| author | Christian Urban <christian dot urban at kcl dot ac dot uk> | 
| Fri, 30 May 2014 12:04:49 +0100 | |
| changeset 20 | e04123f4bacc | 
| parent 2 | 995eb45bbadc | 
| permissions | -rw-r--r-- | 
| 
2
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
1  | 
(* Authors: Gerwin Klein and Rafal Kolanski, 2012  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
2  | 
Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
3  | 
Rafal Kolanski <rafal.kolanski at nicta.com.au>  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
4  | 
*)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
5  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
6  | 
header "Abstract Separation Algebra"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
7  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
8  | 
theory Separation_Algebra  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
9  | 
imports Main  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
10  | 
begin  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
11  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
12  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
13  | 
text {* This theory is the main abstract separation algebra development *}
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
14  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
15  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
16  | 
section {* Input syntax for lifting boolean predicates to separation predicates *}
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
17  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
18  | 
abbreviation (input)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
19  | 
  pred_and :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "and" 35) where
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
20  | 
"a and b \<equiv> \<lambda>s. a s \<and> b s"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
21  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
22  | 
abbreviation (input)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
23  | 
  pred_or :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "or" 30) where
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
24  | 
"a or b \<equiv> \<lambda>s. a s \<or> b s"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
25  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
26  | 
abbreviation (input)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
27  | 
  pred_not :: "('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" ("not _" [40] 40) where
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
28  | 
"not a \<equiv> \<lambda>s. \<not>a s"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
29  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
30  | 
abbreviation (input)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
31  | 
  pred_imp :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "imp" 25) where
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
32  | 
"a imp b \<equiv> \<lambda>s. a s \<longrightarrow> b s"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
33  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
34  | 
abbreviation (input)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
35  | 
  pred_K :: "'b \<Rightarrow> 'a \<Rightarrow> 'b" ("\<langle>_\<rangle>") where
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
36  | 
"\<langle>f\<rangle> \<equiv> \<lambda>s. f"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
37  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
38  | 
abbreviation (input)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
39  | 
  pred_ex :: "('b \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (binder "EXS " 10) where
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
40  | 
"EXS x. P x \<equiv> \<lambda>s. \<exists>x. P x s"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
41  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
42  | 
abbreviation (input)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
43  | 
  pred_all :: "('b \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (binder "ALLS " 10) where
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
44  | 
"ALLS x. P x \<equiv> \<lambda>s. \<forall>x. P x s"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
45  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
46  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
47  | 
section {* Associative/Commutative Monoid Basis of Separation Algebras *}
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
48  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
49  | 
class pre_sep_algebra = zero + plus +  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
50  | 
fixes sep_disj :: "'a => 'a => bool" (infix "##" 60)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
51  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
52  | 
assumes sep_disj_zero [simp]: "x ## 0"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
53  | 
assumes sep_disj_commuteI: "x ## y \<Longrightarrow> y ## x"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
54  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
55  | 
assumes sep_add_zero [simp]: "x + 0 = x"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
56  | 
assumes sep_add_commute: "x ## y \<Longrightarrow> x + y = y + x"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
57  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
58  | 
assumes sep_add_assoc:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
59  | 
"\<lbrakk> x ## y; y ## z; x ## z \<rbrakk> \<Longrightarrow> (x + y) + z = x + (y + z)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
60  | 
begin  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
61  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
62  | 
lemma sep_disj_commute: "x ## y = y ## x"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
63  | 
by (blast intro: sep_disj_commuteI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
64  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
65  | 
lemma sep_add_left_commute:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
66  | 
assumes a: "a ## b" "b ## c" "a ## c"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
67  | 
shows "b + (a + c) = a + (b + c)" (is "?lhs = ?rhs")  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
68  | 
proof -  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
69  | 
have "?lhs = b + a + c" using a  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
70  | 
by (simp add: sep_add_assoc[symmetric] sep_disj_commute)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
71  | 
also have "... = a + b + c" using a  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
72  | 
by (simp add: sep_add_commute sep_disj_commute)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
73  | 
also have "... = ?rhs" using a  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
74  | 
by (simp add: sep_add_assoc sep_disj_commute)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
75  | 
finally show ?thesis .  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
76  | 
qed  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
77  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
78  | 
lemmas sep_add_ac = sep_add_assoc sep_add_commute sep_add_left_commute  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
79  | 
sep_disj_commute (* nearly always necessary *)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
80  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
81  | 
end  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
82  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
83  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
84  | 
section {* Separation Algebra as Defined by Calcagno et al. *}
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
85  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
86  | 
class sep_algebra = pre_sep_algebra +  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
