrow> bool"}) $ Free (x, @{typ "nat"})
+
+  val sconj_term = term_of @{cterm "sep_conj::tassert \<Rightarrow> tassert \<Rightarrow> tassert"}
+
+  fun mk_ps_term x =
+     Const (@{const_name ps}, @{typ "int \<Rightarrow> tresource set \<Rightarrow> bool"}) $ Free (x, @{typ "int"})
+
+  fun atomic tac  = ((SOLVED' tac) ORELSE' (K all_tac))
+
+  fun map_simpset f = Context.proof_map (Simplifier.map_ss f)
+
+  fun pure_sep_conj_ac_tac ctxt = 
+         (auto_tac (map_simpset (fn ss => ss addsimps @{thms sep_conj_ac}) ctxt)
+          |> SELECT_GOAL)
+
+
+  fun potential_facts ctxt prop = Facts.could_unify (Proof_Context.facts_of ctxt) 
+                                       ((Term.strip_all_body prop) |> Logic.strip_imp_concl);
+
+  fun some_fact_tac ctxt = SUBGOAL (fn (goal, i) => 
+                                      (Method.insert_tac (potential_facts ctxt goal) i) THEN
+                                      (pure_sep_conj_ac_tac ctxt i));
+
+  fun sep_conj_ac_tac ctxt = 
+     (SOLVED' (auto_tac (ctxt |> map_simpset (fn ss => ss addsimps @{thms sep_conj_ac}))
+       |> SELECT_GOAL)) ORELSE' (atomic (some_fact_tac ctxt))
+*}
+
+ML {*
+type HoareTriple = {
+  binding: binding,
+  can_process: Proof.context -> term -> bool,
+  get_pre: Proof.context -> term -> term,
+  get_mid: Proof.context -> term -> term,
+  get_post: Proof.context -> term -> term,
+  is_pc_term: term -> bool,
+  mk_pc_term: string -> term,
+  sconj_term: term,
+  sep_conj_ac_tac: Proof.context -> int -> tactic,
+  hoare_seq1: thm,
+  hoare_seq2: thm,
+  pre_stren: thm,
+  post_weaken: thm,
+  frame_rule: thm
+}
+
+  val tm_triple = {binding = @{binding "tm_triple"}, 
+                   can_process = can_process,
+                   get_pre = get_pre,
+                   get_mid = get_mid,
+                   get_post = get_post,
+                   is_pc_term = is_pc_term,
+                   mk_pc_term = mk_pc_term,
+                   sconj_term = sconj_term,
+                   sep_conj_ac_tac = sep_conj_ac_tac,
+                   hoare_seq1 = @{thm t_hoare_seq1},
+                   hoare_seq2 = @{thm t_hoare_seq2},
+                   pre_stren = @{thm tm.pre_stren},
+                   post_weaken = @{thm tm.post_weaken},
+                   frame_rule = @{thm tm.frame_rule}
+                  }:HoareTriple
+*}
+
+ML {*
+  val _ = data_slot "HoareTriples" "HoareTriple list" "[]"
+*}
+
+ML {*
+  val _ = HoareTriples_store [tm_triple]
+*}
+
+ML {* (* aux1 functions *)
+
+fun focus_params t ctxt =
+  let
+    val (xs, Ts) =
+      split_list (Term.variant_frees t (Term.strip_all_vars t));  (*as they are printed :-*)
+    (* val (xs', ctxt') = variant_fixes xs ctxt; *)
+    (* val ps = xs' ~~ Ts; *)
+    val ps = xs ~~ Ts
+    val (_, ctxt'') = ctxt |> Variable.add_fixes xs
+  in ((xs, ps), ctxt'') end
+
+fun focus_concl ctxt t =
+  let
+    val ((xs, ps), ctxt') = focus_params t ctxt
+    val t' = Term.subst_bounds (rev (map Free ps), Term.strip_all_body t);
+  in (t' |> Logic.strip_imp_concl, ctxt') end
+
+  fun get_concl ctxt (i, state) = 
+              nth (Thm.prems_of state) (i - 1) 
+                            |> focus_concl ctxt |> (fn (x, _) => x |> HOLogic.dest_Trueprop)
+ (* aux1 end *)
+*}
+
+ML {*
+  fun indexing xs = upto (0, length xs - 1) ~~ xs
+  fun select_idxs idxs ps = 
+      map_index (fn (i, e) => if (member (op =) idxs i) then [e] else []) ps |> flat
+  fun select_out_idxs idxs ps = 
+      map_index (fn (i, e) => if (member (op =) idxs i) then [] else [e]) ps |> flat
+  fun match_pres ctxt mf env ps qs = 
+      let  fun sel_match mf env [] qs = [(env, [])]
+             | sel_match mf env (p::ps) qs = 
+                  let val pm = map (fn (i, q) => [(i, 
+                                      let val _ = tracing ctxt "Matching:"
+                                          val _ = [p, q] |>
+                                            (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+                                          val r = mf p q env 
+                                      in r end)]
+                                      handle _ => (
+                                      let val _ = tracing ctxt "Failed matching:"
+                                          val _ = [p, q] |>
+                                            (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+                                      in [] end)) qs |> flat
+                      val r = pm |> map (fn (i, env') => 
+                                let val qs' = filter_out (fn (j, q) => j = i) qs
+                                in  sel_match mf env' ps qs' |> 
+                                      map (fn (env'', idxs) => (env'', i::idxs)) end) 
+                        |> flat
+            in r end
+   in sel_match mf env ps (indexing qs) end
+
+  fun provable tac ctxt goal = 
+          let 
+              val _ = tracing ctxt "Provable trying to prove:"
+              val _ = [goal] |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+          in
+             (Goal.prove ctxt [] [] goal (fn {context, ...} => tac context 1); true)
+                        handle exn => false
+          end
+  fun make_sense tac ctxt thm_assms env  = 
+                thm_assms |>  map (inst env) |> forall (provable tac ctxt)
+*}
+
+ML {*
+  fun triple_for ctxt goal = 
+    filter (fn trpl => (#can_process trpl) ctxt goal) (HoareTriples.get (Proof_Context.theory_of ctxt)) |> hd
+
+  fun step_terms_for thm goal ctxt = 
+    let
+       val _ = tracing ctxt "This is the new version of step_terms_for!"
+       val _ = tracing ctxt "Tring to find triple processor: TP"
+       val TP = triple_for ctxt goal
+       val _ = #binding TP |> Binding.name_of |> tracing ctxt
+       fun mk_sep_conj tms = foldr (fn tm => fn rtm => 
+              ((#sconj_term TP)$tm$rtm)) (but_last tms) (last tms)
+       val thm_concl = thm |> prop_of 
+                 |> Logic.strip_imp_concl |> HOLogic.dest_Trueprop 
+       val thm_assms = thm |> prop_of 
+           |> Logic.strip_imp_prems 
+       val cmd_pat = thm_concl |> #get_mid TP ctxt |> get_cmd ctxt 
+       val cmd = goal |> #get_mid TP ctxt |> get_cmd ctxt
+       val _ = tracing ctxt "matching command ... "
+       val _ = tracing ctxt "cmd_pat = "
+       val _ = pterm ctxt cmd_pat
+       val (hcmd, env1, is_last) =  (cmd, match ctxt cmd_pat cmd, true)
+             handle exn => (cmd |> get_hcmd, match ctxt cmd_pat (cmd |> get_hcmd), false)
+       val _ = tracing ctxt "hcmd ="
+       val _ = pterm ctxt hcmd
+       val _ = tracing ctxt "match command succeed! "
+       val _ = tracing ctxt "pres ="
+       val pres = goal |> #get_pre TP ctxt |> break_sep_conj 
+       val _ = pres |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+       val _ = tracing ctxt "pre_pats ="
+       val pre_pats = thm_concl |> #get_pre TP ctxt |> inst env1 |> break_sep_conj
+       val _ = pre_pats |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+       val _ = tracing ctxt "post_pats ="
+       val post_pats = thm_concl |> #get_post TP ctxt |> inst env1 |> break_sep_conj
+       val _ = post_pats |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+       val _ = tracing ctxt "Calculating sols"
+       val sols = match_pres ctxt (match_env ctxt) env1 pre_pats pres 
+       val _ = tracing ctxt "End calculating sols, sols ="
+       val _ = tracing ctxt (@{make_string} sols)
+       val _ = tracing ctxt "Calulating env2 and idxs"
+       val (env2, idxs) = filter (fn (env, idxs) => make_sense (#sep_conj_ac_tac TP) 
+                             ctxt thm_assms env) sols |> hd
+       val _ = tracing ctxt "End calculating env2 and idxs"
+       val _ = tracing ctxt "mterms ="
+       val mterms = select_idxs idxs pres |> map (inst env2) 
+       val _ = mterms |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+       val _ = tracing ctxt "nmterms = "
+       val nmterms = select_out_idxs idxs pres |> map (inst env2) 
+       val _ = nmterms |> (pretty_terms ctxt) |> Pretty.str_of |> tracing ctxt
+       val pre_cond = pre_pats |> map (inst env2) |> mk_sep_conj
+       val post_cond = post_pats |> map (inst env2) |> mk_sep_conj 
+       val post_cond_npc  = 
+               post_cond |> break_sep_conj |> filter (not_pred (#is_pc_term TP)) 
+               |> (fn x => x @ nmterms) |> mk_sep_conj |> cterm_of (Proof_Context.theory_of ctxt)
+       fun mk_frame cond rest  = 
+             if rest = [] then cond else ((#sconj_term TP)$ cond) $ (mk_sep_conj rest)
+       val pre_cond_frame = mk_frame pre_cond nmterms |> cterm_of (Proof_Context.theory_of ctxt)
+       fun post_cond_frame j' = post_cond |> break_sep_conj |> filter (not_pred (#is_pc_term TP)) 
+               |> (fn x => [#mk_pc_term TP j']@x) |> mk_sep_conj
+               |> (fn x => mk_frame x nmterms)
+               |> cterm_of (Proof_Context.theory_of ctxt)
+       val need_frame = (nmterms <> [])
+    in 
+         (post_cond_npc,
+          pre_cond_frame, 
+          post_cond_frame, need_frame, is_last)       
+    end
+*}
+
+ML {*
+  fun step_tac ctxt thm i state = 
+     let  
+       val _ = tracing ctxt "This is the new version of step_tac"
+       val (goal, ctxt) = nth (Thm.prems_of state) (i - 1) 
+                  |> focus_concl ctxt 
+                  |> (apfst HOLogic.dest_Trueprop)
+       val _ = tracing ctxt "step_tac: goal = "
+       val _ = goal |> pterm ctxt
+       val _ = tracing ctxt "Start to calculate intermediate terms ... "
+       val (post_cond_npc, pre_cond_frame, post_cond_frame, need_frame, is_last) 
+                        = step_terms_for thm goal ctxt
+       val _ = tracing ctxt "Tring to find triple processor: TP"
+       val TP = triple_for ctxt goal
+       val _ = #binding TP |> Binding.name_of |> tracing ctxt
+       fun mk_sep_conj tms = foldr (fn tm => fn rtm => 
+              ((#sconj_term TP)$tm$rtm)) (but_last tms) (last tms)
+       val _ = tracing ctxt "Calculate intermediate terms finished! "
+       val post_cond_npc_str = post_cond_npc |> string_for_cterm ctxt
+       val pre_cond_frame_str = pre_cond_frame |> string_for_cterm ctxt
+       val _ = tracing ctxt "step_tac: post_cond_npc = "
+       val _ = post_cond_npc |> pcterm ctxt
+       val _ = tracing ctxt "step_tac: pre_cond_frame = "
+       val _ = pre_cond_frame |> pcterm ctxt
+       fun tac1 i state = 
+             if is_last then (K all_tac) i state else
+              res_inst_tac ctxt [(("q", 0), post_cond_npc_str)] 
+                                          (#hoare_seq1 TP) i state
+       fun tac2 i state = res_inst_tac ctxt [(("p", 0), pre_cond_frame_str)] 
+                                          (#pre_stren TP) i state
+       fun foc_tac post_cond_frame ctxt i state  =
+           let
+               val goal = get_concl ctxt (i, state)
+               val pc_term = goal |> #get_post TP ctxt |> break_sep_conj 
+                                |> filter (#is_pc_term TP) |> hd
+               val (_$Free(j', _)) = pc_term
+               val psd = post_cond_frame j'
+               val str_psd = psd |> string_for_cterm ctxt
+               val _ = tracing ctxt "foc_tac: psd = "
+               val _ = psd |> pcterm ctxt
+           in 
+               res_inst_tac ctxt [(("q", 0), str_psd)] 
+                                          (#post_weaken TP) i state
+           end
+     val frame_tac = if need_frame then (rtac (#frame_rule TP)) else (K all_tac)
+     val print_tac = if (Config.get ctxt trace_step) then Tactical.print_tac else (K all_tac)
+     val tac = (tac1 THEN' (K (print_tac "tac1 success"))) THEN' 
+               (tac2 THEN' (K (print_tac "tac2 success"))) THEN' 
+               ((foc_tac post_cond_frame ctxt) THEN' (K (print_tac "foc_tac success"))) THEN' 
+               (frame_tac  THEN' (K (print_tac "frame_tac success"))) THEN' 
+               (((rtac thm) THEN_ALL_NEW (#sep_conj_ac_tac TP ctxt)) THEN' (K (print_tac "rtac thm success"))) THEN' 
+               (K (ALLGOALS (atomic (#sep_conj_ac_tac TP ctxt)))) THEN'
+               (* (#sep_conj_ac_tac TP ctxt) THEN' (#sep_conj_ac_tac TP ctxt) THEN'  *)
+               (K prune_params_tac)
+   in 
+        tac i state
+   end
+
+  fun unfold_cell_tac ctxt = (Local_Defs.unfold_tac ctxt @{thms one_def zero_def})
+  fun fold_cell_tac ctxt = (Local_Defs.fold_tac ctxt @{thms one_def zero_def})
+*}
+
+ML {*
+  fun sg_step_tac thms ctxt =
+     let val sg_step_tac' =  (map (fn thm  => attemp (step_tac ctxt thm)) thms)
+                               (* @ [attemp (goto_tac ctxt)]  *)
+                              |> FIRST'
+         val sg_step_tac'' = (K (unfold_cell_tac ctxt)) THEN' sg_step_tac' THEN' (K (fold_cell_tac ctxt))
+     in
+         sg_step_tac' ORELSE' sg_step_tac''
+     end
+  fun steps_tac thms ctxt i = REPEAT (sg_step_tac thms ctxt i) THEN (prune_params_tac)
+*}
+
+method_setup hstep = {* 
+  Attrib.thms >> (fn thms => fn ctxt =>
+                    (SIMPLE_METHOD' (fn i => 
+                       sg_step_tac (thms@(StepRules.get ctxt)) ctxt i)))
+  *} 
+  "One step symbolic execution using step theorems."
+
+method_setup hsteps = {* 
+  Attrib.thms >> (fn thms => fn ctxt =>
+                    (SIMPLE_METHOD' (fn i => 
+                       steps_tac (thms@(StepRules.get ctxt)) ctxt i)))
+  *} 
+  "Sequential symbolic execution using step theorems."
+
+
+ML {*
+  fun goto_tac ctxt thm i state = 
+     let  
+       val (goal, ctxt) = nth (Thm.prems_of state) (i - 1) 
+                             |> focus_concl ctxt |> (apfst HOLogic.dest_Trueprop)
+       val _ = tracing ctxt "goto_tac: goal = "
+       val _ = goal |> string_of_term ctxt |> tracing ctxt
+       val (post_cond_npc, pre_cond_frame, post_cond_frame, need_frame, is_last) 
+                        = step_terms_for thm goal ctxt
+       val _ = tracing ctxt "Tring to find triple processor: TP"
+       val TP = triple_for ctxt goal
+       val _ = #binding TP |> Binding.name_of |> tracing ctxt
+       val _ = tracing ctxt "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
+       val post_cond_npc_str = post_cond_npc |> string_for_cterm ctxt
+       val pre_cond_frame_str = pre_cond_frame |> string_for_cterm ctxt
+       val _ = tracing ctxt "goto_tac: post_cond_npc = "
+       val _ = post_cond_npc_str |> tracing ctxt
+       val _ = tracing ctxt "goto_tac: pre_cond_frame = "
+       val _ = pre_cond_frame_str |> tracing ctxt
+       fun tac1 i state = 
+             if is_last then (K all_tac) i state else
+              res_inst_tac ctxt [] 
+                                          (#hoare_seq2 TP) i state
+       fun tac2 i state = res_inst_tac ctxt [(("p", 0), pre_cond_frame_str)] 
+                                          (#pre_stren TP) i state
+       fun foc_tac post_cond_frame ctxt i state  =
+           let
+               val goal = get_concl ctxt (i, state)
+               val pc_term = goal |> #get_post TP ctxt |> break_sep_conj 
+                                |> filter (#is_pc_term TP) |> hd
+               val (_$Free(j', _)) = pc_term
+               val psd = post_cond_frame j'
+               val str_psd = psd |> string_for_cterm ctxt
+               val _ = tracing ctxt "goto_tac: psd = "
+               val _ = str_psd |> tracing ctxt
+           in 
+               res_inst_tac ctxt [(("q", 0), str_psd)] 
+                                          (#post_weaken TP) i state
+           end
+     val frame_tac = if need_frame then (rtac (#frame_rule TP)) else (K all_tac)
+     val _ = tracing ctxt "goto_tac: starting to apply tacs"
+     val print_tac = if (Config.get ctxt trace_step) then Tactical.print_tac else (K all_tac)
+     val tac = (tac1 THEN' (K (print_tac "tac1 success"))) THEN' 
+               (tac2 THEN' (K (print_tac "tac2 success"))) THEN' 
+               ((foc_tac post_cond_frame ctxt) THEN' (K (print_tac "foc_tac success"))) THEN' 
+               (frame_tac THEN' (K (print_tac "frame_tac success"))) THEN' 
+               ((((rtac thm) THEN_ALL_NEW (#sep_conj_ac_tac TP ctxt))) THEN'
+                 (K (print_tac "rtac success"))
+               ) THEN' 
+               (K (ALLGOALS (atomic (#sep_conj_ac_tac TP ctxt)))) THEN'
+               (K prune_params_tac)
+   in 
+        tac i state
+   end
+*}
+
+ML {*
+  fun sg_goto_tac thms ctxt =
+     let val sg_goto_tac' =  (map (fn thm  => attemp (goto_tac ctxt thm)) thms)
+                              |> FIRST'
+         val sg_goto_tac'' = (K (unfold_cell_tac ctxt)) THEN' sg_goto_tac' THEN' (K (fold_cell_tac ctxt))
+     in
+         sg_goto_tac' ORELSE' sg_goto_tac''
+     end
+  fun gotos_tac thms ctxt i = REPEAT (sg_goto_tac thms ctxt i) THEN (prune_params_tac)
+*}
+
+method_setup hgoto = {* 
+  Attrib.thms >> (fn thms => fn ctxt =>
+                    (SIMPLE_METHOD' (fn i => 
+                       sg_goto_tac (thms@(StepRules.get ctxt)) ctxt i)))
+  *} 
+  "One step symbolic execution using goto theorems."
