--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/Sep_Heap_Instance.thy Sat Sep 13 10:07:14 2014 +0800
@@ -0,0 +1,84 @@
+(* Author: Gerwin Klein, 2012
+ Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
+ Rafal Kolanski <rafal.kolanski at nicta.com.au>
+*)
+
+header "Standard Heaps as an Instance of Separation Algebra"
+
+theory Sep_Heap_Instance
+imports Separation_Algebra
+begin
+
+text {*
+ Example instantiation of a the separation algebra to a map, i.e.\ a
+ function from any type to @{typ "'a option"}.
+*}
+
+class opt =
+ fixes none :: 'a
+begin
+ definition "domain f \<equiv> {x. f x \<noteq> none}"
+end
+
+instantiation option :: (type) opt
+begin
+ definition none_def [simp]: "none \<equiv> None"
+ instance ..
+end
+
+instantiation "fun" :: (type, opt) zero
+begin
+ definition zero_fun_def: "0 \<equiv> \<lambda>s. none"
+ instance ..
+end
+
+instantiation "fun" :: (type, opt) sep_algebra
+begin
+
+definition
+ plus_fun_def: "m1 + m2 \<equiv> \<lambda>x. if m2 x = none then m1 x else m2 x"
+
+definition
+ sep_disj_fun_def: "sep_disj m1 m2 \<equiv> domain m1 \<inter> domain m2 = {}"
+
+instance
+ apply default
+ apply (simp add: sep_disj_fun_def domain_def zero_fun_def)
+ apply (fastforce simp: sep_disj_fun_def)
+ apply (simp add: plus_fun_def zero_fun_def)
+ apply (simp add: plus_fun_def sep_disj_fun_def domain_def)
+ apply (rule ext)
+ apply fastforce
+ apply (rule ext)
+ apply (simp add: plus_fun_def)
+ apply (simp add: sep_disj_fun_def domain_def plus_fun_def)
+ apply fastforce
+ apply (simp add: sep_disj_fun_def domain_def plus_fun_def)
+ apply fastforce
+ done
+
+end
+
+text {*
+ For the actual option type @{const domain} and @{text "+"} are
+ just @{const dom} and @{text "++"}:
+*}
+
+lemma domain_conv: "domain = dom"
+ by (rule ext) (simp add: domain_def dom_def)
+
+lemma plus_fun_conv: "a + b = a ++ b"
+ by (auto simp: plus_fun_def map_add_def split: option.splits)
+
+lemmas map_convs = domain_conv plus_fun_conv
+
+text {*
+ Any map can now act as a separation heap without further work:
+*}
+lemma
+ fixes h :: "(nat => nat) => 'foo option"
+ shows "(P ** Q ** H) h = (Q ** H ** P) h"
+ by (simp add: sep_conj_ac)
+
+end
+