87  | 
assumes sep_disj_addD1: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## y"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
88  | 
assumes sep_disj_addI1: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x + y ## z"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
89  | 
begin  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
90  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
91  | 
subsection {* Basic Construct Definitions and Abbreviations *}
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
92  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
93  | 
definition  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
94  | 
  sep_conj :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool)" (infixr "**" 35)
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
95  | 
where  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
96  | 
"P ** Q \<equiv> \<lambda>h. \<exists>x y. x ## y \<and> h = x + y \<and> P x \<and> Q y"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
97  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
98  | 
notation  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
99  | 
sep_conj (infixr "\<and>*" 35)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
100  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
101  | 
definition  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
102  | 
  sep_empty :: "'a \<Rightarrow> bool" ("\<box>") where
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
103  | 
"\<box> \<equiv> \<lambda>h. h = 0"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
104  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
105  | 
definition  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
106  | 
  sep_impl :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool)" (infixr "\<longrightarrow>*" 25)
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
107  | 
where  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
108  | 
"P \<longrightarrow>* Q \<equiv> \<lambda>h. \<forall>h'. h ## h' \<and> P h' \<longrightarrow> Q (h + h')"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
109  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
110  | 
definition  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
111  | 
sep_substate :: "'a => 'a => bool" (infix "\<preceq>" 60) where  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
112  | 
"x \<preceq> y \<equiv> \<exists>z. x ## z \<and> x + z = y"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
113  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
114  | 
(* We want these to be abbreviations not definitions, because basic True and  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
115  | 
False will occur by simplification in sep_conj terms *)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
116  | 
abbreviation  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
117  | 
"sep_true \<equiv> \<langle>True\<rangle>"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
118  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
119  | 
abbreviation  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
120  | 
"sep_false \<equiv> \<langle>False\<rangle>"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
121  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
122  | 
definition  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
123  | 
  sep_list_conj :: "('a \<Rightarrow> bool) list \<Rightarrow> ('a \<Rightarrow> bool)"  ("\<And>* _" [60] 90) where
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
124  | 
"sep_list_conj Ps \<equiv> foldl (op **) \<box> Ps"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
125  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
126  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
127  | 
subsection {* Disjunction/Addition Properties *}
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
128  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
129  | 
lemma disjoint_zero_sym [simp]: "0 ## x"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
130  | 
by (simp add: sep_disj_commute)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
131  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
132  | 
lemma sep_add_zero_sym [simp]: "0 + x = x"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
133  | 
by (simp add: sep_add_commute)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
134  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
135  | 
lemma sep_disj_addD2: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## z"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
136  | 
by (metis sep_disj_addD1 sep_add_ac)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
137  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
138  | 
lemma sep_disj_addD: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## y \<and> x ## z"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
139  | 
by (metis sep_disj_addD1 sep_disj_addD2)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
140  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
141  | 
lemma sep_add_disjD: "\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> x ## z \<and> y ## z"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
142  | 
by (metis sep_disj_addD sep_disj_commuteI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
143  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
144  | 
lemma sep_disj_addI2:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
145  | 
"\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x + z ## y"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
146  | 
by (metis sep_add_ac sep_disj_addI1)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
147  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
148  | 
lemma sep_add_disjI1:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
149  | 
"\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> x + z ## y"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
150  | 
by (metis sep_add_ac sep_add_disjD sep_disj_addI2)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
151  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
152  | 
lemma sep_add_disjI2:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
153  | 
"\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> z + y ## x"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
154  | 
by (metis sep_add_ac sep_add_disjD sep_disj_addI2)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
155  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
156  | 
lemma sep_disj_addI3:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
157  | 
"x + y ## z \<Longrightarrow> x ## y \<Longrightarrow> x ## y + z"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
158  | 
by (metis sep_add_ac sep_add_disjD sep_add_disjI2)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
159  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
160  | 
lemma sep_disj_add:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
161  | 
"\<lbrakk> y ## z; x ## y \<rbrakk> \<Longrightarrow> x ## y + z = x + y ## z"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
162  | 
by (metis sep_disj_addI1 sep_disj_addI3)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
163  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
164  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
165  | 
subsection {* Substate Properties *}
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
166  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
167  | 
lemma sep_substate_disj_add:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
168  | 
"x ## y \<Longrightarrow> x \<preceq> x + y"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
169  | 
unfolding sep_substate_def by blast  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
170  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
171  | 
lemma sep_substate_disj_add':  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