+
+subsection {* Tactic for forward reasoning *}
+
+ML {*
+fun mk_msel_rule ctxt conclusion idx term =
+let 
+  val cjt_count = term |> break_sep_conj |> length
+  fun variants nctxt names = fold_map Name.variant names nctxt;
+
+  val (state, nctxt0) = Name.variant "s" (Variable.names_of ctxt);
+
+  fun sep_conj_prop cjts =
+        FunApp.fun_app_free
+          (FunApp.fun_app_foldr SepConj.sep_conj_term cjts) state
+        |> HOLogic.mk_Trueprop;
+
+  (* concatenate string and string of an int *)
+  fun conc_str_int str int = str ^ Int.toString int;
+
+  (* make the conjunct names *)
+  val (cjts, _) = ListExtra.range 1 cjt_count
+                  |> map (conc_str_int "a") |> variants nctxt0;
+
+ fun skel_sep_conj names (Const (@{const_name sep_conj}, _) $ t1 $ t2 $ y) =
+     (let val nm1 = take (length (break_sep_conj t1)) names 
+          val nm2 = drop (length (break_sep_conj t1)) names
+          val t1' = skel_sep_conj nm1 t1 
+          val t2' = skel_sep_conj nm2 t2 
+      in (SepConj.sep_conj_term $ t1' $ t2' $ y) end)
+  | skel_sep_conj names (Const (@{const_name sep_conj}, _) $ t1 $ t2) =
+     (let val nm1 = take (length (break_sep_conj t1)) names 
+          val nm2 = drop (length (break_sep_conj t1)) names
+          val t1' = skel_sep_conj nm1 t1 
+          val t2' = skel_sep_conj nm2 t2 
+     in (SepConj.sep_conj_term $ t1' $ t2') end)
+   | skel_sep_conj names (Abs (x, y, t $ Bound 0)) = 
+                  let val t' = (skel_sep_conj names t) 
+                      val ty' = t' |> type_of |> domain_type
+                  in (Abs (x, ty', (t' $ Bound 0))) end
+  | skel_sep_conj names t = Free (hd names, SepConj.sep_conj_term |> type_of |> domain_type);
+  val _ = tracing ctxt "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
+  val oskel = skel_sep_conj cjts term;
+  val _ = tracing ctxt "yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy"
+  val ttt = oskel |> type_of
+  val _ = tracing ctxt "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
+  val orig = FunApp.fun_app_free oskel state |> HOLogic.mk_Trueprop
+  val _ = tracing ctxt "uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu"
+  val is_selected = member (fn (x, y) => x = y) idx
+  val all_idx = ListExtra.range 0 cjt_count
+  val selected_idx = idx
+  val unselected_idx = filter_out is_selected all_idx
+  val selected = map (nth cjts) selected_idx
+  val unselected = map (nth cjts) unselected_idx
+
+  fun fun_app_foldr f [a,b] = FunApp.fun_app_free (FunApp.fun_app_free f a) b
+  | fun_app_foldr f [a] = Free (a, SepConj.sep_conj_term |> type_of |> domain_type)
+  | fun_app_foldr f (x::xs) = (FunApp.fun_app_free f x) $ (fun_app_foldr f xs)
+  | fun_app_foldr _ _ = raise Fail "fun_app_foldr";
+
+  val reordered_skel = 
+      if unselected = [] then (fun_app_foldr SepConj.sep_conj_term selected)
+          else (SepConj.sep_conj_term $ (fun_app_foldr SepConj.sep_conj_term selected)
+                        $ (fun_app_foldr SepConj.sep_conj_term unselected))
+
+  val reordered =  FunApp.fun_app_free reordered_skel state  |> HOLogic.mk_Trueprop
+  val goal = Logic.mk_implies
+               (if conclusion then (orig, reordered) else (reordered, orig));
+  val rule =
+   Goal.prove ctxt [] [] goal (fn _ => 
+        auto_tac (ctxt |> map_simpset (fn ss => ss addsimps @{thms sep_conj_ac})))
+         |> Drule.export_without_context
+in
+   rule
+end
+*}
+
+lemma fwd_rule: 
+  assumes "\<And> s . U s \<longrightarrow> V s"
+  shows "(U ** RR) s \<Longrightarrow> (V ** RR) s"
+  by (metis assms sep_globalise)
+
+ML {*
+  fun sg_sg_fwd_tac ctxt thm pos i state = 
+  let  
+
+  val tracing  = (fn str =>
+                   if (Config.get ctxt trace_fwd) then Output.tracing str else ())
+  fun pterm t =
+          t |> string_of_term ctxt |> tracing
+  fun pcterm ct = ct |> string_of_cterm ctxt |> tracing
+
+  fun atm thm = 
+  let
+  (* val thm = thm |> Drule.forall_intr_vars *)
+  val res =  thm |> cprop_of |> Object_Logic.atomize
+  val res' = Raw_Simplifier.rewrite_rule [res] thm
+  in res' end
+
+  fun find_idx ctxt pats terms = 
+     let val result = 
+              map (fn pat => (find_index (fn trm => ((match ctxt pat trm; true)
+                                              handle _ => false)) terms)) pats
+     in (assert_all (fn x => x >= 0) result (K "match of precondition failed"));
+         result
+     end
+
+  val goal = nth (Drule.cprems_of state) (i - 1) |> term_of
+  val _ = tracing "goal = "
+  val _ = goal |> pterm
+  
+  val ctxt_orig = ctxt
+
+  val ((ps, goal), ctxt) = Variable.focus goal ctxt_orig
+  
+  val prems = goal |> Logic.strip_imp_prems 
+
+  val cprem = nth prems (pos - 1)
+  val (_ $ (the_prem $ _)) = cprem
+  val cjts = the_prem |> break_sep_conj
+  val thm_prems = thm |> cprems_of |> hd |> Thm.dest_arg |> Thm.dest_fun
+  val thm_assms = thm |> cprems_of |> tl |> map term_of
+  val thm_cjts = thm_prems |> term_of |> break_sep_conj
+  val thm_trm = thm |> prop_of
+
+  val _ = tracing "cjts = "
+  val _ = cjts |> map pterm
+  val _ = tracing "thm_cjts = "
+  val _ = thm_cjts |> map pterm
+
+  val _ = tracing "Calculating sols"
+  val sols = match_pres ctxt (match_env ctxt) empty_env thm_cjts cjts
+  val _ = tracing "End calculating sols, sols ="
+  val _ = tracing (@{make_string} sols)
+  val _ = tracing "Calulating env2 and idxs"
+  val (env2, idx) = filter (fn (env, idxs) => make_sense sep_conj_ac_tac ctxt thm_assms env) sols |> hd
+  val ([thm'_trm], ctxt') = thm_trm |> inst env2 |> single 
+                            |> (fn trms => Variable.import_terms true trms ctxt)
+  val thm'_prem  = Logic.strip_imp_prems thm'_trm |> hd 
+  val thm'_concl = Logic.strip_imp_concl thm'_trm 
+  val thm'_prem = (Goal.prove ctxt' [] [thm'_prem] thm'_concl 
+                  (fn {context, prems = [prem]} =>  
+                      (rtac (prem RS thm)  THEN_ALL_NEW (sep_conj_ac_tac ctxt)) 1))
+  val [thm'] = Variable.export ctxt' ctxt_orig [thm'_prem]
+  val trans_rule = 
+       mk_msel_rule ctxt true idx the_prem
+  val _ = tracing "trans_rule = "
+  val _ = trans_rule |> cprop_of |> pcterm
+  val app_rule = 
+      if (length cjts = length thm_cjts) then thm' else
+       ((thm' |> atm) RS @{thm fwd_rule})
+  val _ = tracing "app_rule = "
+  val _ = app_rule |> cprop_of |> pcterm
+  val print_tac = if (Config.get ctxt trace_fwd) then Tactical.print_tac else (K all_tac)
+  val the_tac = (dtac trans_rule THEN' (K (print_tac "dtac1 success"))) THEN'
+                ((dtac app_rule THEN' (K (print_tac "dtac2 success"))))
+in
+  (the_tac i state) handle _ => no_tac state
+end
+*}
+
+ML {*
+  fun sg_fwd_tac ctxt thm i state = 
+  let  
+    val goal = nth (Drule.cprems_of state) (i - 1)          
+    val prems = goal |> term_of |> Term.strip_all_body |> Logic.strip_imp_prems 
+    val posx = ListExtra.range 1 (length prems)
+  in
+      ((map (fn pos => attemp (sg_sg_fwd_tac ctxt thm pos)) posx) |> FIRST') i state
+  end
+
+  fun fwd_tac ctxt thms i state =
+       ((map (fn thm => sg_fwd_tac ctxt thm) thms) |> FIRST') i state
+*}
+
+method_setup fwd = {* 
+  Attrib.thms >> (fn thms => fn ctxt =>
+                    (SIMPLE_METHOD' (fn i => 
+                       fwd_tac ctxt (thms@(FwdRules.get ctxt))  i)))
+  *} 
+  "Forward derivation of separation implication"
+
+text {* Testing the fwd tactic *}
+
+lemma ones_abs:
+  assumes "(ones u v \<and>* ones w x) s" "w = v + 1"
+  shows "ones u x s"
+  using assms(1) unfolding assms(2)
+proof(induct u v arbitrary: x s rule:ones_induct)
+  case (Base i j x s)
+  thus ?case by (auto elim!:condE)
+next
+  case (Step i j x s)
+  hence h: "\<And> x s. (ones (i + 1) j \<and>* ones (j + 1) x) s \<longrightarrow> ones (i + 1) x s"
+    by metis
+  hence "(ones (i + 1) x \<and>* one i) s"
+    by (rule fwd_rule, insert Step(3), auto simp:sep_conj_ac)
+  thus ?case
+    by (smt condD ones.simps sep_conj_commute)
+qed
+
+lemma one_abs: "(one m) s \<Longrightarrow> (ones m m) s"
+ by (smt cond_true_eq2 ones.simps)
+
+lemma ones_reps_abs: 
+  assumes "ones m n s"
+          "m \<le> n"
+  shows "(reps m n [nat (n - m)]) s"
+  using assms
+  by simp
+
+lemma reps_reps'_abs: 
+  assumes "(reps m n xs \<and>* zero u) s" "u = n + 1" "xs \<noteq> []"
+  shows "(reps' m u xs) s"
+  unfolding assms using assms
+  by (unfold reps'_def, simp)
+
+lemma reps'_abs:
+  assumes "(reps' m n xs \<and>* reps' u v ys) s" "u = n + 1"
+  shows "(reps' m v (xs @ ys)) s"
+  apply (unfold reps'_append, rule_tac x = u in EXS_intro)
+  by (insert assms, simp)
+
+lemmas abs_ones = one_abs ones_abs
+
+lemmas abs_reps' = ones_reps_abs reps_reps'_abs reps'_abs
+
+
+section {* Modular TM programming and verification *}
+
+definition "right_until_zero = 
+                 (TL start exit. 
+                  TLabel start;
+                     if_zero exit;
+                     move_right;
+                     jmp start;
+                  TLabel exit
+                 )"
+
+lemma ones_false [simp]: "j < i - 1 \<Longrightarrow> (ones i j) = sep_false"
+  by (simp add:pasrt_def)
+  
+lemma hoare_right_until_zero: 
+  "\<lbrace>st i ** ps u ** ones u (v - 1) ** zero v \<rbrace> 
+     i:[right_until_zero]:j
+   \<lbrace>st j ** ps v ** ones u (v - 1) ** zero v \<rbrace>"
+proof(unfold right_until_zero_def, 
+      intro t_hoare_local t_hoare_label, clarify, 
+      rule t_hoare_label_last, simp, simp)
+  fix la
+  let ?body = "i :[ (if_zero la ; move_right ; jmp i) ]: la"
+  let ?j = la
+  show "\<lbrace>st i \<and>* ps u \<and>* ones u (v - 1) \<and>* zero v\<rbrace>  ?body
+        \<lbrace>st ?j \<and>* ps v \<and>* ones u (v - 1) \<and>* zero v\<rbrace>" (is "?P u (v - 1) (ones u (v - 1))")
+  proof(induct "u" "v - 1" rule:ones_induct)
+    case (Base k)
+    moreover have "\<lbrace>st i \<and>* ps v \<and>* zero v\<rbrace> ?body
+                   \<lbrace>st ?j \<and>* ps v \<and>* zero v\<rbrace>" by hsteps
+    ultimately show ?case by (auto intro!:tm.pre_condI simp:sep_conj_cond)
+  next
+    case (Step k)
+    moreover have "\<lbrace>st i \<and>* ps k \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace> 
+                     i :[ (if_zero ?j ; move_right ; jmp i) ]: ?j
+                   \<lbrace>st ?j \<and>* ps v \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace>"
+    proof -
+      have s1: "\<lbrace>st i \<and>* ps k \<and>* (one k \<and>* ones (k + 1) (v - 1)) \<and>* zero v\<rbrace>
+                          ?body 
+                \<lbrace>st i \<and>* ps (k + 1) \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace>"
+      proof(cases "k + 1 \<ge> v")
+        case True
+        with Step(1) have "v = k + 1" by arith
+        thus ?thesis
+          apply(simp add: one_def)
+          by hsteps
+      next
+        case False
+        hence eq_ones: "ones (k + 1) (v - 1) = 
+                         (one (k + 1) \<and>* ones ((k + 1) + 1) (v - 1))"
+          by simp
+        show ?thesis
+          apply(simp only: eq_ones)
+          by hsteps
+      qed
+      note Step(2)[step]
+      have s2: "\<lbrace>st i \<and>* ps (k + 1) \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace>
+                        ?body
+                \<lbrace>st ?j \<and>* ps v \<and>* one k \<and>* ones (k + 1) (v - 1) \<and>* zero v\<rbrace>"
+        by hsteps
+      from tm.sequencing [OF s1 s2, step] 
+      show ?thesis 
+        by (auto simp:sep_conj_ac)
+    qed
+    ultimately show ?case by simp
+  qed
+qed
+
+lemma hoare_right_until_zero_gen[step]: 
+  assumes "u = v" "w = x - 1"
+  shows  "\<lbrace>st i ** ps u ** ones v w ** zero x \<rbrace> 
+              i:[right_until_zero]:j
+          \<lbrace>st j ** ps x ** ones v w ** zero x \<rbrace>"
+  by (unfold assms, rule hoare_right_until_zero)
+
+definition "left_until_zero = 
+                 (TL start exit. 
+                  TLabel start;
+                    if_zero exit;
+                    move_left;
+                    jmp start;
+                  TLabel exit
+                 )"
+
+lemma hoare_left_until_zero: 
+  "\<lbrace>st i ** ps v ** zero u ** ones (u + 1) v \<rbrace> 
+     i:[left_until_zero]:j
+   \<lbrace>st j ** ps u ** zero u ** ones (u + 1) v \<rbrace>"
+proof(unfold left_until_zero_def, 
+      intro t_hoare_local t_hoare_label, clarify, 
+      rule t_hoare_label_last, simp+)
+  fix la
+  let ?body = "i :[ (if_zero la ; move_left ; jmp i) ]: la"
+  let ?j = la
+  show "\<lbrace>st i \<and>* ps v \<and>* zero u \<and>* ones (u + 1) v\<rbrace> ?body
+        \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) v\<rbrace>"
+  proof(induct "u+1" v  rule:ones_rev_induct)
+    case (Base k)
+    thus ?case
+      by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hstep)
+  next
+    case (Step k)
+    have "\<lbrace>st i \<and>* ps k \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace> 
+               ?body
+          \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>"
+    proof(rule tm.sequencing[where q = 
+           "st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k"])
+      show "\<lbrace>st i \<and>* ps k \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace> 
+                ?body
+            \<lbrace>st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>"
+      proof(induct "u + 1" "k - 1" rule:ones_rev_induct)
+        case Base with Step(1) have "k = u + 1" by arith
+        thus ?thesis
+          by (simp, hsteps)
+      next
+        case Step
+        show ?thesis
+          apply (unfold ones_rev[OF Step(1)], simp)
+          apply (unfold one_def)
+          by hsteps
+      qed
+    next
+      note Step(2) [step]
+      show "\<lbrace>st i \<and>* ps (k - 1) \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace> 
+                ?body
+            \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* ones (u + 1) (k - 1) \<and>* one k\<rbrace>" by hsteps
+    qed
+    thus ?case by (unfold ones_rev[OF Step(1)], simp)
+  qed
+qed
+
+lemma hoare_left_until_zero_gen[step]: 
+  assumes "u = x" "w = v + 1"
+  shows  "\<lbrace>st i ** ps u ** zero v ** ones w x \<rbrace> 
+               i:[left_until_zero]:j
+          \<lbrace>st j ** ps v ** zero v ** ones w x \<rbrace>"
+  by (unfold assms, rule hoare_left_until_zero)
+
+definition "right_until_one = 
+                 (TL start exit. 
+                  TLabel start;
+                     if_one exit;
+                     move_right;
+                     jmp start;
+                  TLabel exit
+                 )"
+
+lemma hoare_right_until_one: 
+  "\<lbrace>st i ** ps u ** zeros u (v - 1) ** one v \<rbrace> 
+     i:[right_until_one]:j
+   \<lbrace>st j ** ps v ** zeros u (v - 1) ** one v \<rbrace>"
+proof(unfold right_until_one_def, 
+      intro t_hoare_local t_hoare_label, clarify, 
+      rule t_hoare_label_last, simp+)
+  fix la
+  let ?body = "i :[ (if_one la ; move_right ; jmp i) ]: la"
+  let ?j = la
+  show "\<lbrace>st i \<and>* ps u \<and>* zeros u (v - 1) \<and>* one v\<rbrace> ?body
+       \<lbrace>st ?j \<and>* ps v \<and>* zeros u (v - 1) \<and>* one v\<rbrace>"
+  proof(induct u "v - 1" rule:zeros_induct)
+    case (Base k)
+    thus ?case
+      by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hsteps)
+  next
+    case (Step k)
+    have "\<lbrace>st i \<and>* ps k \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace> 
+            ?body
+          \<lbrace>st ?j \<and>* ps v \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>"
+    proof(rule tm.sequencing[where q = 
+           "st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v"])
+      show "\<lbrace>st i \<and>* ps k \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace> 
+               ?body
+           \<lbrace>st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>"
+      proof(induct "k + 1" "v - 1" rule:zeros_induct)
+        case Base
+        with Step(1) have eq_v: "k + 1 = v" by arith
+        from Base show ?thesis
+          apply (simp add:sep_conj_cond, intro tm.pre_condI, simp)
+          apply (hstep, clarsimp)
+          by hsteps
+      next
+        case Step
+        thus ?thesis
+          by (simp, hsteps)
+      qed
+    next
+      note Step(2)[step]
+        show "\<lbrace>st i \<and>* ps (k + 1) \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace> 
+                ?body
+              \<lbrace>st ?j \<and>* ps v \<and>* zero k \<and>* zeros (k + 1) (v - 1) \<and>* one v\<rbrace>"
+          by hsteps
+    qed
+    thus ?case by (auto simp: sep_conj_ac Step(1))
+  qed
+qed
+
+lemma hoare_right_until_one_gen[step]: 
+  assumes "u = v" "w = x - 1"
+  shows
+  "\<lbrace>st i ** ps u ** zeros v w ** one x \<rbrace> 
+     i:[right_until_one]:j
+   \<lbrace>st j **  ps x ** zeros v w ** one x \<rbrace>"
+  by (unfold assms, rule hoare_right_until_one)
+
+definition "left_until_one = 
+                 (TL start exit. 
+                  TLabel start;
+                    if_one exit;
+                    move_left;
+                    jmp start;
+                  TLabel exit
+                 )"
+
+lemma hoare_left_until_one: 
+  "\<lbrace>st i ** ps v ** one u ** zeros (u + 1) v \<rbrace> 
+     i:[left_until_one]:j
+   \<lbrace>st j ** ps u ** one u ** zeros (u + 1) v \<rbrace>"
+proof(unfold left_until_one_def, 
+      intro t_hoare_local t_hoare_label, clarify, 
+      rule t_hoare_label_last, simp+)
+  fix la
+  let ?body = "i :[ (if_one la ; move_left ; jmp i) ]: la"
+  let ?j = la
+  show "\<lbrace>st i \<and>* ps v \<and>* one u \<and>* zeros (u + 1) v\<rbrace> ?body
+        \<lbrace>st ?j \<and>* ps u \<and>* one u \<and>* zeros (u + 1) v\<rbrace>"
+  proof(induct u v rule: ones'.induct)
+    fix ia ja
+    assume h: "\<not> ja < ia \<Longrightarrow>
+             \<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace> ?body
+             \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace>"
+    show "\<lbrace>st i \<and>* ps ja \<and>* one ia \<and>* zeros (ia + 1) ja\<rbrace>  ?body
+      \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) ja\<rbrace>"
+    proof(cases "ja < ia")
+      case False
+      note lt = False
+      from h[OF this] have [step]: 
+        "\<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace> ?body
+         \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1)\<rbrace>" .
+      show ?thesis
+      proof(cases "ja = ia")
+        case True 
+        moreover
+        have "\<lbrace>st i \<and>* ps ja \<and>* one ja\<rbrace> ?body \<lbrace>st ?j \<and>* ps ja \<and>* one ja\<rbrace>" 
+          by hsteps
+        ultimately show ?thesis by auto
+      next
+        case False
+        with lt have k1: "ia < ja" by auto       
+        from zeros_rev[of "ja" "ia + 1"] this
+        have eq_zeros: "zeros (ia + 1) ja = (zeros (ia + 1) (ja - 1) \<and>* zero ja)" 
+          by simp        
+        have s1: "\<lbrace>st i \<and>* ps ja \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>
+                      ?body
+                  \<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>"
+        proof(cases "ia + 1 \<ge> ja")
+          case True
+          from k1 True have "ja = ia + 1" by arith
+          moreover have "\<lbrace>st i \<and>* ps (ia + 1) \<and>* one (ia + 1 - 1) \<and>* zero (ia + 1)\<rbrace>  
+            i :[ (if_one ?j ; move_left ; jmp i) ]: ?j 
+                \<lbrace>st i \<and>* ps (ia + 1 - 1) \<and>* one (ia + 1 - 1) \<and>* zero (ia + 1)\<rbrace>"
+            by (hsteps)
+          ultimately show ?thesis
+            by (simp)
+        next
+          case False
+          from zeros_rev[of "ja - 1" "ia + 1"] False
+          have k: "zeros (ia + 1) (ja - 1) = 
+                      (zeros (ia + 1) (ja - 1 - 1) \<and>* zero (ja - 1))"
+            by auto
+          show ?thesis
+            apply (unfold k, simp)
+            by hsteps
+        qed      
+        have s2: "\<lbrace>st i \<and>* ps (ja - 1) \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>
+                      ?body
+                  \<lbrace>st ?j \<and>* ps ia \<and>* one ia \<and>* zeros (ia + 1) (ja - 1) \<and>* zero ja\<rbrace>"
+          by hsteps
+        from tm.sequencing[OF s1 s2, step]
+        show ?thesis 
+          apply (unfold eq_zeros)
+          by hstep
+      qed (* ccc *)
+    next
+      case True
+      thus ?thesis by (auto intro:tm.hoare_sep_false)
+    qed
+  qed
+qed
+
+lemma hoare_left_until_one_gen[step]: 
+  assumes "u = x" "w = v + 1"
+  shows  "\<lbrace>st i ** ps u ** one v ** zeros w x \<rbrace> 
+              i:[left_until_one]:j
+          \<lbrace>st j ** ps v ** one v ** zeros w x \<rbrace>"
+  by (unfold assms, rule hoare_left_until_one)
+
+definition "left_until_double_zero = 
+            (TL start exit.
