Separation_Algebra/Sep_Heap_Instance.thy
changeset 25 a5f5b9336007
equal deleted inserted replaced
24:77daf1b85cf0 25:a5f5b9336007
       
     1 (* Author: Gerwin Klein, 2012
       
     2    Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
       
     3                 Rafal Kolanski <rafal.kolanski at nicta.com.au>
       
     4 *)
       
     5 
       
     6 header "Standard Heaps as an Instance of Separation Algebra"
       
     7 
       
     8 theory Sep_Heap_Instance
       
     9 imports Separation_Algebra
       
    10 begin
       
    11 
       
    12 text {*
       
    13   Example instantiation of a the separation algebra to a map, i.e.\ a
       
    14   function from any type to @{typ "'a option"}.
       
    15 *}
       
    16 
       
    17 class opt =
       
    18   fixes none :: 'a
       
    19 begin
       
    20   definition "domain f \<equiv> {x. f x \<noteq> none}"
       
    21 end
       
    22 
       
    23 instantiation option :: (type) opt
       
    24 begin
       
    25   definition none_def [simp]: "none \<equiv> None"
       
    26   instance ..
       
    27 end
       
    28 
       
    29 instantiation "fun" :: (type, opt) zero
       
    30 begin
       
    31   definition zero_fun_def: "0 \<equiv> \<lambda>s. none"
       
    32   instance ..
       
    33 end
       
    34 
       
    35 instantiation "fun" :: (type, opt) sep_algebra
       
    36 begin
       
    37 
       
    38 definition
       
    39   plus_fun_def: "m1 + m2 \<equiv> \<lambda>x. if m2 x = none then m1 x else m2 x"
       
    40 
       
    41 definition
       
    42   sep_disj_fun_def: "sep_disj m1 m2 \<equiv> domain m1 \<inter> domain m2 = {}"
       
    43 
       
    44 instance
       
    45   apply default
       
    46         apply (simp add: sep_disj_fun_def domain_def zero_fun_def)
       
    47        apply (fastforce simp: sep_disj_fun_def)
       
    48       apply (simp add: plus_fun_def zero_fun_def)
       
    49      apply (simp add: plus_fun_def sep_disj_fun_def domain_def)
       
    50      apply (rule ext)
       
    51      apply fastforce
       
    52     apply (rule ext)
       
    53     apply (simp add: plus_fun_def)
       
    54    apply (simp add: sep_disj_fun_def domain_def plus_fun_def)
       
    55    apply fastforce
       
    56   apply (simp add: sep_disj_fun_def domain_def plus_fun_def)
       
    57   apply fastforce
       
    58   done
       
    59 
       
    60 end
       
    61 
       
    62 text {*
       
    63   For the actual option type @{const domain} and @{text "+"} are
       
    64   just @{const dom} and @{text "++"}:
       
    65 *}
       
    66 
       
    67 lemma domain_conv: "domain = dom"
       
    68   by (rule ext) (simp add: domain_def dom_def)
       
    69 
       
    70 lemma plus_fun_conv: "a + b = a ++ b"
       
    71   by (auto simp: plus_fun_def map_add_def split: option.splits)
       
    72 
       
    73 lemmas map_convs = domain_conv plus_fun_conv
       
    74 
       
    75 text {*
       
    76   Any map can now act as a separation heap without further work:
       
    77 *}
       
    78 lemma
       
    79   fixes h :: "(nat => nat) => 'foo option"
       
    80   shows "(P ** Q ** H) h = (Q ** H ** P) h"
       
    81   by (simp add: sep_conj_ac)
       
    82 
       
    83 end
       
    84