+              TLabel start;
+              if_zero exit;
+              left_until_zero;
+              move_left;
+              if_one start;
+              TLabel exit)"
+
+declare ones.simps[simp del]
+
+lemma reps_simps3: "ks \<noteq> [] \<Longrightarrow> 
+  reps i j (k # ks) = (ones i (i + int k) ** zero (i + int k + 1) ** reps (i + int k + 2) j ks)"
+by(case_tac ks, simp, simp add: reps.simps)
+
+lemma cond_eqI:
+  assumes h: "b \<Longrightarrow> r = s"
+  shows "(<b> ** r) = (<b> ** s)"
+proof(cases b)
+  case True
+  from h[OF this] show ?thesis by simp
+next
+  case False
+  thus ?thesis
+    by (unfold sep_conj_def set_ins_def pasrt_def, auto)
+qed
+
+lemma reps_rev: "ks \<noteq> [] 
+       \<Longrightarrow> reps i j (ks @ [k]) =  (reps i (j - int (k + 1) - 1 ) ks \<and>* 
+                                          zero (j - int (k + 1)) \<and>* ones (j - int k) j)"
+proof(induct ks arbitrary: i j)
+  case Nil
+  thus ?case by simp
+next
+  case (Cons a ks)
+  show ?case
+  proof(cases "ks = []")
+    case True
+    thus ?thesis
+    proof -
+      have eq_cond: "(j = i + int a + 2 + int k) = (-2 + (j - int k) = i + int a)" by auto
+      have "(<(-2 + (j - int k) = i + int a)> \<and>*
+            one i \<and>* ones (i + 1) (i + int a) \<and>*
+            zero (i + int a + 1) \<and>* one (i + int a + 2) \<and>* ones (3 + (i + int a)) (i + int a + 2 + int k))
+            =
+            (<(-2 + (j - int k) = i + int a)> \<and>* one i \<and>* ones (i + 1) (i + int a) \<and>*
+            zero (j - (1 + int k)) \<and>* one (j - int k) \<and>* ones (j - int k + 1) j)"
+        (is "(<?X> \<and>* ?L) = (<?X> \<and>* ?R)")
+      proof(rule cond_eqI)
+        assume h: "-2 + (j - int k) = i + int a"
+        hence eqs:  "i + int a + 1 = j - (1 + int k)" 
+                    "i + int a + 2 = j - int k"
+                    "3 + (i + int a) = j - int k + 1"
+                    "(i + int a + 2 + int k) = j"
+        by auto
+        show "?L = ?R"
+          by (unfold eqs, auto simp:sep_conj_ac)
+      qed
+      with True
+      show ?thesis
+        apply (simp del:ones_simps reps.simps)
+        apply (simp add:sep_conj_cond eq_cond)
+        by (auto simp:sep_conj_ac)
+    qed
+  next
+    case False
+    from Cons(1)[OF False, of "i + int a + 2" j] this
+    show ?thesis
+      by(simp add: reps_simps3 sep_conj_ac)
+  qed
+qed
+
+lemma hoare_if_one_reps:
+  assumes nn: "ks \<noteq> []"
+  shows "\<lbrace>st i ** ps v ** reps u v ks\<rbrace> 
+           i:[if_one e]:j
+        \<lbrace>st e ** ps v ** reps u v ks\<rbrace>"
+proof(rule rev_exhaust[of ks])
+  assume "ks = []" with nn show ?thesis by simp
+next
+  fix y ys
+  assume eq_ks: "ks = ys @ [y]"
+  show " \<lbrace>st i \<and>* ps v \<and>* reps u v ks\<rbrace>  i :[ if_one e ]: j \<lbrace>st e \<and>* ps v \<and>* reps u v ks\<rbrace>"
+  proof(cases "ys = []")
+    case False
+    have "\<lbrace>st i \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>  i :[ if_one e ]: j \<lbrace>st e \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>"
+      apply(unfold reps_rev[OF False], simp del:ones_simps add:ones_rev)
+      by hstep
+    thus ?thesis
+      by (simp add:eq_ks)
+  next
+    case True
+    with eq_ks
+    show ?thesis
+      apply (simp del:ones_simps add:ones_rev sep_conj_cond, intro tm.pre_condI, simp)
+      by hstep
+  qed
+qed
+
+lemma hoare_if_one_reps_gen[step]:
+  assumes nn: "ks \<noteq> []" "u = w"
+  shows "\<lbrace>st i ** ps u ** reps v w ks\<rbrace> 
+           i:[if_one e]:j
+        \<lbrace>st e ** ps u ** reps v w ks\<rbrace>"
+  by (unfold `u = w`, rule hoare_if_one_reps[OF `ks \<noteq> []`])
+
+lemma hoare_if_zero_ones_false[step]:
+  assumes "\<not> w < u" "v = w"
+  shows  "\<lbrace>st i \<and>* ps v \<and>* ones u w\<rbrace> 
+             i :[if_zero e]: j
+          \<lbrace>st j \<and>* ps v \<and>* ones u w\<rbrace>"
+  by (unfold `v = w` ones_rev[OF `\<not> w < u`], hstep)
+
+lemma hoare_left_until_double_zero_nil[step]:
+  assumes "u = v"
+  shows   "\<lbrace>st i ** ps u ** zero v\<rbrace> 
+                  i:[left_until_double_zero]:j
+           \<lbrace>st j ** ps u ** zero v\<rbrace>"
+  apply (unfold `u = v` left_until_double_zero_def, 
+      intro t_hoare_local t_hoare_label, clarsimp, 
+      rule t_hoare_label_last, simp+)
+  by (hsteps)
+
+lemma hoare_if_zero_reps_false:
+  assumes nn: "ks \<noteq> []"
+  shows "\<lbrace>st i ** ps v ** reps u v ks\<rbrace> 
+           i:[if_zero e]:j
+        \<lbrace>st j ** ps v ** reps u v ks\<rbrace>"
+proof(rule rev_exhaust[of ks])
+  assume "ks = []" with nn show ?thesis by simp
+next
+  fix y ys
+  assume eq_ks: "ks = ys @ [y]"
+  show " \<lbrace>st i \<and>* ps v \<and>* reps u v ks\<rbrace>  i :[ if_zero e ]: j \<lbrace>st j \<and>* ps v \<and>* reps u v ks\<rbrace>"
+  proof(cases "ys = []")
+    case False
+    have "\<lbrace>st i \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>  i :[ if_zero e ]: j \<lbrace>st j \<and>* ps v \<and>* reps u v (ys @ [y])\<rbrace>"
+      apply(unfold reps_rev[OF False], simp del:ones_simps add:ones_rev)
+      by hstep
+    thus ?thesis
+      by (simp add:eq_ks)
+  next
+    case True
+    with eq_ks
+    show ?thesis
+      apply (simp del:ones_simps add:ones_rev sep_conj_cond, intro tm.pre_condI, simp)
+      by hstep
+  qed
+qed
+
+lemma hoare_if_zero_reps_false_gen[step]:
+  assumes "ks \<noteq> []" "u = w"
+  shows "\<lbrace>st i ** ps u ** reps v w ks\<rbrace> 
+           i:[if_zero e]:j
+        \<lbrace>st j ** ps u ** reps v w ks\<rbrace>"
+  by (unfold `u = w`, rule hoare_if_zero_reps_false[OF `ks \<noteq> []`])
+
+
+lemma hoare_if_zero_reps_false1:
+  assumes nn: "ks \<noteq> []"
+  shows "\<lbrace>st i ** ps u ** reps u v ks\<rbrace> 
+           i:[if_zero e]:j
+        \<lbrace>st j ** ps u ** reps u v ks\<rbrace>"
+proof -
+  from nn obtain y ys where eq_ys: "ks = y#ys"
+    by (metis neq_Nil_conv)
+  show ?thesis
+    apply (unfold eq_ys)
+    by (case_tac ys, (simp, hsteps)+)
+qed
+
+lemma hoare_if_zero_reps_false1_gen[step]:
+  assumes nn: "ks \<noteq> []"
+  and h: "u = w"
+  shows "\<lbrace>st i ** ps u ** reps w v ks\<rbrace> 
+           i:[if_zero e]:j
+        \<lbrace>st j ** ps u ** reps w v ks\<rbrace>"
+  by (unfold h, rule hoare_if_zero_reps_false1[OF `ks \<noteq> []`])
+
+lemma hoare_left_until_double_zero: 
+  assumes h: "ks \<noteq> []"
+  shows   "\<lbrace>st i ** ps v ** zero u ** zero (u + 1) ** reps (u+2) v ks\<rbrace> 
+                  i:[left_until_double_zero]:j
+           \<lbrace>st j ** ps u ** zero u ** zero (u + 1) ** reps (u+2) v ks\<rbrace>"
+proof(unfold left_until_double_zero_def, 
+      intro t_hoare_local t_hoare_label, clarsimp, 
+      rule t_hoare_label_last, simp+)
+  fix la
+  let ?body = "i :[ (if_zero la ; left_until_zero ; move_left ; if_one i) ]: j"
+  let ?j = j
+  show "\<lbrace>st i \<and>* ps v \<and>* zero u \<and>* zero (u + 1) \<and>* reps (u + 2) v ks\<rbrace> 
+           ?body
+        \<lbrace>st ?j \<and>* ps u \<and>* zero u \<and>* zero (u + 1) \<and>* reps (u + 2) v ks\<rbrace>"
+    using h
+  proof(induct ks arbitrary: v rule:rev_induct)
+    case Nil
+    with h show ?case by auto
+  next
+    case (snoc k ks)
+    show ?case
+    proof(cases "ks = []")
+      case True
+      have eq_ones: 
+        "ones (u + 2) (u + 2 + int k) = (ones (u + 2) (u + 1 + int k) \<and>* one (u + 2 + int k))"
+        by (smt ones_rev)
+      have eq_ones': "(one (u + 2) \<and>* ones (3 + u) (u + 2 + int k)) = 
+            (one (u + 2 + int k) \<and>* ones (u + 2) (u + 1 + int k))"
+        by (smt eq_ones ones.simps sep.mult_commute)
+      thus ?thesis
+        apply (insert True, simp del:ones_simps add:sep_conj_cond)
+        apply (rule tm.pre_condI, simp del:ones_simps, unfold eq_ones)
+        apply hsteps
+        apply (rule_tac p = "st j' \<and>* ps (u + 2 + int k) \<and>* zero u \<and>* 
+                             zero (u + 1) \<and>* ones (u + 2) (u + 2 + int k)" 
+                  in tm.pre_stren)
+        by (hsteps)
+    next
+      case False
+      from False have spt: "splited (ks @ [k]) ks [k]" by (unfold splited_def, auto)
+      show ?thesis
+        apply (unfold reps_splited[OF spt], simp del:ones_simps add:sep_conj_cond)
+        apply (rule tm.pre_condI, simp del:ones_simps)
+        apply (rule_tac q = "st i \<and>*
+               ps (1 + (u + int (reps_len ks))) \<and>*
+               zero u \<and>*
+               zero (u + 1) \<and>*
+               reps (u + 2) (1 + (u + int (reps_len ks))) ks \<and>*
+               zero (u + 2 + int (reps_len ks)) \<and>*
+               ones (3 + (u + int (reps_len ks))) (3 + (u + int (reps_len ks)) + int k)" in
+               tm.sequencing)
+        apply hsteps[1]
+        by (hstep snoc(1))
+    qed 
+  qed
+qed
+
+lemma hoare_left_until_double_zero_gen[step]: 
+  assumes h1: "ks \<noteq> []"
+      and h: "u = y" "w = v + 1" "x = v + 2"
+  shows   "\<lbrace>st i ** ps u ** zero v ** zero w ** reps x y ks\<rbrace> 
+                  i:[left_until_double_zero]:j
+           \<lbrace>st j ** ps v ** zero v ** zero w ** reps x y ks\<rbrace>"
+  by (unfold h, rule hoare_left_until_double_zero[OF h1])
+
+lemma hoare_jmp_reps1:
+  assumes "ks \<noteq> []"
+  shows  "\<lbrace> st i \<and>* ps u \<and>* reps u v ks\<rbrace>
+                 i:[jmp e]:j
+          \<lbrace> st e \<and>* ps u \<and>* reps u v ks\<rbrace>"
+proof -
+  from assms obtain k ks' where Cons:"ks = k#ks'"
+    by (metis neq_Nil_conv)
+  thus ?thesis
+  proof(cases "ks' = []")
+    case True with Cons
+    show ?thesis
+      apply(simp add:sep_conj_cond reps.simps, intro tm.pre_condI, simp add:ones_simps)
+      by (hgoto hoare_jmp_gen)
+  next
+    case False
+    show ?thesis
+      apply (unfold `ks = k#ks'` reps_simp3[OF False], simp add:ones_simps)
+      by (hgoto hoare_jmp[where p = u])
+  qed
+qed
+
+lemma hoare_jmp_reps1_gen[step]:
+  assumes "ks \<noteq> []" "u = v"
+  shows  "\<lbrace> st i \<and>* ps u \<and>* reps v w ks\<rbrace>
+                 i:[jmp e]:j
+          \<lbrace> st e \<and>* ps u \<and>* reps v w ks\<rbrace>"
+  by (unfold assms, rule hoare_jmp_reps1[OF `ks \<noteq> []`])
+
+lemma hoare_jmp_reps:
+      "\<lbrace> st i \<and>* ps u \<and>* reps u v ks \<and>* tm (v + 1) x \<rbrace>
+                 i:[(jmp e; c)]:j
+       \<lbrace> st e \<and>* ps u \<and>* reps u v ks \<and>* tm (v + 1) x \<rbrace>"
+proof(cases "ks")
+  case Nil
+  thus ?thesis
+    by (simp add:sep_conj_cond, intro tm.pre_condI, simp, hsteps)
+next
+  case (Cons k ks')
+  thus ?thesis
+  proof(cases "ks' = []")
+    case True with Cons
+    show ?thesis
+      apply(simp add:sep_conj_cond, intro tm.pre_condI, simp)
+      by (hgoto hoare_jmp[where p = u])
+  next
+    case False
+    show ?thesis
+      apply (unfold `ks = k#ks'` reps_simp3[OF False], simp)
+      by (hgoto hoare_jmp[where p = u])
+  qed
+qed
+
+definition "shift_right =
+            (TL start exit.
+              TLabel start;
+                 if_zero exit;
+                 write_zero;
+                 move_right;
+                 right_until_zero;
+                 write_one;
+                 move_right;
+                 jmp start;
+              TLabel exit
+            )"
+
+lemma hoare_shift_right_cons:
+  assumes h: "ks \<noteq> []"
+  shows "\<lbrace>st i \<and>* ps u ** reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace> 
+            i:[shift_right]:j
+         \<lbrace>st j ** ps (v + 2) ** zero u ** reps (u + 1) (v + 1) ks ** zero (v + 2) \<rbrace>"
+proof(unfold shift_right_def, intro t_hoare_local t_hoare_label, clarify, 
+      rule t_hoare_label_last, auto)
+  fix la
+  have eq_ones: "\<And> u k. (one (u + int k + 1) \<and>* ones (u + 1) (u + int k)) = 
+                                   (one (u + 1) \<and>* ones (2 + u) (u + 1 + int k))"
+    by (smt cond_true_eq2 ones.simps ones_rev sep.mult_assoc sep.mult_commute 
+               sep.mult_left_commute sep_conj_assoc sep_conj_commute 
+               sep_conj_cond1 sep_conj_cond2 sep_conj_cond3 sep_conj_left_commute
+               sep_conj_trivial_strip2)
+  show "\<lbrace>st i \<and>* ps u \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
+         i :[ (if_zero la ;
+               write_zero ; move_right ; right_until_zero ; write_one ; move_right ; jmp i) ]: la
+         \<lbrace>st la \<and>* ps (v + 2) \<and>* zero u \<and>* reps (u + 1) (v + 1) ks \<and>* zero (v + 2)\<rbrace>"
+    using h
+  proof(induct ks arbitrary:i u v)
+    case (Cons k ks)
+    thus ?case 
+    proof(cases "ks = []")
+      let ?j = la
+      case True
+      let ?body = "i :[ (if_zero ?j ;
+                      write_zero ;
+                      move_right ; 
+                      right_until_zero ; 
+                      write_one ; move_right ; jmp i) ]: ?j"
+      have first_interation: 
+           "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>* 
+                                                                             zero (u + int k + 2)\<rbrace> 
+                ?body
+            \<lbrace>st i \<and>*
+             ps (u + int k + 2) \<and>*
+             one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero u \<and>* zero (u + int k + 2)\<rbrace>"
+        apply (hsteps)
+        by (simp add:sep_conj_ac, sep_cancel+, smt)
+      hence "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>* 
+                                                                             zero (u + int k + 2)\<rbrace> 
+                   ?body
+             \<lbrace>st ?j \<and>* ps (u + int k + 2) \<and>* zero u \<and>* one (u + 1) \<and>* 
+                         ones (2 + u) (u + 1 + int k) \<and>* zero (u + int k + 2)\<rbrace>"
+      proof(rule tm.sequencing)
+        show "\<lbrace>st i \<and>*
+               ps (u + int k + 2) \<and>*
+               one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero u \<and>* zero (u + int k + 2)\<rbrace> 
+                      ?body
+              \<lbrace>st ?j \<and>*
+               ps (u + int k + 2) \<and>*
+               zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>* zero (u + int k + 2)\<rbrace>"
+          apply (hgoto hoare_if_zero_true_gen)
+          by (simp add:sep_conj_ac eq_ones)
+      qed
+      with True 
+      show ?thesis
+        by (simp, simp only:sep_conj_cond, intro tm.pre_condI, auto simp:sep_conj_ac)
+    next
+      case False
+      let ?j = la
+      let ?body = "i :[ (if_zero ?j ;
+                        write_zero ;
+                        move_right ; right_until_zero ; 
+                        write_one ; move_right ; jmp i) ]: ?j"
+      have eq_ones': 
+         "(one (u + int k + 1) \<and>*
+           ones (u + 1) (u + int k) \<and>*
+           zero u \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2))
+                   =
+           (zero u \<and>*
+             ones (u + 1) (u + int k) \<and>*
+             one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2))"
+        by (simp add:eq_ones sep_conj_ac)
+      have "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>* 
+                 reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
+                    ?body
+            \<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero u \<and>* ones (u + 1) (u + int k) \<and>* 
+                 one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
+        apply (hsteps)
+        by (auto simp:sep_conj_ac, sep_cancel+, smt)
+      hence "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1) \<and>* 
+                 reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
+                     ?body
+            \<lbrace>st ?j \<and>* ps (v + 2) \<and>* zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>*
+                 zero (2 + (u + int k)) \<and>* reps (3 + (u + int k)) (v + 1) ks \<and>* zero (v + 2)\<rbrace>"
+      proof(rule tm.sequencing)
+        have eq_ones': 
+          "\<And> u k. (one (u + int k + 1) \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 2)) =
+             (one (u + 1) \<and>* zero (2 + (u + int k)) \<and>* ones (2 + u) (u + 1 + int k))"
+          by (smt eq_ones sep.mult_assoc sep_conj_commute)
+        show "\<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero u \<and>*
+                    ones (u + 1) (u + int k) \<and>* one (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* 
+                    zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
+                      ?body
+              \<lbrace>st ?j \<and>* ps (v + 2) \<and>* zero u \<and>* one (u + 1) \<and>* ones (2 + u) (u + 1 + int k) \<and>*
+                      zero (2 + (u + int k)) \<and>* reps (3 + (u + int k)) (v + 1) ks \<and>* zero (v + 2)\<rbrace>"
+          apply (hsteps Cons.hyps)
+          by (simp add:sep_conj_ac eq_ones, sep_cancel+, smt)
+      qed
+      thus ?thesis
+        by (unfold reps_simp3[OF False], auto simp:sep_conj_ac)
+    qed 
+  qed auto
+qed
+
+lemma hoare_shift_right_cons_gen[step]:
+  assumes h: "ks \<noteq> []"
+  and h1: "u = v" "x = w + 1" "y = w + 2"
+  shows "\<lbrace>st i \<and>* ps u ** reps v w ks \<and>* zero x \<and>* zero y \<rbrace> 
+            i:[shift_right]:j
+         \<lbrace>st j ** ps y ** zero v ** reps (v + 1) x ks ** zero y\<rbrace>"
+  by (unfold h1, rule hoare_shift_right_cons[OF h])
+
+lemma shift_right_nil [step]: 
+  assumes "u = v"
+  shows
+       "\<lbrace> st i \<and>* ps u \<and>* zero v \<rbrace>
+               i:[shift_right]:j
+        \<lbrace> st j \<and>* ps u \<and>* zero v \<rbrace>"
+  by (unfold assms shift_right_def, intro t_hoare_local t_hoare_label, clarify, 
+          rule t_hoare_label_last, simp+, hstep)
+
+
+text {*
+  @{text "clear_until_zero"} is useful to implement @{text "drag"}.
+*}
+
+definition "clear_until_zero = 
+             (TL start exit.
+              TLabel start;
+                 if_zero exit;
+                 write_zero;
+                 move_right;
+                 jmp start;
+              TLabel exit)"
+
+lemma  hoare_clear_until_zero[step]: 
+         "\<lbrace>st i ** ps u ** ones u v ** zero (v + 1)\<rbrace>
+              i :[clear_until_zero]: j
+          \<lbrace>st j ** ps (v + 1) ** zeros u v ** zero (v + 1)\<rbrace> "
+proof(unfold clear_until_zero_def, intro t_hoare_local, rule t_hoare_label,
+    rule t_hoare_label_last, simp+)
+  let ?body = "i :[ (if_zero j ; write_zero ; move_right ; jmp i) ]: j"
+  show "\<lbrace>st i \<and>* ps u \<and>* ones u v \<and>* zero (v + 1)\<rbrace> ?body 
+        \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros u v \<and>* zero (v + 1)\<rbrace>"
+  proof(induct u v rule: zeros.induct)
+    fix ia ja
+    assume h: "\<not> ja < ia \<Longrightarrow>
+             \<lbrace>st i \<and>* ps (ia + 1) \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>  ?body
+             \<lbrace>st j \<and>* ps (ja + 1) \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>"
+    show "\<lbrace>st i \<and>* ps ia \<and>* ones ia ja \<and>* zero (ja + 1)\<rbrace> ?body
+           \<lbrace>st j \<and>* ps (ja + 1) \<and>* zeros ia ja \<and>* zero (ja + 1)\<rbrace>"
+    proof(cases "ja < ia")
+      case True
+      thus ?thesis
+        by (simp add: ones.simps zeros.simps sep_conj_ac, simp only:sep_conj_cond,
+               intro tm.pre_condI, simp, hsteps)
+    next
+      case False
+      note h[OF False, step]
+      from False have ones_eq: "ones ia ja = (one ia \<and>* ones (ia + 1) ja)"
+        by(simp add: ones.simps)
+      from False have zeros_eq: "zeros ia ja = (zero ia \<and>* zeros (ia + 1) ja)"
+        by(simp add: zeros.simps)
+      have s1: "\<lbrace>st i \<and>* ps ia \<and>* one ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>  ?body 
+                 \<lbrace>st i \<and>* ps (ia + 1) \<and>* zero ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>"
+      proof(cases "ja < ia + 1")
+        case True
+        from True False have "ja = ia" by auto
+        thus ?thesis
+          apply(simp add: ones.simps)
+          by (hsteps)
+      next
+        case False
+        from False have "ones (ia + 1) ja = (one (ia + 1) \<and>* ones (ia + 1 + 1) ja)"
+          by(simp add: ones.simps)
+        thus ?thesis
+          by (simp, hsteps)
+      qed
+      have s2: "\<lbrace>st i \<and>* ps (ia + 1) \<and>* zero ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>
+                ?body
+                \<lbrace>st j \<and>* ps (ja + 1) \<and>* zero ia \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>"
+        by hsteps
+      from tm.sequencing[OF s1 s2] have 
+        "\<lbrace>st i \<and>* ps ia \<and>* one ia \<and>* ones (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>  ?body
+        \<lbrace>st j \<and>* ps (ja + 1) \<and>* zero ia \<and>* zeros (ia + 1) ja \<and>* zero (ja + 1)\<rbrace>" .
+      thus ?thesis
+        unfolding ones_eq zeros_eq by(simp add: sep_conj_ac)
+    qed
+  qed
+qed
+
+lemma  hoare_clear_until_zero_gen[step]: 
+  assumes "u = v" "x = w + 1"
+  shows "\<lbrace>st i ** ps u ** ones v w ** zero x\<rbrace>
+              i :[clear_until_zero]: j
+        \<lbrace>st j ** ps x ** zeros v w ** zero x\<rbrace>"
+  by (unfold assms, rule hoare_clear_until_zero)
+
+definition "shift_left = 
+            (TL start exit.
+              TLabel start;
+                 if_zero exit;
+                 move_left;
+                 write_one;
+                 right_until_zero;
+                 move_left;
+                 write_zero;
+                 move_right;
+                 move_right;
+                 jmp start;
+              TLabel exit)
+           "
+
+declare ones_simps[simp del]
+
+lemma hoare_move_left_reps[step]:
+  assumes "ks \<noteq> []" "u = v"
+  shows 
+    "\<lbrace>st i ** ps u ** reps v w ks\<rbrace> 
+         i:[move_left]:j
+     \<lbrace>st j ** ps (u - 1) **  reps v w ks\<rbrace>"
+proof -
+  from `ks \<noteq> []` obtain y ys where eq_ks: "ks = y#ys"
+    by (metis neq_Nil_conv)
+  show ?thesis
+    apply (unfold assms eq_ks)
+    apply (case_tac ys, simp)
+    my_block
+      have "(ones v (v + int y)) = (one v \<and>* ones (v + 1) (v + int y))"
+        by (smt ones_step_simp)
+    my_block_end
+    apply (unfold this, hsteps)
+    by (simp add:this, hsteps)
+qed
+
+lemma hoare_shift_left_cons:
+  assumes h: "ks \<noteq> []"
+  shows "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace> 
+                                   i:[shift_left]:j
+         \<lbrace>st j \<and>* ps (v + 2) \<and>* reps (u - 1) (v - 1) ks \<and>* zero v \<and>* zero (v + 1) \<and>* zero (v + 2) \<rbrace>"
+proof(unfold shift_left_def, intro t_hoare_local t_hoare_label, clarify, 
+      rule t_hoare_label_last, simp+, clarify, prune)
+  show " \<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* reps u v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
+             i :[ (if_zero j ;
+                   move_left ;
+                   write_one ;
+                   right_until_zero ;
+                   move_left ; write_zero ; 
+                   move_right ; move_right ; jmp i) ]: j
+         \<lbrace>st j \<and>* ps (v + 2) \<and>* reps (u - 1) (v - 1) ks \<and>* zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
+    using h
+  proof(induct ks arbitrary:i u v x)
+    case (Cons k ks)
+    thus ?case 
+    proof(cases "ks = []")
+      let ?body = "i :[ (if_zero j ;  move_left ; write_one ; right_until_zero ;
+                   move_left ; write_zero ; move_right ; move_right ; jmp i) ]: j"
+      case True 
+      have "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* (one u \<and>* ones (u + 1) (u + int k)) \<and>* 
+                                          zero (u + int k + 1) \<and>* zero (u + int k + 2)\<rbrace> 
+                         ?body
+            \<lbrace>st j \<and>* ps (u + int k + 2) \<and>* (one (u - 1) \<and>* ones u (u - 1 + int k)) \<and>*
+                       zero (u + int k) \<and>* zero (u + int k + 1) \<and>* zero (u + int k + 2)\<rbrace>"
+      apply(rule tm.sequencing [where q = "st i \<and>* ps (u + int k + 2) \<and>*
+                (one (u - 1) \<and>* ones u (u - 1 + int k)) \<and>*
+                zero (u + int k) \<and>* zero (u + int k + 1) \<and>* zero (u + int k + 2)"])
+          apply (hsteps)
+          apply (rule_tac p = "st j' \<and>* ps (u - 1) \<and>* ones (u - 1) (u + int k) \<and>*
+                                zero (u + int k + 1) \<and>* zero (u + int k + 2)" 
+            in tm.pre_stren)
+          apply (hsteps)
+          my_block
+            have "(ones (u - 1) (u + int k)) = (ones (u - 1) (u + int k - 1) \<and>* one (u + int k))"
+              by (smt ones_rev)
+          my_block_end
+          apply (unfold this)
+          apply hsteps
+          apply (simp add:sep_conj_ac, sep_cancel+)
+          apply (smt ones.simps sep.mult_assoc sep_conj_commuteI)
+          apply (simp add:sep_conj_ac)+
+          apply (sep_cancel+)
+          apply (smt ones.simps sep.mult_left_commute sep_conj_commuteI this)
+          by hstep
+        with True show ?thesis
+        by (simp add:ones_simps, simp only:sep_conj_cond, intro tm.pre_condI, simp)
+    next 
+      case False
+      let ?body = "i :[ (if_zero j ; move_left ; write_one ;right_until_zero ; move_left ; 
+                                write_zero ; move_right ; move_right ; jmp i) ]: j"
+      have "\<lbrace>st i \<and>* ps u \<and>* tm (u - 1) x \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* 
+                zero (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
+                ?body
+            \<lbrace>st j \<and>* ps (v + 2) \<and>* one (u - 1) \<and>* ones u (u - 1 + int k) \<and>*
+                        zero (u + int k) \<and>* reps (1 + (u + int k)) (v - 1) ks \<and>*
+                                              zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
+        apply (rule tm.sequencing[where q = "st i \<and>* ps (u + int k + 2) \<and>* 
+                  zero (u + int k + 1) \<and>* reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* 
+                  zero (v + 2) \<and>* one (u - 1) \<and>* ones u (u - 1 + int k) \<and>* zero (u + int k)"])
+        apply (hsteps)
+        apply (rule_tac p = "st j' \<and>* ps (u - 1) \<and>* 
+                               ones (u - 1) (u + int k) \<and>*
+                               zero (u + int k + 1) \<and>* 
+                               reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)
+            " in tm.pre_stren)
+        apply hsteps
+        my_block
+          have "(ones (u - 1) (u + int k)) = 
+            (ones (u - 1) (u + int k - 1) \<and>* one (u + int k))"
+            by (smt ones_rev)
+        my_block_end
+        apply (unfold this)
+        apply (hsteps)
+        apply (sep_cancel+)
+        apply (smt ones.simps sep.mult_assoc sep_conj_commuteI)
+        apply (sep_cancel+)
+        apply (smt ones.simps this)
+        my_block
+          have eq_u: "1 + (u + int k) = u + int k + 1" by simp
+          from Cons.hyps[OF `ks \<noteq> []`, of i "u + int k + 2" Bk v, folded zero_def] 
+          have "\<lbrace>st i \<and>* ps (u + int k + 2) \<and>* zero (u + int k + 1) \<and>*
+                            reps (u + int k + 2) v ks \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace> 
+                               ?body
+                      \<lbrace>st j \<and>* ps (v + 2) \<and>*  reps (1 + (u + int k)) (v - 1) ks \<and>* 
+                                                zero v \<and>* zero (v + 1) \<and>* zero (v + 2)\<rbrace>"
+          by (simp add:eq_u)
+        my_block_end my_note hh[step] = this 
+        by hsteps
+      thus ?thesis
+        by (unfold reps_simp3[OF False], auto simp:sep_conj_ac ones_simps)
+    qed
+  qed auto
+qed
+
+lemma hoare_shift_left_cons_gen[step]:
+  assumes h: "ks \<noteq> []"
+          "v = u - 1" "w = u" "y = x + 1" "z = x + 2"
+  shows "\<lbrace>st i \<and>* ps u \<and>* tm v vv \<and>* reps w x ks \<and>* tm y Bk \<and>* tm z Bk\<rbrace> 
+                                   i:[shift_left]:j
+         \<lbrace>st j \<and>* ps z \<and>* reps v (x - 1) ks \<and>* zero x \<and>* zero y \<and>* zero z \<rbrace>"
+  by (unfold assms, fold zero_def, rule hoare_shift_left_cons[OF `ks \<noteq> []`])
+
+definition "bone c1 c2 = (TL exit l_one.
+                                if_one l_one;
+                                  (c1;
+                                   jmp exit);
+                                TLabel l_one;
+                                      c2;
+                                TLabel exit
+                              )"
+
+lemma hoare_bone_1_out:
+  assumes h: 
+        "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+                         i:[c1]:j
+                  \<lbrace>st e \<and>* q \<rbrace>
+        "
+  shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+              i:[(bone c1 c2)]:j
+         \<lbrace>st e \<and>* q \<rbrace>
+        "
+apply (unfold bone_def, intro t_hoare_local)
+apply hsteps
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+by (rule h)
+
+lemma hoare_bone_1:
+  assumes h: 
+        "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+                         i:[c1]:j
+                  \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
+        "
+  shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+              i:[(bone c1 c2)]:j
+         \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
+        "
+proof -
+  note h[step]
+  show ?thesis
+    apply (unfold bone_def, intro t_hoare_local)
+    apply (rule t_hoare_label_last, auto)
+    apply hsteps
+    apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+    by hsteps
+qed
+
+lemma hoare_bone_2:
+  assumes h: 
+        "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+                         i:[c2]:j
+                  \<lbrace>st j \<and>* q \<rbrace>
+        "
+  shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+              i:[(bone c1 c2)]:j
+         \<lbrace>st j \<and>* q \<rbrace>
+        "
+apply (unfold bone_def, intro t_hoare_local)
+apply (rule_tac q = "st la \<and>* ps u \<and>* one u \<and>* p" in tm.sequencing)
+apply hsteps
+apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
+apply (subst tassemble_to.simps(2), intro tm.code_exI)
+apply (subst tassemble_to.simps(4), intro tm.code_condI, simp)
+apply (subst tassemble_to.simps(2), intro tm.code_exI)
+apply (subst tassemble_to.simps(4), simp add:sep_conj_cond, rule tm.code_condI, simp)
+by (rule h)
+
+lemma hoare_bone_2_out:
+  assumes h: 
+        "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+                         i:[c2]:j
+                  \<lbrace>st e \<and>* q \<rbrace>
+        "
+  shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+              i:[(bone c1 c2)]:j
+         \<lbrace>st e \<and>* q \<rbrace>
+        "
+apply (unfold bone_def, intro t_hoare_local)
+apply (rule_tac q = "st la \<and>* ps u \<and>* one u \<and>* p" in tm.sequencing)
+apply hsteps
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
+apply (subst tassemble_to.simps(2), intro tm.code_exI)
+apply (subst tassemble_to.simps(4), rule tm.code_condI, simp)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+by (rule h)
+
+definition "bzero c1 c2 = (TL exit l_zero.
+                                if_zero l_zero;
+                                  (c1;
+                                   jmp exit);
+                                TLabel l_zero;
+                                      c2;
+                                TLabel exit
+                              )"
+
+lemma hoare_bzero_1:
+  assumes h[step]: 
+        "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+                         i:[c1]:j
+                 \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
+        "
+  shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+              i:[(bzero c1 c2)]:j
+         \<lbrace>st j \<and>* ps v \<and>* tm v x \<and>* q \<rbrace>
+        "
+apply (unfold bzero_def, intro t_hoare_local)
+apply hsteps
+apply (rule_tac c = " ((c1 ; jmp l) ; TLabel la ; c2 ; TLabel l)" in t_hoare_label_last, auto)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension)
+by hsteps
+
+lemma hoare_bzero_1_out:
+  assumes h[step]: 
+        "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+                         i:[c1]:j
+                 \<lbrace>st e \<and>* q \<rbrace>
+        "
+  shows "\<lbrace>st i \<and>* ps u \<and>* one u \<and>* p \<rbrace>
+              i:[(bzero c1 c2)]:j
+         \<lbrace>st e \<and>* q \<rbrace>
+        "
+apply (unfold bzero_def, intro t_hoare_local)
+apply hsteps
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+by (rule h)
+
+lemma hoare_bzero_2:
+  assumes h: 
+        "\<And> i j. \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+                         i:[c2]:j
+                 \<lbrace>st j \<and>* q \<rbrace>
+        "
+  shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+              i:[(bzero c1 c2)]:j
+         \<lbrace>st j \<and>* q \<rbrace>
+        "
+  apply (unfold bzero_def, intro t_hoare_local)
+  apply (rule_tac q = "st la \<and>* ps u \<and>* zero u \<and>* p" in tm.sequencing)
+  apply hsteps
+  apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
+  apply (subst tassemble_to.simps(2), intro tm.code_exI, intro tm.code_extension1)
+  apply (subst tassemble_to.simps(2), intro tm.code_exI)
+  apply (subst tassemble_to.simps(4))
+  apply (rule tm.code_condI, simp)
+  apply (subst tassemble_to.simps(2))
+  apply (rule tm.code_exI)
+  apply (subst tassemble_to.simps(4), simp add:sep_conj_cond)
+  apply (rule tm.code_condI, simp)
+  by (rule h)
+
+lemma hoare_bzero_2_out:
+  assumes h: 
+        "\<And> i j . \<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p \<rbrace>
+                         i:[c2]:j
+                  \<lbrace>st e \<and>* q \<rbrace>
+        "
+  shows "\<lbrace>st i \<and>* ps u \<and>* zero u \<and>* p\<rbrace>
+              i:[(bzero c1 c2)]:j
+         \<lbrace>st e \<and>* q \<rbrace>
+        "
+apply (unfold bzero_def, intro t_hoare_local)
+apply (rule_tac q = "st la \<and>* ps u \<and>* zero u \<and>* p" in tm.sequencing)
+apply hsteps
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension1)
+apply (subst tassemble_to.simps(2), intro tm.code_exI)
+apply (subst tassemble_to.simps(4), rule tm.code_condI, simp)
+apply (subst tassemble_to.simps(2), intro tm.code_exI, rule tm.code_extension)
+by (rule h)
+
+definition "skip_or_set = bone (write_one; move_right; move_right)
+                               (right_until_zero; move_right)"
+
+lemma reps_len_split: 
+  assumes "xs \<noteq> []" "ys \<noteq> []"
+  shows "reps_len (xs @ ys) = reps_len xs + reps_len ys + 1"
+  using assms
+proof(induct xs arbitrary:ys)
+  case (Cons x1 xs1)
+  show ?case
+  proof(cases "xs1 = []")
+    case True
+    thus ?thesis
+      by (simp add:reps_len_cons[OF `ys \<noteq> []`] reps_len_sg)
+  next
+    case False
+    hence " xs1 @ ys \<noteq> []" by simp
+    thus ?thesis
+      apply (simp add:reps_len_cons[OF `xs1@ys \<noteq> []`] reps_len_cons[OF `xs1 \<noteq> []`])
+      by (simp add: Cons.hyps[OF `xs1 \<noteq> []` `ys \<noteq> []`])
+  qed
+qed auto
+
+lemma hoare_skip_or_set_set:
+  "\<lbrace> st i \<and>* ps u \<and>* zero u \<and>* zero (u + 1) \<and>* tm (u + 2) x\<rbrace>
+         i:[skip_or_set]:j
+   \<lbrace> st j \<and>* ps (u + 2) \<and>* one u \<and>* zero (u + 1) \<and>* tm (u + 2) x\<rbrace>"
+  apply(unfold skip_or_set_def)
+  apply(rule_tac q = "st j \<and>* ps (u + 2) \<and>* tm (u + 2) x \<and>* one u \<and>* zero (u + 1)" 
+    in tm.post_weaken)
+  apply(rule hoare_bone_1)
+  apply hsteps
+  by (auto simp:sep_conj_ac, sep_cancel+, smt)
+
+lemma hoare_skip_or_set_set_gen[step]:
+  assumes "u = v" "w = v + 1" "x = v + 2"
+  shows "\<lbrace>st i \<and>* ps u \<and>* zero v \<and>* zero w \<and>* tm x xv\<rbrace>
+                   i:[skip_or_set]:j
+         \<lbrace>st j \<and>* ps x \<and>* one v \<and>* zero w \<and>* tm x xv\<rbrace>"
+  by (unfold assms, rule hoare_skip_or_set_set)
+
+lemma hoare_skip_or_set_skip:
+  "\<lbrace> st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>
+         i:[skip_or_set]:j
+   \<lbrace> st j \<and>*  ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>"
+proof -
+   show ?thesis
+     apply(unfold skip_or_set_def, unfold reps.simps, simp add:sep_conj_cond)
+     apply(rule tm.pre_condI, simp)
+     apply(rule_tac p = "st i \<and>* ps u \<and>* one u \<and>* ones (u + 1) (u + int k) \<and>* 
+                             zero (u + int k + 1)" 
+                   in tm.pre_stren)
+     apply (rule_tac q = "st j \<and>* ps (u + int k + 2) \<and>* 
+                          one u \<and>* ones (u + 1) (u + int k) \<and>* zero (u + int k + 1)
+              " in tm.post_weaken)
+     apply (rule hoare_bone_2)
+     apply (rule_tac p = " st i \<and>* ps u \<and>* ones u (u + int k) \<and>* zero (u + int k + 1) 
+       " in tm.pre_stren)
+     apply hsteps
+     apply (simp add:sep_conj_ac, sep_cancel+, auto simp:sep_conj_ac ones_simps)
+     by (sep_cancel+, smt)
+ qed
+
+lemma hoare_skip_or_set_skip_gen[step]:
+  assumes "u = v" "x = w + 1"
+  shows  "\<lbrace> st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>
+                  i:[skip_or_set]:j
+          \<lbrace> st j \<and>*  ps (w + 2) \<and>* reps v w [k] \<and>* zero x\<rbrace>"
+  by (unfold assms, rule hoare_skip_or_set_skip)
+
+
+definition "if_reps_z e = (move_right;
+                              bone (move_left; jmp e) (move_left)
+                             )"
+
+lemma hoare_if_reps_z_true:
+  assumes h: "k = 0"
+  shows 
+   "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace> 
+      i:[if_reps_z e]:j 
+    \<lbrace>st e \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>"
+  apply (unfold reps.simps, simp add:sep_conj_cond)
+  apply (rule tm.pre_condI, simp add:h)
+  apply (unfold if_reps_z_def)
+  apply (simp add:ones_simps)
+  apply (hsteps)
+  apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* zero (u + 1) \<and>* one u" in tm.pre_stren)
+  apply (rule hoare_bone_1_out)
+  by (hsteps)
+
+lemma hoare_if_reps_z_true_gen[step]:
+  assumes "k = 0" "u = v" "x = w + 1"
+  shows "\<lbrace>st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace> 
+                  i:[if_reps_z e]:j 
+         \<lbrace>st e \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>"
+  by (unfold assms, rule hoare_if_reps_z_true, simp)
+
+lemma hoare_if_reps_z_false:
+  assumes h: "k \<noteq> 0"
+  shows 
+   "\<lbrace>st i \<and>* ps u \<and>* reps u v [k]\<rbrace> 
+      i:[if_reps_z e]:j 
+    \<lbrace>st j \<and>* ps u \<and>* reps u v [k]\<rbrace>"
+proof -
+  from h obtain k' where "k = Suc k'" by (metis not0_implies_Suc)
+  show ?thesis
+    apply (unfold `k = Suc k'`)
+    apply (simp add:sep_conj_cond, rule tm.pre_condI, simp)
+    apply (unfold if_reps_z_def)
+    apply (simp add:ones_simps)
+    apply hsteps
+    apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* one (u + 1) \<and>* one u \<and>* 
+                          ones (2 + u) (u + (1 + int k'))" in tm.pre_stren)
+    apply (rule_tac hoare_bone_2)
+    by (hsteps)
+qed
+
+lemma hoare_if_reps_z_false_gen[step]:
+  assumes h: "k \<noteq> 0" "u = v"
+  shows 
+   "\<lbrace>st i \<and>* ps u \<and>* reps v w [k]\<rbrace> 
+      i:[if_reps_z e]:j 
+    \<lbrace>st j \<and>* ps u \<and>* reps v w [k]\<rbrace>"
+  by (unfold assms, rule hoare_if_reps_z_false[OF `k \<noteq> 0`])
+
+definition "if_reps_nz e = (move_right;
+                              bzero (move_left; jmp e) (move_left)
+                           )"
+
+lemma EXS_postI: 
+  assumes "\<lbrace>P\<rbrace> 
+            c
+           \<lbrace>Q x\<rbrace>"
+  shows "\<lbrace>P\<rbrace> 
+          c
+        \<lbrace>EXS x. Q x\<rbrace>"
+by (metis EXS_intro assms tm.hoare_adjust)
+
+lemma hoare_if_reps_nz_true:
+  assumes h: "k \<noteq> 0"
+  shows 
+   "\<lbrace>st i \<and>* ps u \<and>* reps u v [k]\<rbrace> 
+      i:[if_reps_nz e]:j 
+    \<lbrace>st e \<and>* ps u \<and>* reps u v [k]\<rbrace>"
+proof -
+  from h obtain k' where "k = Suc k'" by (metis not0_implies_Suc)
+  show ?thesis
+    apply (unfold `k = Suc k'`)
+    apply (unfold reps.simps, simp add:sep_conj_cond, rule tm.pre_condI, simp)
+    apply (unfold if_reps_nz_def)
+    apply (simp add:ones_simps)
+    apply hsteps
+    apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>* one (u + 1) \<and>* one u \<and>*
+                            ones (2 + u) (u + (1 + int k'))" in tm.pre_stren)
+    apply (rule hoare_bzero_1_out)
+    by hsteps
+qed
+
+
+lemma hoare_if_reps_nz_true_gen[step]:
+  assumes h: "k \<noteq> 0" "u = v"
+  shows 
+   "\<lbrace>st i \<and>* ps u \<and>* reps v w [k]\<rbrace> 
+      i:[if_reps_nz e]:j 
+    \<lbrace>st e \<and>* ps u \<and>* reps v w [k]\<rbrace>"
+  by (unfold assms, rule hoare_if_reps_nz_true[OF `k\<noteq> 0`])
+
+lemma hoare_if_reps_nz_false:
+  assumes h: "k = 0"
+  shows 
+   "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace> 
+      i:[if_reps_nz e]:j 
+    \<lbrace>st j \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1)\<rbrace>"
+  apply (simp add:h sep_conj_cond)
+  apply (rule tm.pre_condI, simp)
+  apply (unfold if_reps_nz_def)
+  apply (simp add:ones_simps)
+  apply (hsteps)
+  apply (rule_tac p = "st j' \<and>* ps (u + 1) \<and>*  zero (u + 1) \<and>* one u" in tm.pre_stren)
+  apply (rule hoare_bzero_2)
+  by (hsteps)
+
+lemma hoare_if_reps_nz_false_gen[step]:
+  assumes h: "k = 0" "u = v" "x = w + 1"
+  shows 
+   "\<lbrace>st i \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace> 
+      i:[if_reps_nz e]:j 
+    \<lbrace>st j \<and>* ps u \<and>* reps v w [k] \<and>* zero x\<rbrace>"
+  by (unfold assms, rule hoare_if_reps_nz_false, simp)
+
+definition "skip_or_sets n = tpg_fold (replicate n skip_or_set)"
+
+
+
+lemma hoare_skip_or_sets_set:
+  shows "\<lbrace>st i \<and>* ps u \<and>* zeros u (u + int (reps_len (replicate (Suc n) 0))) \<and>* 
+                                  tm (u + int (reps_len (replicate (Suc n) 0)) + 1) x\<rbrace> 
+            i:[skip_or_sets (Suc n)]:j 
+         \<lbrace>st j \<and>* ps (u + int (reps_len (replicate (Suc n) 0)) + 1) \<and>* 
+                     reps' u  (u + int (reps_len (replicate (Suc n) 0))) (replicate (Suc n) 0) \<and>*
+                                 tm (u + int (reps_len (replicate (Suc n) 0)) + 1) x \<rbrace>"
+proof(induct n arbitrary:i j u x)
+  case 0
+  from 0 show ?case
+    apply (simp add:reps'_def reps_len_def reps_ctnt_len_def reps_sep_len_def reps.simps)
+    apply (unfold skip_or_sets_def, simp add:tpg_fold_sg)
+    apply hsteps
+    by (auto simp:sep_conj_ac, smt cond_true_eq2 ones.simps sep_conj_left_commute)
+next
+    case (Suc n)
+    { fix n
+      have "listsum (replicate n (Suc 0)) = n"
+        by (induct n, auto)
+    } note eq_sum = this
+    have eq_len: "\<And>n. n \<noteq> 0 \<Longrightarrow> reps_len (replicate (Suc n) 0) = reps_len (replicate n 0) + 2"
+      by (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def)
+    have eq_zero: "\<And> u v. (zeros u (u + int (v + 2))) = 
+           (zeros u (u + (int v)) \<and>* zero (u + (int v) + 1) \<and>* zero (u + (int v) + 2))"
+      by (smt sep.mult_assoc zeros_rev)
+    hence eq_z: 
+      "zeros u (u + int (reps_len (replicate (Suc (Suc n)) 0)))  = 
+       (zeros u (u + int (reps_len (replicate (Suc n) 0))) \<and>*
+       zero ((u + int (reps_len (replicate (Suc n) 0))) + 1) \<and>* 
+       zero ((u + int (reps_len (replicate (Suc n) 0))) + 2))
+      " by (simp only:eq_len)
+    have hh: "\<And>x. (replicate (Suc (Suc n)) x) = (replicate (Suc n) x) @ [x]"
+      by (metis replicate_Suc replicate_append_same)
+    have hhh: "replicate (Suc n) skip_or_set \<noteq> []" "[skip_or_set] \<noteq> []" by auto
+    have eq_code: 
+          "(i :[ skip_or_sets (Suc (Suc n)) ]: j) = 
+           (i :[ (skip_or_sets (Suc n); skip_or_set) ]: j)"
+    proof(unfold skip_or_sets_def)
+      show "i :[ tpg_fold (replicate (Suc (Suc n)) skip_or_set) ]: j =
+               i :[ (tpg_fold (replicate (Suc n) skip_or_set) ; skip_or_set) ]: j"
+        apply (insert tpg_fold_app[OF hhh, of i j], unfold hh)
+        by (simp only:tpg_fold_sg)
+    qed
+    have "Suc n \<noteq> 0" by simp
+    show ?case 
+      apply (unfold eq_z eq_code)
+      apply (hstep Suc(1))
+      apply (unfold eq_len[OF `Suc n \<noteq> 0`])
+      apply hstep
+      apply (auto simp:sep_conj_ac)[1]
+      apply (sep_cancel+, prune) 
+      apply (fwd abs_ones)
+      apply ((fwd abs_reps')+, simp add:int_add_ac)
+      by (metis replicate_append_same)
+  qed
+
+lemma hoare_skip_or_sets_set_gen[step]:
+  assumes h: "p2 = p1" 
+             "p3 = p1 + int (reps_len (replicate (Suc n) 0))"
+             "p4 = p3 + 1"
+  shows "\<lbrace>st i \<and>* ps p1 \<and>* zeros p2 p3 \<and>* tm p4 x\<rbrace> 
+            i:[skip_or_sets (Suc n)]:j 
+         \<lbrace>st j \<and>* ps p4 \<and>* reps' p2  p3 (replicate (Suc n) 0) \<and>* tm p4 x\<rbrace>"
+  apply (unfold h)
+  by (rule hoare_skip_or_sets_set)
+
+declare reps.simps[simp del]
+
+lemma hoare_skip_or_sets_skip:
+  assumes h: "n < length ks"
+  shows "\<lbrace>st i \<and>* ps u \<and>* reps' u v (take n ks) \<and>* reps' (v + 1) w [ks!n] \<rbrace> 
+            i:[skip_or_sets (Suc n)]:j 
+         \<lbrace>st j \<and>* ps (w+1) \<and>* reps' u v (take n ks) \<and>* reps' (v + 1) w [ks!n]\<rbrace>"
+  using h
+proof(induct n arbitrary: i j u v w ks)
+  case 0
+  show ?case 
+    apply (subst (1 5) reps'_def, simp add:sep_conj_cond, intro tm.pre_condI, simp)
+    apply (unfold skip_or_sets_def, simp add:tpg_fold_sg)
+    apply (unfold reps'_def, simp del:reps.simps)
+    apply hsteps
+    by (sep_cancel+, smt+)
+next
+  case (Suc n)
+  from `Suc n < length ks` have "n < length ks" by auto
+  note h =  Suc(1) [OF this]
+  show ?case 
+    my_block
+      from `Suc n < length ks` 
+      have eq_take: "take (Suc n) ks = take n ks @ [ks!n]"
+        by (metis not_less_eq not_less_iff_gr_or_eq take_Suc_conv_app_nth)
+    my_block_end
+    apply (unfold this)
+    apply (subst reps'_append, simp add:sep_conj_exists, rule tm.precond_exI)
+    my_block
+      have "(i :[ skip_or_sets (Suc (Suc n)) ]: j) = 
+                 (i :[ (skip_or_sets (Suc n); skip_or_set )]: j)"
+      proof -
+        have eq_rep: 
+          "(replicate (Suc (Suc n)) skip_or_set) = ((replicate (Suc n) skip_or_set) @ [skip_or_set])"
+          by (metis replicate_Suc replicate_append_same)
+        have "replicate (Suc n) skip_or_set \<noteq> []" "[skip_or_set] \<noteq> []" by auto
+        from tpg_fold_app[OF this]
+        show ?thesis
+          by (unfold skip_or_sets_def eq_rep, simp del:replicate.simps add:tpg_fold_sg)
+      qed
+    my_block_end
+    apply (unfold this)
+    my_block
+       fix i j m 
+       have "\<lbrace>st i \<and>* ps u \<and>* (reps' u (m - 1) (take n ks) \<and>* reps' m v [ks ! n])\<rbrace> 
+                            i :[ (skip_or_sets (Suc n)) ]: j
+             \<lbrace>st j \<and>* ps (v + 1) \<and>* (reps' u (m - 1) (take n ks) \<and>* reps' m v [ks ! n])\<rbrace>"
+                  apply (rule h[THEN tm.hoare_adjust])
+                  by (sep_cancel+, auto)
+    my_block_end my_note h_c1 = this
+    my_block
+      fix j' j m 
+      have "\<lbrace>st j' \<and>* ps (v + 1) \<and>* reps' (v + 1) w [ks ! Suc n]\<rbrace> 
+                          j' :[ skip_or_set ]: j
+            \<lbrace>st j \<and>* ps (w + 1) \<and>* reps' (v + 1) w [ks ! Suc n]\<rbrace>"
+        apply (unfold reps'_def, simp)
+        apply (rule hoare_skip_or_set_skip[THEN tm.hoare_adjust])
+        by (sep_cancel+, smt)+
+    my_block_end
+    apply (hstep h_c1 this)+ 
+    by ((fwd abs_reps'), simp, sep_cancel+)
+qed
+
+lemma hoare_skip_or_sets_skip_gen[step]:
+  assumes h: "n < length ks" "u = v" "x = w + 1"
+  shows "\<lbrace>st i \<and>* ps u \<and>* reps' v w (take n ks) \<and>* reps' x y [ks!n] \<rbrace> 
+            i:[skip_or_sets (Suc n)]:j 
+         \<lbrace>st j \<and>* ps (y+1) \<and>* reps' v w (take n ks) \<and>* reps' x y [ks!n]\<rbrace>"
+  by (unfold assms, rule hoare_skip_or_sets_skip[OF `n < length ks`])
+
+lemma fam_conj_interv_simp:
+    "(fam_conj {(ia::int)<..} p) = ((p (ia + 1)) \<and>* fam_conj {ia + 1 <..} p)"
+by (smt Collect_cong fam_conj_insert_simp greaterThan_def 
+        greaterThan_eq_iff greaterThan_iff insertI1 
+        insert_compr lessThan_iff mem_Collect_eq)
+
+lemma zeros_fam_conj:
+  assumes "u \<le> v"
+  shows "(zeros u v \<and>* fam_conj {v<..} zero) = fam_conj {u - 1<..} zero"
+proof -
+  have "{u - 1<..v} ## {v <..}" by (auto simp:set_ins_def)
+  from fam_conj_disj_simp[OF this, symmetric]
+  have "(fam_conj {u - 1<..v} zero \<and>* fam_conj {v<..} zero) = fam_conj ({u - 1<..v} + {v<..}) zero" .
+  moreover 
+  from `u \<le> v` have eq_set: "{u - 1 <..} = {u - 1 <..v} + {v <..}" by (auto simp:set_ins_def)
+  moreover have "fam_conj {u - 1<..v} zero = zeros u v"
+  proof -
+    have "({u - 1<..v}) = ({u .. v})" by auto
+    moreover {
+      fix u v 
+      assume "u  \<le> (v::int)"
+      hence "fam_conj {u .. v} zero = zeros u v"
+      proof(induct rule:ones_induct)
+        case (Base i j)
+        thus ?case by auto
+      next
+        case (Step i j)
+        thus ?case
+        proof(cases "i = j") 
+          case True
+          show ?thesis
+            by (unfold True, simp add:fam_conj_simps)
+        next
+          case False 
+          with `i \<le> j` have hh: "i + 1 \<le> j" by auto
+          hence eq_set: "{i..j} = (insert i {i + 1 .. j})"
+            by (smt simp_from_to)
+          have "i \<notin> {i + 1 .. j}" by simp
+          from fam_conj_insert_simp[OF this, folded eq_set]
+          have "fam_conj {i..j} zero = (zero i \<and>* fam_conj {i + 1..j} zero)" .
+          with Step(2)[OF hh] Step
+          show ?thesis by simp
+        qed
+      qed
+    } 
+    moreover note this[OF `u  \<le> v`]
+    ultimately show ?thesis by simp
+  qed
+  ultimately show ?thesis by smt
+qed
+
+declare replicate.simps [simp del]
+
+lemma hoare_skip_or_sets_comb:
+  assumes "length ks \<le> n"
+  shows "\<lbrace>st i \<and>* ps u \<and>* reps u v ks \<and>* fam_conj {v<..} zero\<rbrace> 
+                i:[skip_or_sets (Suc n)]:j 
+         \<lbrace>st j \<and>* ps ((v + int (reps_len (list_ext n ks)) - int (reps_len ks))+ 2) \<and>* 
+          reps' u (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) (list_ext n ks) \<and>*
+          fam_conj {(v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1)<..} zero \<rbrace>"
+proof(cases "ks = []")
+  case True
+  show ?thesis
+    apply (subst True, simp only:reps.simps sep_conj_cond)
+    apply (rule tm.pre_condI, simp)
+    apply (rule_tac p = "st i \<and>* ps (v + 1) \<and>*
+            zeros (v + 1) (v + 1 + int (reps_len (replicate (Suc n) 0))) \<and>*
+            tm (v + 2 + int (reps_len (replicate (Suc n) 0))) Bk \<and>* 
+            fam_conj {(v + 2 + int (reps_len (replicate (Suc n) 0)))<..} zero
+      " in tm.pre_stren)
+    apply hsteps
+    apply (auto simp:sep_conj_ac)[1]
+    apply (auto simp:sep_conj_ac)[2]
+    my_block
+      from True have "(list_ext n ks) = (replicate (Suc n) 0)"
+        by (metis append_Nil diff_zero list.size(3) list_ext_def)
+    my_block_end my_note le_red = this
+    my_block
+      from True have "(reps_len ks) = 0"
+        by (metis reps_len_nil)
+    my_block_end
+    apply (unfold this le_red, simp)
+    my_block
+      have "v + 2 + int (reps_len (replicate (Suc n) 0)) = 
+            v + int (reps_len (replicate (Suc n) 0)) + 2" by smt
+    my_block_end my_note eq_len = this
+    apply (unfold this)
+    apply (sep_cancel+)
+    apply (fold zero_def)
+    apply (subst fam_conj_interv_simp, simp)
+    apply (simp only:int_add_ac)
+    apply (simp only:sep_conj_ac, sep_cancel+)
+    my_block
+      have "v + 1 \<le> (2 + (v + int (reps_len (replicate (Suc n) 0))))" by simp
+      from zeros_fam_conj[OF this]
+      have "(fam_conj {v<..} zero) = (zeros (v + 1) (2 + (v + int (reps_len (replicate (Suc n) 0)))) \<and>*
+                                        fam_conj {2 + (v + int (reps_len (replicate (Suc n) 0)))<..} zero)"
+        by simp
+    my_block_end
+    apply (subst (asm) this, simp only:int_add_ac, sep_cancel+)
+    by (smt cond_true_eq2 sep.mult_assoc sep.mult_commute 
+            sep.mult_left_commute sep_conj_assoc sep_conj_commute 
+         sep_conj_left_commute zeros.simps zeros_rev)
+next 
+  case False
+  show ?thesis
+    my_block
+      have "(i:[skip_or_sets (Suc n)]:j) = 
+              (i:[(skip_or_sets (length ks);  skip_or_sets (Suc n - length ks))]:j)"
+        apply (unfold skip_or_sets_def)
+        my_block
+          have "(replicate (Suc n) skip_or_set) = 
+                   (replicate (length ks) skip_or_set @ (replicate (Suc n - length ks) skip_or_set))"
+            by (smt assms replicate_add)
+        my_block_end
+        apply (unfold this, rule tpg_fold_app, simp add:False)
+        by (insert `length ks \<le> n`, simp)
+    my_block_end
+    apply (unfold this)
+    my_block
+      from False have "length ks = (Suc (length ks - 1))" by simp
+    my_block_end
+    apply (subst (1) this)
+    my_block
+      from False
+      have "(reps u v ks \<and>* fam_conj {v<..} zero) =
+            (reps' u (v + 1) ks \<and>* fam_conj {v+1<..} zero)"
+        apply (unfold reps'_def, simp)
+        by (subst fam_conj_interv_simp, simp add:sep_conj_ac)
+    my_block_end
+    apply (unfold this) 
+    my_block
+      fix i j
+      have "\<lbrace>st i \<and>* ps u \<and>* reps' u (v + 1) ks \<rbrace> 
+                i :[ skip_or_sets (Suc (length ks - 1))]: j
+            \<lbrace>st j \<and>* ps (v + 2) \<and>* reps' u (v + 1) ks \<rbrace>"
+        my_block
+          have "ks = take (length ks - 1) ks @ [ks!(length ks - 1)]"
+            by (smt False drop_0 drop_eq_Nil id_take_nth_drop)  
+        my_block_end my_note eq_ks = this
+        apply (subst (1) this)
+        apply (unfold reps'_append, simp add:sep_conj_exists, rule tm.precond_exI)
+        my_block
+          from False have "(length ks - Suc 0) < length ks"
+            by (smt `length ks = Suc (length ks - 1)`)
+        my_block_end
+        apply hsteps
+        apply (subst eq_ks, unfold reps'_append, simp only:sep_conj_exists)
+        by (rule_tac x = m in EXS_intro, simp add:sep_conj_ac, sep_cancel+, smt)
+    my_block_end
+    apply (hstep this)
+    my_block
+      fix u n
+      have "(fam_conj {u <..} zero) = 
+         (zeros (u + 1) (u + int n + 1) \<and>* tm (u + int n + 2) Bk \<and>* fam_conj {(u + int n + 2)<..} zero)"
+        my_block
+          have "u + 1 \<le> (u + int n + 2)" by auto
+          from zeros_fam_conj[OF this, symmetric]
+          have "fam_conj {u<..} zero = (zeros (u + 1) (u + int n + 2) \<and>* fam_conj {u + int n + 2<..} zero)"
+            by simp
+        my_block_end
+        apply (subst this)
+        my_block
+          have "(zeros (u + 1) (u + int n + 2)) = 
+                   ((zeros (u + 1) (u + int n + 1) \<and>* tm (u + int n + 2) Bk))"
+            by (smt zero_def zeros_rev)
+        my_block_end
+        by (unfold this, auto simp:sep_conj_ac)
+    my_block_end
+    apply (subst (1) this[of _ "(reps_len (replicate (Suc (n - length ks)) 0))"])
+    my_block
+      from `length ks \<le> n`
+      have "Suc n - length ks = Suc (n - length ks)" by auto 
+    my_block_end my_note eq_suc = this
+    apply (subst this)
+    apply hsteps
+    apply (simp add: sep_conj_ac this, sep_cancel+)
+    apply (fwd abs_reps')+
+    my_block
+      have "(int (reps_len (replicate (Suc (n - length ks)) 0))) =
+            (int (reps_len (list_ext n ks)) - int (reps_len ks) - 1)"
+        apply (unfold list_ext_def eq_suc)
+        my_block
+          have "replicate (Suc (n - length ks)) 0 \<noteq> []" by simp
+        my_block_end
+        by (unfold reps_len_split[OF False this], simp)
+    my_block_end
+    apply (unfold this)
+    my_block
+      from `length ks \<le> n`
+      have "(ks @ replicate (Suc (n - length ks)) 0) =  (list_ext n ks)"
+        by (unfold list_ext_def, simp)
+    my_block_end
+    apply (unfold this, simp)
+    apply (subst fam_conj_interv_simp, unfold zero_def, simp, simp add:int_add_ac sep_conj_ac)
+    by (sep_cancel+, smt)
+qed
+
+lemma hoare_skip_or_sets_comb_gen:
+  assumes "length ks \<le> n" "u = v" "w = x"
+  shows "\<lbrace>st i \<and>* ps u \<and>* reps v w ks \<and>* fam_conj {x<..} zero\<rbrace> 
+                i:[skip_or_sets (Suc n)]:j 
+         \<lbrace>st j \<and>* ps ((x + int (reps_len (list_ext n ks)) - int (reps_len ks))+ 2) \<and>* 
+          reps' u (x + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) (list_ext n ks) \<and>*
+          fam_conj {(x + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1)<..} zero \<rbrace>"
+  by (unfold assms, rule hoare_skip_or_sets_comb[OF `length ks \<le> n`])
+
+definition "locate n = (skip_or_sets (Suc n);
+                        move_left;
+                        move_left;
+                        left_until_zero;
+                        move_right
+                       )"
+
+lemma list_ext_tail_expand:
+  assumes h: "length ks \<le> a"
+  shows "list_ext a ks = take a (list_ext a ks) @ [(list_ext a ks)!a]"
+proof -
+  let ?l = "list_ext a ks"
+  from h have eq_len: "length ?l = Suc a"
+    by (smt list_ext_len_eq)
+  hence "?l \<noteq> []" by auto
+  hence "?l = take (length ?l - 1) ?l @ [?l!(length ?l - 1)]"
+    by (metis `length (list_ext a ks) = Suc a` diff_Suc_1 le_refl 
+                    lessI take_Suc_conv_app_nth take_all)
+  from this[unfolded eq_len]
+  show ?thesis by simp
+qed
+
+lemma reps'_nn_expand:
+  assumes "xs \<noteq> []"
+  shows "(reps' u v xs) = (reps u (v - 1) xs \<and>* zero v)"
+  by (metis assms reps'_def)
+
+lemma sep_conj_st1: "(p \<and>* st t \<and>* q) = (st t \<and>* p \<and>* q)"
+  by (simp only:sep_conj_ac)
+
+lemma sep_conj_st2: "(p \<and>* st t) = (st t \<and>* p)"
+  by (simp only:sep_conj_ac)
+
+lemma sep_conj_st3: "((st t \<and>* p) \<and>* r) = (st t \<and>* p \<and>* r)"
+  by (simp only:sep_conj_ac)
+
+lemma sep_conj_st4: "(EXS x. (st t \<and>* r x)) = ((st t) \<and>* (EXS x. r x))"
+  apply (unfold pred_ex_def, default+)
+  apply (safe)
+  apply (sep_cancel, auto)
+  by (auto elim!: sep_conjE intro!:sep_conjI)
+
+lemmas sep_conj_st = sep_conj_st1 sep_conj_st2 sep_conj_st3 sep_conj_st4
+
+lemma sep_conj_cond3 : "(<cond1> \<and>* <cond2>) = <(cond1 \<and> cond2)>"
+  by (smt cond_eqI cond_true_eq sep_conj_commute sep_conj_empty)
+
+lemma sep_conj_cond4 : "(<cond1> \<and>* <cond2> \<and>* r) = (<(cond1 \<and> cond2)> \<and>* r)"
+  by (metis Hoare_tm3.sep_conj_cond3 sep_conj_assoc)
+
+lemmas sep_conj_cond = sep_conj_cond3 sep_conj_cond4 sep_conj_cond 
+
+lemma hoare_left_until_zero_reps: 
+  "\<lbrace>st i ** ps v ** zero u ** reps (u + 1) v [k]\<rbrace> 
+        i:[left_until_zero]:j
+   \<lbrace>st j ** ps u ** zero u ** reps (u + 1) v [k]\<rbrace>"
+  apply (unfold reps.simps, simp only:sep_conj_cond)
+  apply (rule tm.pre_condI, simp)
+  by hstep
+
+lemma hoare_left_until_zero_reps_gen[step]: 
+  assumes "u = x" "w = v + 1"
+  shows "\<lbrace>st i ** ps u ** zero v ** reps w x [k]\<rbrace> 
+                i:[left_until_zero]:j
+         \<lbrace>st j ** ps v ** zero v ** reps w x [k]\<rbrace>"
+  by (unfold assms, rule hoare_left_until_zero_reps)
+
+lemma reps_lenE:
+  assumes "reps u v ks s"
+  shows "( <(v = u + int (reps_len ks) - 1)> \<and>* reps u v ks ) s"
+proof(rule condI)
+  from reps_len_correct[OF assms] show "v = u + int (reps_len ks) - 1" .
+next
+  from assms show "reps u v ks s" .
+qed
+
+lemma condI1: 
+  assumes "p s" "b"
+  shows "(<b> \<and>* p) s"
+proof(rule condI[OF assms(2)])
+  from  assms(1) show "p s" .
+qed
+
+lemma hoare_locate_set:
+  assumes "length ks \<le> n"
+  shows "\<lbrace>st i \<and>* zero (u - 1) \<and>* ps u \<and>* reps u v ks \<and>* fam_conj {v<..} zero\<rbrace> 
+                i:[locate n]:j 
+         \<lbrace>st j \<and>* zero (u - 1) \<and>* 
+             (EXS m w. ps m \<and>* reps' u (m - 1) (take n (list_ext n ks)) \<and>* 
+                         reps m w [(list_ext n ks)!n] \<and>* fam_conj {w<..} zero)\<rbrace>"
+proof(cases "take n (list_ext n ks) = []")
+  case False
+  show ?thesis
+    apply (unfold locate_def)
+    apply (hstep hoare_skip_or_sets_comb_gen)
+    apply (subst (3) list_ext_tail_expand[OF `length ks \<le> n`])
+    apply (subst (1) reps'_append, simp add:sep_conj_exists)
+    apply (rule tm.precond_exI)
+    apply (subst (1) reps'_nn_expand[OF False]) 
+    apply (rule_tac p = "st j' \<and>* <(m = u + int (reps_len (take n (list_ext n ks))) + 1)> \<and>*
+            ps (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2) \<and>*
+            ((reps u (m - 1 - 1) (take n (list_ext n ks)) \<and>* zero (m - 1)) \<and>*
+             reps' m (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1)
+              [list_ext n ks ! n]) \<and>*
+            fam_conj
+             {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1<..}
+             zero \<and>*
+            zero (u - 1)" 
+      in tm.pre_stren)
+    my_block
+      have "[list_ext n ks ! n] \<noteq> []" by simp
+      from reps'_nn_expand[OF this]
+      have "(reps' m (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1) [list_ext n ks ! n]) =
+                (reps m (v + (int (reps_len (list_ext n ks)) - int (reps_len ks))) [list_ext n ks ! n] \<and>*
+                   zero (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1))" 
+        by simp
+    my_block_end 
+    apply (subst this)
+    my_block
+      have "(fam_conj {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 1<..} zero) =
+             (zero (v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2) \<and>* 
+              fam_conj {v + int (reps_len (list_ext n ks)) - int (reps_len ks) + 2<..} zero)"
+        by (subst fam_conj_interv_simp, smt)
+    my_block_end
+    apply (unfold this) 
+    apply (simp only:sep_conj_st)
+    apply hsteps
+    apply (auto simp:sep_conj_ac)[1]
+    apply (sep_cancel+)
+    apply (rule_tac x = m in EXS_intro)
+    apply (rule_tac x = "m + int (list_ext n ks ! n)" in EXS_intro)
+    apply (simp add:sep_conj_ac del:ones_simps, sep_cancel+)
+    apply (subst (asm) sep_conj_cond)+
+    apply (erule_tac condE, clarsimp, simp add:sep_conj_ac int_add_ac)
+    apply (fwd abs_reps')
+    apply (fwd abs_reps')
+    apply (simp add:sep_conj_ac int_add_ac)
+    apply (sep_cancel+)
+    apply (subst (asm) reps'_def, subst fam_conj_interv_simp, subst fam_conj_interv_simp, 
+           simp add:sep_conj_ac int_add_ac)
+    my_block
+      fix s
+      assume h: "(reps (1 + (u + int (reps_len (take n (list_ext n ks)))))
+             (v + (- int (reps_len ks) + int (reps_len (list_ext n ks)))) [list_ext n ks ! n]) s"
+      (is "?P s")
+      from reps_len_correct[OF this] list_ext_tail_expand[OF `length ks \<le> n`]
+      have hh: "v + (- int (reps_len ks) + 
+                    int (reps_len (take n (list_ext n ks) @ [list_ext n ks ! n]))) =
+                  1 + (u + int (reps_len (take n (list_ext n ks)))) + 
+                       int (reps_len [list_ext n ks ! n]) - 1"
+        by metis
+      have "[list_ext n ks ! n] \<noteq> []" by simp
+      from hh[unfolded reps_len_split[OF False this]]
+      have "v  =  u + (int (reps_len ks)) - 1"
+        by simp
+      from condI1[where p = ?P, OF h this]
+      have "(<(v = u + int (reps_len ks) - 1)> \<and>*
+             reps (1 + (u + int (reps_len (take n (list_ext n ks)))))
+             (v + (- int (reps_len ks) + int (reps_len (list_ext n ks)))) [list_ext n ks ! n]) s" .
+    my_block_end
+    apply (fwd this, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac int_add_ac
+              reps_len_sg)
+    apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac int_add_ac
+            reps_len_sg)
+    by (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp add:sep_conj_ac)
+next
+  case True
+  show ?thesis
+    apply (unfold locate_def)
+    apply (hstep hoare_skip_or_sets_comb)
+    apply (subst (3) list_ext_tail_expand[OF `length ks \<le> n`])
+    apply (subst (1) reps'_append, simp add:sep_conj_exists)
+    apply (rule tm.precond_exI)
+    my_block
+      from True `length ks \<le> n`
+      have "ks = []" "n = 0"
+        apply (metis le0 le_antisym length_0_conv less_nat_zero_code list_ext_len take_eq_Nil)
+        by (smt True length_take list.size(3) list_ext_len)
+    my_block_end
+    apply (unfold True this)
+    apply (simp add:reps'_def list_ext_def reps.simps reps_len_def reps_sep_len_def 
+                 reps_ctnt_len_def
+      del:ones_simps)
+    apply (subst sep_conj_cond)+
+    apply (rule tm.pre_condI, simp del:ones_simps)
+    apply (subst fam_conj_interv_simp, simp add:sep_conj_st del:ones_simps)
+    apply (hsteps)
+    apply (auto simp:sep_conj_ac)[1]
+    apply (sep_cancel+)
+    apply (rule_tac x = "(v + int (listsum (replicate (Suc 0) (Suc 0))))" in EXS_intro)+
+    apply (simp only:sep_conj_ac, sep_cancel+)
+    apply (auto)
+    apply (subst fam_conj_interv_simp)
+    apply (subst fam_conj_interv_simp)
+    by smt
+qed
+
+lemma hoare_locate_set_gen[step]:
+  assumes "length ks \<le> n" 
+           "u = v - 1" "v = w" "x = y"
+  shows "\<lbrace>st i \<and>* zero u \<and>* ps v \<and>* reps w x ks \<and>* fam_conj {y<..} zero\<rbrace> 
+                i:[locate n]:j 
+         \<lbrace>st j \<and>* zero u \<and>* 
+             (EXS m w. ps m \<and>* reps' v (m - 1) (take n (list_ext n ks)) \<and>* 
+                         reps m w [(list_ext n ks)!n] \<and>* fam_conj {w<..} zero)\<rbrace>"
+  by (unfold assms, rule hoare_locate_set[OF `length ks \<le> n`])
+
+lemma hoare_locate_skip: 
+  assumes h: "n < length ks"
+  shows 
+   "\<lbrace>st i \<and>* ps u \<and>* zero (u - 1) \<and>* reps' u (v - 1) (take n ks) \<and>* reps' v w [ks!n] \<and>* tm (w + 1) x\<rbrace> 
+      i:[locate n]:j 
+    \<lbrace>st j \<and>* ps v \<and>* zero (u - 1) \<and>* reps' u (v - 1) (take n ks) \<and>* reps' v w [ks!n] \<and>* tm (w + 1) x\<rbrace>"
+proof -
+  show ?thesis
+    apply (unfold locate_def)
+    apply hsteps
+    apply (subst (2 4) reps'_def, simp add:reps.simps sep_conj_cond del:ones_simps)
+    apply (intro tm.pre_condI, simp del:ones_simps)
+    apply hsteps
+    apply (case_tac "(take n ks) = []", simp add:reps'_def sep_conj_cond del:ones_simps)
+    apply (rule tm.pre_condI, simp del:ones_simps)
+    apply hsteps
+    apply (simp del:ones_simps add:reps'_def)
+    by hsteps
+qed
+
+
+lemma hoare_locate_skip_gen[step]: 
+  assumes "n < length ks"
+          "v = u - 1" "w = u" "x = y - 1" "z' = z + 1"
+  shows 
+   "\<lbrace>st i \<and>* ps u \<and>* tm v Bk \<and>* reps' w x (take n ks) \<and>* reps' y z [ks!n] \<and>* tm z' vx\<rbrace> 
+      i:[locate n]:j 
+    \<lbrace>st j \<and>* ps y \<and>* tm v Bk \<and>* reps' w x (take n ks) \<and>* reps' y z [ks!n] \<and>* tm z' vx\<rbrace>"
+  by (unfold assms, fold zero_def, rule hoare_locate_skip[OF `n < length ks`])
+
+definition "Inc a = locate a; 
+                    right_until_zero; 
+                    move_right;
+                    shift_right;
+                    move_left;
+                    left_until_double_zero;
+                    write_one;
+                    left_until_double_zero;
+                    move_right;
+                    move_right
+                    "
+
+lemma ones_int_expand: "(ones m (m + int k)) = (one m \<and>* ones (m + 1) (m + int k))"
+  by (simp add:ones_simps)
+
+lemma reps_splitedI:
+  assumes h1: "(reps u v ks1 \<and>* zero (v + 1) \<and>* reps (v + 2) w ks2) s"
+  and h2: "ks1 \<noteq> []"
+  and h3: "ks2 \<noteq> []"
+  shows "(reps u w (ks1 @ ks2)) s"
+proof - 
+  from h2 h3
+  have "splited (ks1 @ ks2) ks1 ks2" by (auto simp:splited_def)
+  from h1 obtain s1 where 
+    "(reps u v ks1) s1" by (auto elim:sep_conjE)
+  from h1 obtain s2 where 
+    "(reps (v + 2) w ks2) s2" by (auto elim:sep_conjE)
+  from reps_len_correct[OF `(reps u v ks1) s1`] 
+  have eq_v: "v = u + int (reps_len ks1) - 1" .
+  from reps_len_correct[OF `(reps (v + 2) w ks2) s2`]
+  have eq_w: "w = v + 2 + int (reps_len ks2) - 1" .
+  from h1
+  have "(reps u (u + int (reps_len ks1) - 1) ks1 \<and>*
+         zero (u + int (reps_len ks1)) \<and>* reps (u + int (reps_len ks1) + 1) w ks2) s"
+    apply (unfold eq_v eq_w[unfolded eq_v])
+    by (sep_cancel+, smt)
+  thus ?thesis
+    by(unfold reps_splited[OF `splited (ks1 @ ks2) ks1 ks2`], simp)
+qed
+
+lemma reps_sucI:
+  assumes h: "(reps u v (xs@[x]) \<and>* one (1 + v)) s"
+  shows "(reps u (1 + v) (xs@[Suc x])) s"
+proof(cases "xs = []")
+  case True
+  from h obtain s' where "(reps u v (xs@[x])) s'" by (auto elim:sep_conjE)
+  from reps_len_correct[OF this] have " v = u + int (reps_len (xs @ [x])) - 1" .
+  with True have eq_v: "v = u + int x" by (simp add:reps_len_sg)
+  have eq_one1: "(one (1 + (u + int x)) \<and>* ones (u + 1) (u + int x)) = ones (u + 1) (1 + (u + int x))"
+    by (smt ones_rev sep.mult_commute)
+  from h show ?thesis
+    apply (unfold True, simp add:eq_v reps.simps sep_conj_cond sep_conj_ac ones_rev)
+    by (sep_cancel+, simp add: eq_one1, smt)
+next
+  case False
+  from h obtain s1 s2 where hh: "(reps u v (xs@[x])) s1" "s = s1 + s2" "s1 ## s2" "one (1 + v) s2"
+    by (auto elim:sep_conjE)
+  from hh(1)[unfolded reps_rev[OF False]]
+  obtain s11 s12 s13 where hhh:
+    "(reps u (v - int (x + 1) - 1) xs) s11"
+    "(zero (v - int (x + 1))) s12" "(ones (v - int x) v) s13"
+    "s11 ## (s12 + s13)" "s12 ## s13" "s1 = s11 + s12 + s13"
+    apply (atomize_elim)
+    apply(elim sep_conjE)+
+    apply (rule_tac x = xa in exI)
+    apply (rule_tac x = xaa in exI)
+    apply (rule_tac x = ya in exI)
+    apply (intro conjI, assumption+)
+    by (auto simp:set_ins_def)
+  show ?thesis
+  proof(rule reps_splitedI[where v = "(v - int (x + 1) - 1)"])
+    show "(reps u (v - int (x + 1) - 1) xs \<and>* zero (v - int (x + 1) - 1 + 1) \<and>* 
+                                    reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x]) s"
+    proof(rule sep_conjI)
+      from hhh(1) show "reps u (v - int (x + 1) - 1) xs s11" .
+    next
+      show "(zero (v - int (x + 1) - 1 + 1) \<and>* reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x]) (s12 + (s13 + s2))"
+      proof(rule sep_conjI)
+        from hhh(2) show "zero (v - int (x + 1) - 1 + 1) s12" by smt
+      next
+        from hh(4) hhh(3)
+        show "reps (v - int (x + 1) - 1 + 2) (1 + v) [Suc x] (s13 + s2)"
+          apply (simp add:reps.simps del:ones_simps add:ones_rev)
+          by (smt hh(3) hh(4) hhh(4) hhh(5) hhh(6) sep_add_disjD sep_conjI sep_disj_addI1)
+      next
+        show "s12 ## s13 + s2" 
+          by (metis hh(3) hhh(4) hhh(5) hhh(6) sep_add_commute sep_add_disjD 
+              sep_add_disjI2 sep_disj_addD sep_disj_addD1 sep_disj_addI1 sep_disj_commuteI)
+      next
+        show "s12 + (s13 + s2) = s12 + (s13 + s2)" by metis 
+      qed
+    next
+      show "s11 ## s12 + (s13 + s2)"
+        by (metis hh(3) hhh(4) hhh(5) hhh(6) sep_disj_addD1 sep_disj_addI1 sep_disj_addI3)
+    next
+      show "s = s11 + (s12 + (s13 + s2))"
+        by (smt hh(2) hh(3) hhh(4) hhh(5) hhh(6) sep_add_assoc sep_add_commute 
+             sep_add_disjD sep_add_disjI2 sep_disj_addD1 sep_disj_addD2 
+              sep_disj_addI1 sep_disj_addI3 sep_disj_commuteI)
+    qed
+  next
+    from False show "xs \<noteq> []" .
+  next
+    show "[Suc x] \<noteq> []" by simp
+  qed
+qed
+
+lemma cond_expand: "(<cond> \<and>* p) s = (cond \<and> (p s))"
+  by (metis (full_types) condD pasrt_def sep_conj_commuteI 
+             sep_conj_sep_emptyI sep_empty_def sep_globalise)
+
+lemma ones_rev1:
+  assumes "\<not> (1 + n) < m"
+  shows "(ones m n \<and>* one (1 + n)) = (ones m (1 + n))"
+  by (insert ones_rev[OF assms, simplified], simp)
+
+lemma reps_one_abs:
+  assumes "(reps u v [k] \<and>* one w) s"
+          "w = v + 1"
+  shows "(reps u w [Suc k]) s"
+  using assms unfolding assms
+  apply (simp add:reps.simps sep_conj_ac)
+  apply (subst (asm) sep_conj_cond)+
+  apply (erule condE, simp)
+  by (simp add:ones_rev sep_conj_ac, sep_cancel+, smt)
+
+lemma reps'_reps_abs:
+  assumes "(reps' u v xs \<and>* reps w x ys) s"
+          "w = v + 1"  "ys \<noteq> []"
+  shows "(reps u x (xs@ys)) s"
+proof(cases "xs = []")
+  case False
+  with assms
+  have h: "splited (xs@ys) xs ys" by (simp add:splited_def)
+  from assms(1)[unfolded assms(2)]
+  show ?thesis
+    apply (unfold reps_splited[OF h])
+    apply (insert False, unfold reps'_def, simp)
+    apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+)
+    by (erule condE, simp)
+next
+  case True
+  with assms
+  show ?thesis
+    apply (simp add:reps'_def)
+    by (erule condE, simp)
+qed
+
+lemma reps_one_abs1:
+  assumes "(reps u v (xs@[k]) \<and>* one w) s"
+          "w = v + 1"
+  shows "(reps u w (xs@[Suc k])) s"
+proof(cases "xs = []")
+  case True
+  with assms reps_one_abs
+  show ?thesis by simp
+next
+  case False
+  hence "splited (xs@[k]) xs [k]" by (simp add:splited_def)
+  from assms(1)[unfolded reps_splited[OF this] assms(2)]
+  show ?thesis
+    apply (fwd reps_one_abs)
+    apply (fwd reps_reps'_abs) 
+    apply (fwd reps'_reps_abs)
+    by (simp add:assms)
+qed
+  
+lemma tm_hoare_inc00: 
+  assumes h: "a < length ks \<and> ks ! a = v"
+  shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace> 
+    i :[ Inc a ]: j
+    \<lbrace>st j \<and>*
+     ps u \<and>*
+     zero (u - 2) \<and>*
+     zero (u - 1) \<and>*
+     reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) (ks[a := Suc v]) \<and>*
+     fam_conj {(ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1)<..} zero\<rbrace>"
+  (is "\<lbrace> ?P \<rbrace> ?code \<lbrace> ?Q \<rbrace>")
+proof -
+  from h have "a < length ks" "ks ! a = v" by auto
+  from list_nth_expand[OF `a < length ks`]
+  have eq_ks: "ks = take a ks @ [ks!a] @ drop (Suc a) ks" .
+  from `a < length ks` have "ks \<noteq> []" by auto
+  hence "(reps u ia ks \<and>* zero (ia + 1)) = reps' u (ia + 1) ks"
+    by (simp add:reps'_def)
+  also from eq_ks have "\<dots> = reps' u (ia + 1) (take a ks @ [ks!a] @ drop (Suc a) ks)" by simp
+  also have "\<dots>  = (EXS m. reps' u (m - 1) (take a ks) \<and>* 
+                     reps' m (ia + 1) (ks ! a # drop (Suc a) ks))"
+    by (simp add:reps'_append)
+  also have "\<dots> = (EXS m. reps' u (m - 1) (take a ks) \<and>* 
+                     reps' m (ia + 1) ([ks ! a] @ drop (Suc a) ks))"
+    by simp
+  also have "\<dots> = (EXS m ma. reps' u (m - 1) (take a ks) \<and>*
+                       reps' m (ma - 1) [ks ! a] \<and>* reps' ma (ia + 1) (drop (Suc a) ks))"
+    by (simp only:reps'_append sep_conj_exists)
+  finally have eq_s: "(reps u ia ks \<and>* zero (ia + 1)) = \<dots>" .
+  { fix m ma
+    have eq_u: "-1 + u = u - 1" by smt
+    have " \<lbrace>st i \<and>*
+            ps u \<and>*
+            zero (u - 2) \<and>*
+            zero (u - 1) \<and>*
+            (reps' u (m - 1) (take a ks) \<and>*
+             reps' m (ma - 1) [ks ! a] \<and>* reps' ma (ia + 1) (drop (Suc a) ks)) \<and>*
+            fam_conj {ia + 1<..} zero\<rbrace> 
+           i :[ Inc a ]: j
+           \<lbrace>st j \<and>*
+            ps u \<and>*
+            zero (u - 2) \<and>*
+            zero (u - 1) \<and>*
+            reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) (ks[a := Suc v]) \<and>*
+            fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1<..} zero\<rbrace>"
+    proof(cases "(drop (Suc a) ks) = []")
+      case True
+      { fix hc
+        have eq_1: "(1 + (m + int (ks ! a))) = (m + int (ks ! a) + 1)" by simp
+        have eq_2: "take a ks @ [Suc (ks ! a)] = ks[a := Suc v]"
+          apply (subst (3) eq_ks, unfold True, simp)
+          by (metis True append_Nil2 eq_ks h upd_conv_take_nth_drop)
+        assume h: "(fam_conj {1 + (m + int (ks ! a))<..} zero \<and>* 
+                      reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks ! a)])) hc"
+        hence "(fam_conj {m + int (ks ! a) + 1<..} zero \<and>* reps u (m + int (ks ! a) + 1) (ks[a := Suc v])) hc"
+          by (unfold eq_1 eq_2 , sep_cancel+)
+      } note eq_fam = this
+      show ?thesis
+        apply (unfold Inc_def, subst (3) reps'_def, simp add:True sep_conj_cond)
+        apply (intro tm.pre_condI, simp)
+        apply (subst fam_conj_interv_simp, simp, subst (3) zero_def)
+        apply hsteps
+        apply (subst reps'_sg, simp add:sep_conj_cond del:ones_simps)
+        apply (rule tm.pre_condI, simp del:ones_simps)
+        apply hsteps
+        apply (rule_tac p = "
+          st j' \<and>* ps (1 + (m + int (ks ! a))) \<and>* zero (u - 1) \<and>* zero (u - 2) \<and>*
+                   reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks!a)]) 
+                            \<and>* fam_conj {1 + (m + int (ks ! a))<..} zero
+          " in tm.pre_stren)
+        apply (hsteps)
+        apply (simp add:sep_conj_ac list_ext_lt[OF `a < length ks`], sep_cancel+)
+        apply (fwd eq_fam, sep_cancel+)
+        apply (simp del:ones_simps add:sep_conj_ac)
+        apply (sep_cancel+, prune)
+        apply ((fwd abs_reps')+, simp)
+        apply (fwd reps_one_abs abs_reps')+
+        apply (subst (asm) reps'_def, simp)
+        by (subst fam_conj_interv_simp, simp add:sep_conj_ac)
+    next 
+      case False
+      then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'"
+        by (metis append_Cons append_Nil list.exhaust)
+      from `a < length ks`
+      have eq_ks: "ks[a := Suc v] = (take a ks @ [Suc (ks ! a)]) @ (drop (Suc a) ks)"
+        apply (fold `ks!a = v`)
+        by (metis append_Cons append_Nil append_assoc upd_conv_take_nth_drop)
+      show ?thesis
+        apply (unfold Inc_def)
+        apply (unfold Inc_def eq_drop reps'_append, simp add:sep_conj_exists del:ones_simps)
+        apply (rule tm.precond_exI, subst (2) reps'_sg)
+        apply (subst sep_conj_cond)+
+        apply (subst (1) ones_int_expand)
+        apply (rule tm.pre_condI, simp del:ones_simps)
+        apply hsteps
+        (* apply (hsteps hoare_locate_skip_gen[OF `a < length ks`]) *)
+        apply (subst reps'_sg, simp add:sep_conj_cond del:ones_simps)
+        apply (rule tm.pre_condI, simp del:ones_simps)
+        apply hsteps
+        apply (rule_tac p = "st j' \<and>*
+                ps (2 + (m + int (ks ! a))) \<and>*
+                reps (2 + (m + int (ks ! a))) ia (drop (Suc a) ks) \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>*
+                reps u (m + int (ks ! a)) (take a ks @ [ks!a]) \<and>* zero (1 + (m + int (ks ! a))) \<and>*
+                zero (u - 2) \<and>* zero (u - 1) \<and>* fam_conj {ia + 2<..} zero
+          " in tm.pre_stren)
+        apply (hsteps hoare_shift_right_cons_gen[OF False]
+                hoare_left_until_double_zero_gen[OF False])
+        apply (rule_tac p = 
+          "st j' \<and>* ps (1 + (m + int (ks ! a))) \<and>*
+          zero (u - 2) \<and>* zero (u - 1) \<and>* 
+          reps u (1 + (m + int (ks ! a))) (take a ks @ [Suc (ks ! a)]) \<and>*
+          zero (2 + (m + int (ks ! a))) \<and>*
+          reps (3 + (m + int (ks ! a))) (ia + 1) (drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero
+          " in tm.pre_stren)
+        apply (hsteps)
+        apply (simp add:sep_conj_ac, sep_cancel+)
+        apply (unfold list_ext_lt[OF `a < length ks`], simp)
+        apply (fwd abs_reps')+ 
+        apply(fwd reps'_reps_abs)
+        apply (subst eq_ks, simp)
+        apply (sep_cancel+) 
+        apply (thin_tac "mb = 4 + (m + (int (ks ! a) + int k'))")
+        apply (thin_tac "ma = 2 + (m + int (ks ! a))", prune)
+        apply (simp add: int_add_ac sep_conj_ac, sep_cancel+)
+        apply (fwd reps_one_abs1, subst fam_conj_interv_simp, simp, sep_cancel+, smt)
+        apply (fwd abs_ones)+
+        apply (fwd abs_reps')
+        apply (fwd abs_reps')
+        apply (fwd abs_reps')
+        apply (fwd abs_reps')
+        apply (unfold eq_drop, simp add:int_add_ac sep_conj_ac)
+        apply (sep_cancel+)
+        apply (fwd  reps'_abs[where xs = "take a ks"])
+        apply (fwd reps'_abs[where xs = "[k']"])
+        apply (unfold reps'_def, simp add:int_add_ac sep_conj_ac)
+        apply (sep_cancel+)
+        by (subst (asm) fam_conj_interv_simp, simp, smt)
+      qed
+  } note h = this
+  show ?thesis
+    apply (subst fam_conj_interv_simp)
+    apply (rule_tac p = "st i \<and>*  ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* 
+                              (reps u ia ks \<and>* zero (ia + 1)) \<and>* fam_conj {ia + 1<..} zero" 
+      in tm.pre_stren)
+    apply (unfold eq_s, simp only:sep_conj_exists)
+    apply (intro tm.precond_exI h)
+    by (sep_cancel+, unfold eq_s, simp)
+qed
+
+declare ones_simps [simp del]
+
+lemma tm_hoare_inc01:
+  assumes "length ks \<le> a \<and> v = 0"
+  shows 
+   "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace> 
+       i :[ Inc a ]: j
+    \<lbrace>st j \<and>*
+     ps u \<and>*
+     zero (u - 2) \<and>*
+     zero (u - 1) \<and>*
+     reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1) ((list_ext a ks)[a := Suc v]) \<and>*
+     fam_conj {(ia + int (reps_len (list_ext a ks)) - int (reps_len ks) + 1)<..} zero\<rbrace>"
+proof -
+  from assms have "length ks \<le> a" "v = 0" by auto
+  show ?thesis
+    apply (rule_tac p = "
+      st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* (reps u ia ks \<and>* <(ia = u + int (reps_len ks) - 1)>) \<and>* 
+             fam_conj {ia<..} zero
+      " in tm.pre_stren)
+    apply (subst sep_conj_cond)+
+    apply (rule tm.pre_condI, simp)
+    apply (unfold Inc_def)
+    apply hstep
+    (* apply (hstep hoare_locate_set_gen[OF `length ks \<le> a`]) *)
+    apply (simp only:sep_conj_exists)
+    apply (intro tm.precond_exI)
+    my_block
+      fix m w
+      have "reps m w [list_ext a ks ! a] =
+            (ones m (m + int (list_ext a ks ! a)) \<and>* <(w = m + int (list_ext a ks ! a))>)"
+        by (simp add:reps.simps)
+    my_block_end
+    apply (unfold this)
+    apply (subst sep_conj_cond)+
+    apply (rule tm.pre_condI, simp)
+    apply (subst fam_conj_interv_simp)
+    apply (hsteps)
+    apply (subst fam_conj_interv_simp, simp)
+    apply (hsteps)
+    apply (rule_tac p = "st j' \<and>* ps (m + int (list_ext a ks ! a) + 1) \<and>*
+                           zero (u - 2) \<and>* zero (u - 1) \<and>* 
+                           reps u (m + int (list_ext a ks ! a) + 1) 
+                                ((take a (list_ext a ks))@[Suc (list_ext a ks ! a)]) \<and>*
+                           fam_conj {(m + int (list_ext a ks ! a) + 1)<..} zero
+                         " in tm.pre_stren)
+    apply (hsteps)
+    apply (simp add:sep_conj_ac, sep_cancel+)
+    apply (unfold `v = 0`, prune)
+    my_block
+      from `length ks \<le> a` have "list_ext a ks ! a = 0"
+        by (metis le_refl list_ext_tail)
+      from `length ks \<le> a` have "a < length (list_ext a ks)"
+        by (metis list_ext_len)
+      from reps_len_suc[OF this] 
+      have eq_len: "int (reps_len (list_ext a ks)) = 
+                        int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)])) - 1" 
+        by smt
+      fix m w hc
+      assume h: "(fam_conj {m + int (list_ext a ks ! a) + 1<..} zero \<and>*
+                 reps u (m + int (list_ext a ks ! a) + 1) (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)]))
+                 hc"
+      then obtain s where 
+        "(reps u (m + int (list_ext a ks ! a) + 1) (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)])) s"
+        by (auto dest!:sep_conjD)
+      from reps_len_correct[OF this]
+      have "m  = u + int (reps_len (take a (list_ext a ks) @ [Suc (list_ext a ks ! a)])) 
+                        - int (list_ext a ks ! a) - 2" by smt
+      from h [unfolded this]
+      have "(fam_conj {u + int (reps_len (list_ext a ks))<..} zero \<and>*
+           reps u (u + int (reps_len (list_ext a ks))) (list_ext a ks[a := Suc 0]))
+           hc"
+        apply (unfold eq_len, simp)
+        my_block
+          from `a < length (list_ext a ks)`
+          have "take a (list_ext a ks) @ [Suc (list_ext a ks ! a)] = 
+                list_ext a ks[a := Suc (list_ext a ks ! a)]"
+            by (smt `list_ext a ks ! a = 0` assms length_take list_ext_tail_expand list_update_length)
+        my_block_end
+        apply (unfold this)
+        my_block
+          have "-1 + (u + int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)]))) = 
+                u + (int (reps_len (list_ext a ks[a := Suc (list_ext a ks ! a)])) - 1)" by simp
+        my_block_end
+        apply (unfold this)
+        apply (sep_cancel+)
+        by (unfold `(list_ext a ks ! a) = 0`, simp)
+    my_block_end
+    apply (rule this, assumption)
+    apply (simp only:sep_conj_ac, sep_cancel+)+
+    apply (fwd abs_reps')+
+    apply (fwd reps_one_abs) 
+    apply (fwd reps'_reps_abs)
+    apply (simp add:int_add_ac sep_conj_ac)
+    apply (sep_cancel+)
+    apply (subst fam_conj_interv_simp, simp add:sep_conj_ac, smt)
+    apply (fwd reps_lenE, (subst (asm) sep_conj_cond)+, erule condE, simp)
+    by (sep_cancel+)
+qed
+
+definition "Dec a e  = (TL continue. 
+                          (locate a; 
+                           if_reps_nz continue;
+                           left_until_double_zero;
+                           move_right;
+                           move_right;
+                           jmp e);
+                          (TLabel continue;
+                           right_until_zero; 
+                           move_left;
+                           write_zero;
+                           move_right;
+                           move_right;
+                           shift_left;
+                           move_left;
+                           move_left;
+                           move_left;
+                           left_until_double_zero;
+                           move_right;
+                           move_right))"
+
+lemma cond_eq: "((<b> \<and>* p) s) = (b \<and> (p s))"
+proof
+  assume "(<b> \<and>* p) s"
+  from condD[OF this] show " b \<and> p s" .
+next
+  assume "b \<and> p s"
+  hence b and "p s" by auto
+  from `b` have "(<b>) 0" by (auto simp:pasrt_def)
+  moreover have "s = 0 + s" by auto
+  moreover have "0 ## s" by auto
+  moreover note `p s`
+  ultimately show "(<b> \<and>* p) s" by (auto intro!:sep_conjI)
+qed
+
+lemma tm_hoare_dec_fail00:
+  assumes "a < length ks \<and> ks ! a = 0"
+  shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>  
+             i :[ Dec a e ]: j
+         \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+          reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
+          fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"
+proof -
+  from assms have "a < length ks" "ks!a = 0" by auto
+  from list_nth_expand[OF `a < length ks`]
+  have eq_ks: "ks = take a ks @ [ks ! a] @ drop (Suc a) ks" .
+  show ?thesis
+  proof(cases " drop (Suc a) ks = []")
+    case False
+    then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'"
+      by (metis append_Cons append_Nil list.exhaust)
+    show ?thesis
+      apply (unfold Dec_def, intro t_hoare_local)
+      apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension)
+      apply (subst (1) eq_ks)
+      my_block
+        have "(reps u ia (take a ks @ [ks ! a] @ drop (Suc a) ks) \<and>* fam_conj {ia<..} zero) = 
+              (reps' u (ia + 1) ((take a ks @ [ks ! a]) @ drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero)"
+          apply (subst fam_conj_interv_simp)
+          by (unfold reps'_def, simp add:sep_conj_ac)
+      my_block_end
+      apply (unfold this)
+      apply (subst reps'_append)
+      apply (unfold eq_drop)
+      apply (subst (2) reps'_append)
+      apply (simp only:sep_conj_exists, intro tm.precond_exI)
+      apply (subst (2) reps'_def, simp add:reps.simps ones_simps)
+      apply (subst reps'_append, simp only:sep_conj_exists, intro tm.precond_exI)
+      apply hstep
+      (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
+      my_block
+        fix m mb
+        have "(reps' mb (m - 1) [ks ! a]) = (reps mb (m - 2) [ks!a] \<and>* zero (m - 1))"
+          by (simp add:reps'_def, smt)
+      my_block_end
+      apply (unfold this)
+      apply hstep
+      (* apply (hstep hoare_if_reps_nz_false_gen[OF `ks!a = 0`]) *)
+      apply (simp only:reps.simps(2), simp add:`ks!a = 0`)
+      apply (rule_tac p = "st j'b \<and>*
+        ps mb \<and>*
+        reps u mb ((take a ks)@[ks ! a]) \<and>* <(m - 2 = mb)> \<and>*
+        zero (m - 1) \<and>*
+        zero (u - 1) \<and>*
+        one m \<and>*
+        zero (u - 2) \<and>*
+        ones (m + 1) (m + int k') \<and>*
+        <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero"
+        in tm.pre_stren)
+      apply hsteps
+      apply (simp add:sep_conj_ac, sep_cancel+) 
+      apply (subgoal_tac "m + int k' = ma - 2", simp)
+      apply (fwd abs_ones)+
+      apply (subst (asm) sep_conj_cond)+
+      apply (erule condE, auto)
+      apply (fwd abs_reps')+
+      apply (subgoal_tac "ma = m + int k' + 2", simp)
+      apply (fwd abs_reps')+
+      my_block
+        from `a < length ks`
+        have "list_ext a ks = ks" by (auto simp:list_ext_def)
+      my_block_end
+      apply (simp add:this)
+      apply (subst eq_ks, simp add:eq_drop `ks!a = 0`)
+      apply (subst (asm) reps'_def, simp)
+      apply (subst fam_conj_interv_simp, simp add:sep_conj_ac, sep_cancel+)
+      apply (metis append_Cons assms eq_Nil_appendI eq_drop eq_ks list_update_id)
+      apply (clarsimp)
+      apply (subst (asm) sep_conj_cond)+
+      apply (erule condE, clarsimp)
+      apply (subst (asm) sep_conj_cond)+
+      apply (erule condE, clarsimp)
+      apply (simp add:sep_conj_ac, sep_cancel+)
+      apply (fwd abs_reps')+
+      by (fwd reps'_reps_abs, simp add:`ks!a = 0`)
+  next 
+    case True
+    show ?thesis
+      apply (unfold Dec_def, intro t_hoare_local)
+      apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension)
+      apply (subst (1) eq_ks, unfold True, simp)
+      my_block
+        have "(reps u ia (take a ks @ [ks ! a]) \<and>* fam_conj {ia<..} zero) = 
+              (reps' u (ia + 1) (take a ks @ [ks ! a]) \<and>* fam_conj {ia + 1<..} zero)"
+          apply (unfold reps'_def, subst fam_conj_interv_simp)
+          by (simp add:sep_conj_ac)
+      my_block_end
+      apply (subst (1) this)
+      apply (subst reps'_append)
+      apply (simp only:sep_conj_exists, intro tm.precond_exI)
+      apply (subst fam_conj_interv_simp, simp) 
+      my_block
+        have "(zero (2 + ia)) = (tm (2 + ia) Bk)"
+          by (simp add:zero_def)
+      my_block_end my_note eq_z = this
+      apply hstep
+      (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
+      my_block
+        fix m 
+        have "(reps' m (ia + 1) [ks ! a]) = (reps m ia [ks!a] \<and>* zero (ia + 1))"
+          by (simp add:reps'_def)
+      my_block_end
+      apply (unfold this, prune)
+      apply hstep
+      (* apply (hstep hoare_if_reps_nz_false_gen[OF `ks!a = 0`]) *)
+      apply (simp only:reps.simps(2), simp add:`ks!a = 0`)
+      apply (rule_tac p = "st j'b \<and>* ps m \<and>* (reps u m ((take a ks)@[ks!a]) \<and>* <(ia = m)>) 
+                              \<and>* zero (ia + 1) \<and>* zero (u - 1) \<and>*  
+                              zero (2 + ia) \<and>* zero (u - 2) \<and>* fam_conj {2 + ia<..} zero"
+        in tm.pre_stren)
+      apply hsteps
+      apply (simp add:sep_conj_ac)
+      apply ((subst (asm) sep_conj_cond)+, erule condE, simp)
+      my_block
+        from `a < length ks`  have "list_ext a ks = ks" by (metis list_ext_lt) 
+      my_block_end
+      apply (unfold this, simp)
+      apply (subst fam_conj_interv_simp)
+      apply (subst fam_conj_interv_simp, simp)
+      apply (simp only:sep_conj_ac, sep_cancel+)
+      apply (subst eq_ks, unfold True `ks!a = 0`, simp)
+      apply (metis True append_Nil2 assms eq_ks list_update_same_conv) 
+      apply (simp add:sep_conj_ac)
+      apply (subst (asm) sep_conj_cond)+
+      apply (erule condE, simp, thin_tac "ia = m")
+      apply (fwd abs_reps')+
+      apply (simp add:sep_conj_ac int_add_ac, sep_cancel+)
+      apply (unfold reps'_def, simp)
+      by (metis sep.mult_commute)
+  qed
+qed
+
+lemma tm_hoare_dec_fail01:
+  assumes "length ks \<le> a"
+  shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>  
+                       i :[ Dec a e ]: j
+         \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+          reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
+          fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"
+  apply (unfold Dec_def, intro t_hoare_local)
+  apply (subst tassemble_to.simps(2), rule tm.code_exI, rule tm.code_extension)
+  apply (rule_tac p = "st i \<and>* ps u \<and>* zero (u - 2) \<and>*
+                       zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero \<and>* 
+                       <(ia = u + int (reps_len ks) - 1)>" in tm.pre_stren)
+  apply hstep
+  (* apply (hstep hoare_locate_set_gen[OF `length ks \<le> a`]) *)
+  apply (simp only:sep_conj_exists, intro tm.precond_exI)
+  my_block
+    from assms
+    have "list_ext a ks ! a = 0" by (metis le_refl list_ext_tail) 
+  my_block_end my_note is_z = this
+  apply (subst fam_conj_interv_simp)
+  apply hstep
+  (* apply (hstep hoare_if_reps_nz_false_gen[OF is_z]) *)
+  apply (unfold is_z)
+  apply (subst (1) reps.simps)
+  apply (rule_tac p = "st j'b \<and>* ps m \<and>*  reps u m (take a (list_ext a ks) @ [0]) \<and>* zero (w + 1) \<and>*
+                         <(w = m + int 0)> \<and>* zero (u - 1) \<and>* 
+                         fam_conj {w + 1<..} zero \<and>* zero (u - 2) \<and>* 
+                         <(ia = u + int (reps_len ks) - 1)>" in tm.pre_stren)
+  my_block
+    have "(take a (list_ext a ks)) @ [0] \<noteq> []" by simp
+  my_block_end
+  apply hsteps
+  (* apply (hsteps hoare_left_until_double_zero_gen[OF this]) *)
+  apply (simp add:sep_conj_ac)
+  apply prune
+  apply (subst (asm) sep_conj_cond)+
+  apply (elim condE, simp add:sep_conj_ac, prune)
+  my_block
+    fix m w ha
+    assume h1: "w = m \<and> ia = u + int (reps_len ks) - 1"
+      and  h: "(ps u \<and>*
+              st e \<and>*
+              zero (u - 1) \<and>*
+              zero (m + 1) \<and>*
+              fam_conj {m + 1<..} zero \<and>* zero (u - 2) \<and>* reps u m (take a (list_ext a ks) @ [0])) ha"
+    from h1 have eq_w: "w = m" and eq_ia: "ia = u + int (reps_len ks) - 1" by auto
+    from h obtain s' where "reps u m (take a (list_ext a ks) @ [0]) s'"
+      by (auto dest!:sep_conjD)
+    from reps_len_correct[OF this] 
+    have eq_m: "m = u + int (reps_len (take a (list_ext a ks) @ [0])) - 1" .
+    from h[unfolded eq_m, simplified]
+    have "(ps u \<and>*
+                st e \<and>*
+                zero (u - 1) \<and>*
+                zero (u - 2) \<and>*
+                fam_conj {u + (-1 + int (reps_len (list_ext a ks)))<..} zero \<and>*
+                reps u (u + (-1 + int (reps_len (list_ext a ks)))) (list_ext a ks[a := 0])) ha"
+      apply (sep_cancel+)
+      apply (subst fam_conj_interv_simp, simp)
+      my_block
+        from `length ks \<le> a` have "list_ext a ks[a := 0] = list_ext a ks"
+          by (metis is_z list_update_id)
+      my_block_end
+      apply (unfold this)
+      my_block
+        from `length ks \<le> a` is_z 
+        have "take a (list_ext a ks) @ [0] = list_ext a ks"
+          by (metis list_ext_tail_expand)
+      my_block_end
+      apply (unfold this)
+      by (simp add:sep_conj_ac, sep_cancel+, smt)
+  my_block_end
+  apply (rule this, assumption)
+  apply (sep_cancel+)[1]
+  apply (subst (asm) sep_conj_cond)+
+  apply (erule condE, prune, simp)
+  my_block
+    fix s m
+    assume "(reps' u (m - 1) (take a (list_ext a ks)) \<and>* ones m m \<and>* zero (m + 1)) s"
+    hence "reps' u (m + 1) (take a (list_ext a ks) @ [0]) s"
+      apply (unfold reps'_append)
+      apply (rule_tac x = m in EXS_intro)
+      by (subst (2) reps'_def, simp add:reps.simps)
+  my_block_end
+  apply (rotate_tac 1, fwd this)
+  apply (subst (asm) reps'_def, simp add:sep_conj_ac)
+  my_block
+    fix s
+    assume h: "(st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* 
+                   reps u ia ks \<and>* fam_conj {ia<..} zero) s"
+    then obtain s' where "reps u ia ks s'" by (auto dest!:sep_conjD)
+    from reps_len_correct[OF this] have eq_ia: "ia = u + int (reps_len ks) - 1" .
+    from h
+    have "(st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>*
+           fam_conj {ia<..} zero \<and>* <(ia = u + int (reps_len ks) - 1)>) s"
+      by (unfold eq_ia, simp)
+  my_block_end
+  by (rule this, assumption)
+
+lemma t_hoare_label1: 
+      "(\<And>l. l = i \<Longrightarrow> \<lbrace>st l \<and>* p\<rbrace>  l :[ c l ]: j \<lbrace>st k \<and>* q\<rbrace>) \<Longrightarrow>
+             \<lbrace>st l \<and>* p \<rbrace> 
+               i:[(TLabel l; c l)]:j
+             \<lbrace>st k \<and>* q\<rbrace>"
+by (unfold tassemble_to.simps, intro tm.code_exI tm.code_condI, clarify, auto)
+
+lemma tm_hoare_dec_fail1:
+  assumes "a < length ks \<and> ks ! a = 0 \<or> length ks \<le> a"
+  shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace>  
+                      i :[ Dec a e ]: j
+         \<lbrace>st e \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+          reps u (ia + int (reps_len (list_ext a ks)) - int (reps_len ks)) (list_ext a ks[a := 0]) \<and>*
+         fam_conj {ia + int (reps_len (list_ext a ks)) - int (reps_len ks) <..} zero\<rbrace>"
+  using assms
+proof
+  assume "a < length ks \<and> ks ! a = 0"
+  thus ?thesis
+    by (rule tm_hoare_dec_fail00)
+next
+  assume "length ks \<le> a"
+  thus ?thesis
+    by (rule tm_hoare_dec_fail01)
+qed
+
+lemma shift_left_nil_gen[step]:
+  assumes "u = v"
+  shows "\<lbrace>st i \<and>* ps u \<and>* zero v\<rbrace> 
+              i :[shift_left]:j
+         \<lbrace>st j \<and>* ps u \<and>* zero v\<rbrace>"
+ apply(unfold assms shift_left_def, intro t_hoare_local t_hoare_label, clarify, 
+                 rule t_hoare_label_last, simp, clarify, prune, simp)
+ by hstep
+
+lemma tm_hoare_dec_suc1: 
+  assumes "a < length ks \<and> ks ! a = Suc v"
+  shows "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u ia ks \<and>* fam_conj {ia<..} zero\<rbrace> 
+                    i :[ Dec a e ]: j
+         \<lbrace>st j \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+             reps u (ia - 1) (list_ext a ks[a := v]) \<and>*
+             fam_conj {ia - 1<..} zero\<rbrace>"
+proof -
+  from assms have "a < length ks" " ks ! a = Suc v" by auto
+  from list_nth_expand[OF `a < length ks`]
+  have eq_ks: "ks = take a ks @ [ks ! a] @ drop (Suc a) ks" .
+  show ?thesis
+  proof(cases " drop (Suc a) ks = []")
+    case False
+    then obtain k' ks' where eq_drop: "drop (Suc a) ks = [k']@ks'"
+      by (metis append_Cons append_Nil list.exhaust)
+    show ?thesis
+      apply (unfold Dec_def, intro t_hoare_local)
+      apply (subst tassemble_to.simps(2), rule tm.code_exI)
+      apply (subst (1) eq_ks)
+      my_block
+        have "(reps u ia (take a ks @ [ks ! a] @ drop (Suc a) ks) \<and>* fam_conj {ia<..} zero) = 
+              (reps' u (ia + 1) ((take a ks @ [ks ! a]) @ drop (Suc a) ks) \<and>* fam_conj {ia + 1<..} zero)"
+          apply (subst fam_conj_interv_simp)
+          by (unfold reps'_def, simp add:sep_conj_ac)
+      my_block_end
+      apply (unfold this)
+      apply (subst reps'_append)
+      apply (unfold eq_drop)
+      apply (subst (2) reps'_append)
+      apply (simp only:sep_conj_exists, intro tm.precond_exI)
+      apply (subst (2) reps'_def, simp add:reps.simps ones_simps)
+      apply (subst reps'_append, simp only:sep_conj_exists, intro tm.precond_exI)
+      apply (rule_tac q =
+       "st l \<and>*
+        ps mb \<and>*
+        zero (u - 1) \<and>*
+        reps' u (mb - 1) (take a ks) \<and>*
+        reps' mb (m - 1) [ks ! a] \<and>*
+        one m \<and>*
+        zero (u - 2) \<and>*
+        ones (m + 1) (m + int k') \<and>*
+        <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero"
+      in tm.sequencing)
+      apply (rule tm.code_extension)
+      apply hstep
+      (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
+      apply (subst (2) reps'_def, simp)
+      my_block
+        fix i j l m mb
+        from `ks!a = (Suc v)` have "ks!a \<noteq> 0" by simp
+        from hoare_if_reps_nz_true[OF this, where u = mb and v = "m - 2"]
+        have "\<lbrace>st i \<and>* ps mb \<and>* reps mb (-2 + m) [ks ! a]\<rbrace>  
+                        i :[ if_reps_nz l ]: j
+              \<lbrace>st l \<and>* ps mb \<and>* reps mb (-2 + m) [ks ! a]\<rbrace>"
+          by smt
+      my_block_end
+      apply (hgoto this)
+      apply (simp add:sep_conj_ac, sep_cancel+)
+      apply (subst reps'_def, simp add:sep_conj_ac)
+      apply (rule tm.code_extension1)
+      apply (rule t_hoare_label1, simp, prune)
+      apply (subst (2) reps'_def, simp add:reps.simps)
+      apply (rule_tac p = "st j' \<and>* ps mb \<and>* zero (u - 1) \<and>* reps' u (mb - 1) (take a ks) \<and>*
+        ((ones mb (mb + int (ks ! a)) \<and>* <(-2 + m = mb + int (ks ! a))>) \<and>* zero (mb + int (ks ! a) + 1)) \<and>*
+          one (mb + int (ks ! a) + 2) \<and>* zero (u - 2) \<and>* 
+          ones (mb + int (ks ! a) + 3) (mb + int (ks ! a) + int k' + 2) \<and>*
+        <(-2 + ma = m + int k')> \<and>* zero (ma - 1) \<and>* reps' ma (ia + 1) ks' \<and>* fam_conj {ia + 1<..} zero
+        " in tm.pre_stren)
+      apply hsteps 
+      (* apply (simp add:sep_conj_ac) *)
+      apply (unfold `ks!a = Suc v`)
+      my_block
+        fix mb
+        have "(ones mb (mb + int (Suc v))) = (ones mb (mb + int v) \<and>* one (mb + int (Suc v)))"
+          by (simp add:ones_rev)
+      my_block_end
+      apply (unfold this, prune)
+      apply hsteps
+      apply (rule_tac p = "st j'a \<and>* 
+               ps (mb + int (Suc v) + 2) \<and>* zero (mb + int (Suc v) + 1) \<and>*
+               reps (mb + int (Suc v) + 2) ia (drop (Suc a) ks) \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>*
+        zero (mb + int (Suc v)) \<and>*
+        ones mb (mb + int v) \<and>*
+        zero (u - 1) \<and>*
+        reps' u (mb - 1) (take a ks) \<and>*
+        zero (u - 2) \<and>* fam_conj {ia + 2<..} zero
+        " in tm.pre_stren) 
+      apply hsteps
+      (* apply (hsteps hoare_shift_left_cons_gen[OF False]) *)
+      apply (rule_tac p = "st j'a \<and>* ps (ia - 1) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* 
+                           reps u (ia - 1) (take a ks @ [v] @ drop (Suc a) ks) \<and>*
+                           zero ia \<and>* zero (ia + 1) \<and>* zero (ia + 2) \<and>*
+                           fam_conj {ia + 2<..} zero
+        " in tm.pre_stren)
+      apply hsteps
+      apply (simp add:sep_conj_ac)
+      apply (subst fam_conj_interv_simp)
+      apply (subst fam_conj_interv_simp)
+      apply (subst fam_conj_interv_simp)
+      apply (simp add:sep_conj_ac)
+      apply (sep_cancel+)
+      my_block
+        have "take a ks @ v # drop (Suc a) ks = list_ext a ks[a := v]"
+        proof -
+          from `a < length ks` have "list_ext a ks = ks" by (metis list_ext_lt)
+          hence "list_ext a ks[a:=v] = ks[a:=v]" by simp
+          moreover from `a < length ks` have "ks[a:=v] = take a ks @ v # drop (Suc a) ks"
+            by (metis upd_conv_take_nth_drop)
+          ultimately show ?thesis by metis
+        qed
+      my_block_end
+      apply (unfold this, sep_cancel+, smt)
+      apply (simp add:sep_conj_ac)
+      apply (fwd abs_reps')+
+      apply (simp add:sep_conj_ac int_add_ac)
+      apply (sep_cancel+)
+      apply (subst (asm) reps'_def, simp add:sep_conj_ac)
+      apply (subst (asm) sep_conj_cond)+
+      apply (erule condE, clarsimp)
+      apply (simp add:sep_conj_ac, sep_cancel+)
+      apply (fwd abs_ones)+
+      apply (fwd abs_reps')+
+      apply (subst (asm) reps'_def, simp)
+      apply (subst (asm) fam_conj_interv_simp)
+      apply (simp add:sep_conj_ac int_add_ac eq_drop reps'_def)
+      apply (subst (asm) sep_conj_cond)+
+      apply (erule condE, clarsimp)
+      by (simp add:sep_conj_ac int_add_ac)
+  next
+    case True
+    show ?thesis
+      apply (unfold Dec_def, intro t_hoare_local)
+      apply (subst tassemble_to.simps(2), rule tm.code_exI)
+      apply (subst (1) eq_ks, simp add:True)
+      my_block
+        have "(reps u ia (take a ks @ [ks ! a]) \<and>* fam_conj {ia<..} zero) = 
+              (reps' u (ia + 1) (take a ks @ [ks ! a]) \<and>* fam_conj {ia + 1<..} zero)"
+          apply (subst fam_conj_interv_simp)
+          by (unfold reps'_def, simp add:sep_conj_ac)
+      my_block_end
+      apply (unfold this)
+      apply (subst reps'_append)
+      apply (simp only:sep_conj_exists, intro tm.precond_exI)
+      apply (rule_tac q = "st l \<and>* ps m \<and>* zero (u - 1) \<and>* reps' u (m - 1) (take a ks) \<and>*
+            reps' m (ia + 1) [ks ! a] \<and>* zero (2 + ia) \<and>* zero (u - 2) \<and>* fam_conj {2 + ia<..} zero"
+             in tm.sequencing)
+      apply (rule tm.code_extension)
+      apply (subst fam_conj_interv_simp, simp)
+      apply hsteps
+      (* apply (hstep hoare_locate_skip_gen[OF `a < length ks`]) *)
+      my_block
+        fix m
+        have "(reps' m (ia + 1) [ks ! a]) = 
+              (reps m ia [ks!a] \<and>* zero (ia + 1))"
+          by (unfold reps'_def, simp)
+      my_block_end
+      apply (unfold this)
+      my_block
+        fix i j l m
+        from `ks!a = (Suc v)` have "ks!a \<noteq> 0" by simp
+      my_block_end
+      apply (hgoto hoare_if_reps_nz_true_gen)
+      apply (rule tm.code_extension1)
+      apply (rule t_hoare_label1, simp)
+      apply (thin_tac "la = j'", prune)
+      apply (subst (1) reps.simps)
+      apply (subst sep_conj_cond)+
+      apply (rule tm.pre_condI, simp)
+      apply hsteps
+      apply (unfold `ks!a = Suc v`)
+      my_block
+        fix m
+        have "(ones m (m + int (Suc v))) = (ones m (m + int v) \<and>* one (m + int (Suc v)))"
+          by (simp add:ones_rev)
+      my_block_end
+      apply (unfold this)
+      apply hsteps 
+      apply (rule_tac p = "st j'a \<and>* ps (m + int v) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* 
+                           reps u (m + int v) (take a ks @ [v]) \<and>* zero (m + (1 + int v)) \<and>*
+                           zero (2 + (m + int v)) \<and>* zero (3 + (m + int v)) \<and>*
+                           fam_conj {3 + (m + int v)<..} zero
+        " in tm.pre_stren)
+      apply hsteps
+      apply (simp add:sep_conj_ac, sep_cancel+)
+      my_block
+        have "take a ks @ [v] = list_ext a ks[a := v]"
+        proof -
+          from True `a < length ks` have "ks = take a ks @ [ks!a]"
+            by (metis append_Nil2 eq_ks)
+          hence "ks[a:=v] = take a ks @ [v]"
+            by (metis True `a < length ks` upd_conv_take_nth_drop)
+          moreover from `a < length ks` have "list_ext a ks = ks"
+            by (metis list_ext_lt)
+          ultimately show ?thesis by simp
+        qed
+      my_block_end my_note eq_l = this
+      apply (unfold this)
+      apply (subst fam_conj_interv_simp)
+      apply (subst fam_conj_interv_simp)
+      apply (subst fam_conj_interv_simp)
+      apply (simp add:sep_conj_ac, sep_cancel, smt)
+      apply (simp add:sep_conj_ac int_add_ac)+
+      apply (sep_cancel+)
+      apply (fwd abs_reps')+
+      apply (fwd reps'_reps_abs)
+      by (simp add:eq_l)
+  qed
+qed
+
+definition "cfill_until_one = (TL start exit.
+                                TLabel start;
+                                  if_one exit;
+                                  write_one;
+                                  move_left;
+                                  jmp start;
+                                TLabel exit
+                               )"
+
+lemma hoare_cfill_until_one:
+   "\<lbrace>st i \<and>* ps v \<and>* one (u - 1) \<and>* zeros u v\<rbrace> 
+              i :[ cfill_until_one ]: j
+    \<lbrace>st j \<and>* ps (u - 1) \<and>* ones (u - 1) v \<rbrace>"
+proof(induct u v rule:zeros_rev_induct)
+  case (Base x y)
+  thus ?case
+    apply (subst sep_conj_cond)+
+    apply (rule tm.pre_condI, simp add:ones_simps)
+    apply (unfold cfill_until_one_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
+    by hstep
+next
+  case (Step x y)
+  show ?case
+    apply (rule_tac q = "st i \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1) \<and>* one y" in tm.sequencing)
+    apply (subst cfill_until_one_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
+    apply hsteps
+    my_block
+      fix i j l
+      have "\<lbrace>st i \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1)\<rbrace>  
+              i :[ jmp l ]: j
+            \<lbrace>st l \<and>* ps (y - 1) \<and>* one (x - 1) \<and>* zeros x (y - 1)\<rbrace>"
+        apply (case_tac "(y - 1) < x", simp add:zeros_simps)
+        apply (subst sep_conj_cond)+
+        apply (rule tm.pre_condI, simp)
+        apply hstep
+        apply (drule_tac zeros_rev, simp)
+        by hstep
+    my_block_end
+    apply (hstep this)
+    (* The next half *)
+    apply (hstep Step(2), simp add:sep_conj_ac, sep_cancel+)
+    by (insert Step(1), simp add:ones_rev sep_conj_ac)
+qed
+
+definition "cmove = (TL start exit.
+                       TLabel start;
+                         left_until_zero;
+                         left_until_one;
+                         move_left;
+                         if_zero exit;
+                         move_right;
+                         write_zero;
+                         right_until_one;
+                         right_until_zero;
+                         write_one;
+                         jmp start;
+                     TLabel exit
+                    )"
+
+declare zeros.simps [simp del] zeros_simps[simp del]
+
+lemma hoare_cmove:
+  assumes "w \<le> k"
+  shows "\<lbrace>st i \<and>* ps (v + 2 + int w) \<and>* zero (u - 1) \<and>* 
+              reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1) \<and>*
+              one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<and>* zeros (v + 3 + int w)  (v + int(reps_len [k]) + 1)\<rbrace>
+                                 i :[cmove]: j
+          \<lbrace>st j \<and>* ps (u - 1) \<and>* zero (u - 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>*
+                                                                  reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>"
+  using assms
+proof(induct "k - w" arbitrary: w)
+  case (0 w)
+  hence "w = k" by auto
+  show ?case
+    apply (simp add: `w = k` del:zeros.simps zeros_simps)
+    apply (unfold cmove_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
+    apply (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def del:zeros_simps zeros.simps)
+    apply (rule_tac p = "st i \<and>* ps (v + 2 + int k) \<and>* zero (u - 1) \<and>*
+                         reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>*
+                         ones (v + 2) (v + 2 + int k) \<and>* zeros (v + 3 + int k) (2 + (v + int k)) \<and>*
+                         <(u = v - int k)>" 
+      in tm.pre_stren)
+    my_block
+      fix i j
+      have "\<lbrace>st i \<and>* ps (v + 2 + int k) \<and>* zeros (u + 1) (v + 1) \<and>* ones (v + 2) (v + 2 + int k) 
+                                                             \<and>* <(u = v - int k)>\<rbrace>
+                  i :[ left_until_zero ]: j
+            \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros (u + 1) (v + 1) \<and>* ones (v + 2) (v + 2 + int k)
+                                                             \<and>* <(u = v - int k)>\<rbrace>"
+        apply (subst sep_conj_cond)+
+        apply (rule tm.pre_condI, simp)
+        my_block
+          have "(zeros (v - int k + 1) (v + 1)) = (zeros (v - int k + 1) v \<and>* zero (v + 1))"
+            by (simp only:zeros_rev, smt)
+        my_block_end
+        apply (unfold this)
+        by hsteps
+    my_block_end
+    apply (hstep this)
+    my_block
+      fix i j 
+      have "\<lbrace>st i \<and>* ps (v + 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1)\<rbrace> 
+                i :[left_until_one]:j 
+            \<lbrace>st j \<and>* ps u \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1)\<rbrace>"
+        apply (simp add:reps.simps ones_simps)
+        by hsteps
+    my_block_end
+    apply (hsteps this)
+    apply ((subst (asm) sep_conj_cond)+, erule condE, clarsimp)
+    apply (fwd abs_reps')+
+    apply (simp only:sep_conj_ac int_add_ac, sep_cancel+)
+    apply (simp add:int_add_ac sep_conj_ac zeros_simps)
+    apply (simp add:sep_conj_ac int_add_ac, sep_cancel+)
+    apply (fwd reps_lenE)
+    apply (subst (asm) sep_conj_cond)+
+    apply (erule condE, clarsimp)
+    apply (subgoal_tac "v  = u + int k + int (reps_len [0]) - 1", clarsimp)
+    apply (simp add:reps_len_sg)
+    apply (fwd abs_ones)+
+    apply (fwd abs_reps')+
+    apply (simp add:sep_conj_ac int_add_ac)
+    apply (sep_cancel+)
+    apply (simp add:reps.simps, smt)
+    by (clarsimp)
+next
+  case (Suc k' w)
+  from `Suc k' = k - w` `w \<le> k` 
+  have h: "k' = k - (Suc w)" "Suc w \<le> k" by auto
+  show ?case
+    apply (rule tm.sequencing[OF _ Suc(1)[OF h(1, 2)]])
+    apply (unfold cmove_def, intro t_hoare_local t_hoare_label, rule t_hoare_label_last, simp+)
+    apply (simp add:reps_len_def reps_sep_len_def reps_ctnt_len_def del:zeros_simps zeros.simps)
+    my_block
+      fix i j
+      have "\<lbrace>st i \<and>* ps (v + 2 + int w) \<and>* zeros (v - int w + 1) (v + 1) \<and>*
+                               one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<rbrace> 
+                    i :[left_until_zero]: j
+            \<lbrace>st j \<and>* ps (v + 1) \<and>* zeros (v - int w + 1) (v + 1) \<and>*
+                               one (v + 2) \<and>* ones (v + 3) (v + 2 + int w) \<rbrace>"
+        my_block
+          have "(one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)) = 
+                 ones (v + 2) (v + 2 + int w)"
+            by (simp only:ones_simps, smt)
+        my_block_end
+        apply (unfold this)
+        my_block
+          have "(zeros (v - int w + 1) (v + 1)) = (zeros (v - int w + 1) v \<and>*  zero (v + 1))"
+            by (simp only:zeros_rev, simp)
+        my_block_end
+        apply (unfold this)
+        by hsteps
+    my_block_end
+    apply (hstep this)
+    my_block
+      fix i j
+      have "\<lbrace>st i \<and>* ps (v + 1) \<and>* reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1)\<rbrace> 
+                 i :[left_until_one]: j 
+            \<lbrace>st j \<and>* ps (v - int w) \<and>* reps u (v - int w) [k - w] \<and>* zeros (v - int w + 1) (v + 1)\<rbrace>"
+        apply (simp add:reps.simps ones_rev)
+        apply (subst sep_conj_cond)+
+        apply (rule tm.pre_condI, clarsimp)
+        apply (subgoal_tac "u + int (k - w) = v - int w", simp)
+        defer
+        apply simp
+        by hsteps
+    my_block_end
+    apply (hstep this)
+    my_block
+      have "(reps u (v - int w) [k - w]) = (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))"
+        apply (subst (1 2) reps.simps)
+        apply (subst sep_conj_cond)+
+        my_block
+          have "((v - int w = u + int (k - w))) =
+                (v - (1 + int w) = u + int (k - Suc w))"
+            apply auto
+            apply (smt Suc.prems h(2))
+            by (smt Suc.prems h(2))
+        my_block_end
+        apply (simp add:this)
+        my_block
+          fix b p q
+          assume "(b \<Longrightarrow> (p::tassert) = q)"
+          have "(<b> \<and>* p) = (<b> \<and>* q)"
+            by (metis `b \<Longrightarrow> p = q` cond_eqI)
+        my_block_end
+        apply (rule this)
+        my_block
+          assume "v - (1 + int w) = u + int (k - Suc w)"
+          hence "v = 1 + int w +  u + int (k - Suc w)" by auto
+        my_block_end
+        apply (simp add:this)
+        my_block
+          have "\<not> (u + int (k - w)) < u" by auto
+        my_block_end
+        apply (unfold ones_rev[OF this])
+        my_block
+          from Suc (2, 3) have "(u + int (k - w) - 1) = (u + int (k - Suc w))"
+            by auto
+        my_block_end
+        apply (unfold this)
+        my_block
+          from Suc (2, 3) have "(u + int (k - w)) =  (1 + (u + int (k - Suc w)))"
+            by auto
+        my_block_end
+        by (unfold this, simp)
+    my_block_end
+    apply (unfold this)
+    my_block
+      fix i j
+      have "\<lbrace>st i \<and>* ps (v - int w) \<and>*
+                        (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))\<rbrace> 
+                 i :[ move_left]: j
+            \<lbrace>st j \<and>* ps (v - (1 + int w)) \<and>*
+                        (reps u (v - (1 + int w)) [k - Suc w] \<and>* one (v - int w))\<rbrace>"
+        apply (simp add:reps.simps ones_rev)
+        apply (subst sep_conj_cond)+
+        apply (rule tm.pre_condI, clarsimp)
+        apply (subgoal_tac " u + int (k - Suc w) = v - (1 + int w)", simp)
+        defer
+        apply simp
+        apply hsteps
+        by (simp add:sep_conj_ac, sep_cancel+, smt)
+    my_block_end
+    apply (hstep this)
+    my_block
+      fix i' j'
+      have "\<lbrace>st i' \<and>* ps (v - (1 + int w)) \<and>* reps u (v - (1 + int w)) [k - Suc w]\<rbrace> 
+               i' :[ if_zero j ]: j'
+            \<lbrace>st j' \<and>* ps (v - (1 + int w)) \<and>* reps u (v - (1 + int w)) [k - Suc w]\<rbrace>"
+        apply (simp add:reps.simps ones_rev)
+        apply (subst sep_conj_cond)+
+        apply (rule tm.pre_condI, clarsimp)
+        apply (subgoal_tac " u + int (k - Suc w) = v - (1 + int w)", simp)
+        defer
+        apply simp
+        by hstep
+    my_block_end
+    apply (hstep this)
+    my_block
+      fix i j
+      have "\<lbrace>st i \<and>* ps (v - (1 + int w)) \<and>*  reps u (v - (1 + int w)) [k - Suc w]\<rbrace> 
+                i :[ move_right ]: j 
+            \<lbrace>st j \<and>* ps (v - int w) \<and>*  reps u (v - (1 + int w)) [k - Suc w] \<rbrace>"
+        apply (simp add:reps.simps ones_rev)
+        apply (subst sep_conj_cond)+
+        apply (rule tm.pre_condI, clarsimp)
+        apply (subgoal_tac " u + int (k - Suc w) =  v - (1 + int w)", simp)
+        defer
+        apply simp
+        by hstep
+    my_block_end
+    apply (hsteps this)
+    my_block
+      fix i j
+      have "\<lbrace>st i \<and>* ps (v - int w) \<and>*  one (v + 2) \<and>* 
+                         zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)\<rbrace> 
+                 i :[right_until_one]: j
+            \<lbrace>st j \<and>* ps (v + 2) \<and>*  one (v + 2) \<and>*  zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)\<rbrace>"
+        my_block
+          have "(zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)) = 
+                    (zeros (v - int w) (v + 1))"
+            by (simp add:zeros_simps)
+        my_block_end
+        apply (unfold this)
+        by hsteps
+    my_block_end
+    apply (hstep this)
+    my_block
+      from Suc(2, 3) have "w < k" by auto
+      hence "(zeros (v + 3 + int w) (2 + (v + int k))) = 
+                  (zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)))"
+        by (simp add:zeros_simps)
+    my_block_end
+    apply (unfold this)
+    my_block
+      fix i j
+      have "\<lbrace>st i \<and>* ps (v + 2) \<and>* zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)) \<and>* 
+                                                        one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)\<rbrace>
+                i :[right_until_zero]: j
+            \<lbrace>st j \<and>* ps (v + 3 + int w) \<and>* zero (v + 3 + int w) \<and>* zeros (4 + (v + int w)) (2 + (v + int k)) \<and>* 
+                                                        one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)\<rbrace>"
+        my_block
+          have "(one (v + 2) \<and>* ones (v + 3) (v + 2 + int w)) =
+                (ones (v + 2) (v + 2 + int w))"
+            by (simp add:ones_simps, smt)
+        my_block_end
+        apply (unfold this)
+        by hsteps
+    my_block_end
+    apply (hsteps this, simp only:sep_conj_ac)
+    apply (sep_cancel+, simp add:sep_conj_ac)
+    my_block
+      fix s
+      assume "(zero (v - int w) \<and>* zeros (v - int w + 1) (v + 1)) s"
+      hence "zeros (v - int w) (v + 1) s"
+        by (simp add:zeros_simps)
+    my_block_end
+    apply (fwd this)
+    my_block
+      fix s
+      assume "(one (v + 3 + int w) \<and>* ones (v + 3) (v + 2 + int w)) s"
+      hence "ones (v + 3) (3 + (v + int w)) s"
+        by (simp add:ones_rev sep_conj_ac, smt)
+    my_block_end
+    apply (fwd this)
+    by (simp add:sep_conj_ac, smt)
+qed
+
+definition "cinit = (right_until_zero; move_right; write_one)"
+
+definition "copy = (cinit; cmove; move_right; move_right; right_until_one; move_left; move_left; cfill_until_one)"
+
+lemma hoare_copy:
+  shows
+   "\<lbrace>st i \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
+                                                     zeros (v + 2) (v + int(reps_len [k]) + 1)\<rbrace>
+                                  i :[copy]: j
+    \<lbrace>st j \<and>* ps u \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>* 
+                                                      reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>"
+  apply (unfold copy_def)
+  my_block
+    fix i j
+    have 
+       "\<lbrace>st i \<and>* ps u \<and>* reps u v [k] \<and>* zero (v + 1) \<and>* zeros (v + 2) (v + int(reps_len [k]) + 1)\<rbrace>
+                      i :[cinit]: j
+        \<lbrace>st j \<and>* ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
+                                           one (v + 2) \<and>* zeros (v + 3) (v + int(reps_len [k]) + 1)\<rbrace>"
+      apply (unfold cinit_def)
+      apply (simp add:reps.simps)
+      apply (subst sep_conj_cond)+
+      apply (rule tm.pre_condI, simp)
+      apply hsteps
+      apply (simp add:sep_conj_ac)
+      my_block
+        have "(zeros (u + int k + 2) (u + int k + int (reps_len [k]) + 1)) = 
+              (zero (u + int k + 2) \<and>*  zeros (u + int k + 3) (u + int k + int (reps_len [k]) + 1))"
+          by (smt reps_len_sg zeros_step_simp)
+      my_block_end
+      apply (unfold this)
+      apply hstep
+      by (simp add:sep_conj_ac, sep_cancel+, smt)
+  my_block_end
+  apply (hstep this)
+  apply (rule_tac p = "st j' \<and>* ps (v + 2) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
+          one (v + 2) \<and>* zeros (v + 3) (v + int (reps_len [k]) + 1) \<and>* zero (u - 2) \<and>* zero (u - 1) \<and>*
+            <(v = u + int (reps_len [k]) - 1)>
+    " in tm.pre_stren)
+  my_block
+    fix i j
+    from hoare_cmove[where w = 0 and k = k and i = i and j = j and v = v and u = u]
+    have "\<lbrace>st i \<and>* ps (v + 2) \<and>* zero (u - 1) \<and>* reps u v [k] \<and>* zero (v + 1) \<and>*
+                                            one (v + 2) \<and>* zeros (v + 3) (v + int(reps_len [k]) + 1)\<rbrace>
+                      i :[cmove]: j
+          \<lbrace>st j \<and>* ps (u - 1) \<and>* zero (u - 1) \<and>* reps u u [0] \<and>* zeros (u + 1) (v + 1) \<and>*
+                                                       reps (v + 2) (v + int (reps_len [k]) + 1) [k]\<rbrace>"
+      by (auto simp:ones_simps zeros_simps)
+  my_block_end
+  apply (hstep this)
+  apply (hstep, simp)
+  my_block
+    have "reps u u [0] = one u" by (simp add:reps.simps ones_simps)
+  my_block_end my_note eq_repsz = this
+  apply (unfold this)
+  apply (hstep)
+  apply (subst reps.simps, simp add: ones_simps)
+  apply hsteps
+  apply (subst sep_conj_cond)+
+  apply (rule tm.pre_condI, simp del:zeros.simps zeros_simps)
+  apply (thin_tac "int (reps_len [k]) = 1 + int k \<and> v = u + int (reps_len [k]) - 1")
+  my_block
+    have "(zeros (u + 1) (u + int k + 1)) = (zeros (u + 1) (u + int k) \<and>* zero (u + int k + 1))"
+      by (simp only:zeros_rev, smt)
+  my_block_end
+  apply (unfold this)
+  apply (hstep, simp)
+  my_block
+    fix i j
+    from hoare_cfill_until_one[where v = "u + int k" and u = "u + 1"]
+    have "\<lbrace>st i \<and>* ps (u + int k) \<and>* one u \<and>* zeros (u + 1) (u + int k)\<rbrace> 
+              i :[ cfill_until_one ]: j
+          \<lbrace>st j \<and>* ps u \<and>* ones u (u + int k) \<rbrace>"
+      by simp
+  my_block_end
+  apply (hstep this, simp add:sep_conj_ac reps.simps ones_simps)
+  apply (simp add:sep_conj_ac reps.simps ones_simps)
+  apply (subst sep_conj_cond)+
+  apply (subst (asm) sep_conj_cond)+
+  apply (rule condI)
+  apply (erule condE, simp)
+  apply (simp add: reps_len_def reps_sep_len_def reps_ctnt_len_def)
+  apply (sep_cancel+)
+  by (erule condE, simp)
+
+end 
--- a/thys/UF_Rec.thy	Fri Apr 04 13:15:07 2014 +0100
+++ b/thys/UF_Rec.thy	Tue Apr 29 15:26:48 2014 +0100
@@ -1,5 +1,5 @@
 theory UF_Rec
-imports Recs Hoare_tm
+imports Recs Hoare_tm2
 begin
 
 section {* Coding of Turing Machines and Tapes*}
@@ -12,17 +12,40 @@
 | "actnum L  = 2"
 | "actnum R  = 3"
 
-
 fun cellnum :: "Block \<Rightarrow> nat" where
   "cellnum Bk = 0"
 | "cellnum Oc = 1"
 
 
-(* NEED TO CODE TAPES *)
+(* coding programs *)
+
+thm finfun_comp_def
+term finfun_rec
+
+definition code_finfun :: "(nat \<Rightarrow>f tm_inst option) \<Rightarrow> (nat \<times> tm_inst option) list"
+  where
+  "code_finfun f = ([(x, f $ x). x \<leftarrow> finfun_to_list f])"
+
+fun lookup where
+  "lookup [] c = None"
+| "lookup ((a, b)#xs) c = (if a = c then b else lookup xs c)"
+
+lemma
+  "f $ n = lookup (code_finfun f) n"
+apply(induct f rule: finfun_weak_induct)
+apply(simp add: code_finfun_def)
+apply(simp add: finfun_to_list_const)
+thm finfun_rec_const
+apply(finfun_rec_const)
+apply(simp add: finfun_rec_def)
+apply(auto)
+thm finfun_rec_unique
+apply(rule finfun_rec_unique)
+
 
 text {* Coding tapes *}
 
-fun code_tp :: "cell list \<Rightarrow> nat list"
+fun code_tp :: "() \<Rightarrow> nat list"
   where
   "code_tp [] = []"
 | "code_tp (c # tp) = (cellnum c) # code_tp tp"