172  | 
"x ## y \<Longrightarrow> x \<preceq> y + x"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
173  | 
by (simp add: sep_add_ac sep_substate_disj_add)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
174  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
175  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
176  | 
subsection {* Separating Conjunction Properties *}
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
177  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
178  | 
lemma sep_conjD:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
179  | 
"(P \<and>* Q) h \<Longrightarrow> \<exists>x y. x ## y \<and> h = x + y \<and> P x \<and> Q y"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
180  | 
by (simp add: sep_conj_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
181  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
182  | 
lemma sep_conjE:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
183  | 
"\<lbrakk> (P ** Q) h; \<And>x y. \<lbrakk> P x; Q y; x ## y; h = x + y \<rbrakk> \<Longrightarrow> X \<rbrakk> \<Longrightarrow> X"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
184  | 
by (auto simp: sep_conj_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
185  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
186  | 
lemma sep_conjI:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
187  | 
"\<lbrakk> P x; Q y; x ## y; h = x + y \<rbrakk> \<Longrightarrow> (P ** Q) h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
188  | 
by (auto simp: sep_conj_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
189  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
190  | 
lemma sep_conj_commuteI:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
191  | 
"(P ** Q) h \<Longrightarrow> (Q ** P) h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
192  | 
by (auto intro!: sep_conjI elim!: sep_conjE simp: sep_add_ac)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
193  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
194  | 
lemma sep_conj_commute:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
195  | 
"(P ** Q) = (Q ** P)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
196  | 
by (rule ext) (auto intro: sep_conj_commuteI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
197  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
198  | 
lemma sep_conj_assoc:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
199  | 
"((P ** Q) ** R) = (P ** Q ** R)" (is "?lhs = ?rhs")  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
200  | 
proof (rule ext, rule iffI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
201  | 
fix h  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
202  | 
assume a: "?lhs h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
203  | 
then obtain x y z where "P x" and "Q y" and "R z"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
204  | 
and "x ## y" and "x ## z" and "y ## z" and "x + y ## z"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
205  | 
and "h = x + y + z"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
206  | 
by (auto dest!: sep_conjD dest: sep_add_disjD)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
207  | 
moreover  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
208  | 
then have "x ## y + z"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
209  | 
by (simp add: sep_disj_add)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
210  | 
ultimately  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
211  | 
show "?rhs h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
212  | 
by (auto simp: sep_add_ac intro!: sep_conjI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
213  | 
next  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
214  | 
fix h  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
215  | 
assume a: "?rhs h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
216  | 
then obtain x y z where "P x" and "Q y" and "R z"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
217  | 
and "x ## y" and "x ## z" and "y ## z" and "x ## y + z"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
218  | 
and "h = x + y + z"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
219  | 
by (fastforce elim!: sep_conjE simp: sep_add_ac dest: sep_disj_addD)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
220  | 
thus "?lhs h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
221  | 
by (metis sep_conj_def sep_disj_addI1)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
222  | 
qed  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
223  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
224  | 
lemma sep_conj_impl:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
225  | 
"\<lbrakk> (P ** Q) h; \<And>h. P h \<Longrightarrow> P' h; \<And>h. Q h \<Longrightarrow> Q' h \<rbrakk> \<Longrightarrow> (P' ** Q') h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
226  | 
by (erule sep_conjE, auto intro!: sep_conjI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
227  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
228  | 
lemma sep_conj_impl1:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
229  | 
assumes P: "\<And>h. P h \<Longrightarrow> I h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
230  | 
shows "(P ** R) h \<Longrightarrow> (I ** R) h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
231  | 
by (auto intro: sep_conj_impl P)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
232  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
233  | 
lemma sep_globalise:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
234  | 
"\<lbrakk> (P ** R) h; (\<And>h. P h \<Longrightarrow> Q h) \<rbrakk> \<Longrightarrow> (Q ** R) h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
235  | 
by (fast elim: sep_conj_impl)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
236  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
237  | 
lemma sep_conj_trivial_strip2:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
238  | 
"Q = R \<Longrightarrow> (Q ** P) = (R ** P)" by simp  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
239  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
240  | 
lemma disjoint_subheaps_exist:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
241  | 
"\<exists>x y. x ## y \<and> h = x + y"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
242  | 
by (rule_tac x=0 in exI, auto)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
243  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
244  | 
lemma sep_conj_left_commute: (* for permutative rewriting *)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
245  | 
"(P ** (Q ** R)) = (Q ** (P ** R))" (is "?x = ?y")  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
246  | 
proof -  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
247  | 
have "?x = ((Q ** R) ** P)" by (simp add: sep_conj_commute)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
248  | 
also have "\<dots> = (Q ** (R ** P))" by (subst sep_conj_assoc, simp)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
249  | 
finally show ?thesis by (simp add: sep_conj_commute)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
250  | 
qed  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
251  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
252  | 
lemmas sep_conj_ac = sep_conj_commute sep_conj_assoc sep_conj_left_commute  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
253  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
254  | 
lemma ab_semigroup_mult_sep_conj: "class.ab_semigroup_mult op **"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
255  | 
by (unfold_locales)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
256  | 
(auto simp: sep_conj_ac)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
257  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
258  | 
lemma sep_empty_zero [simp,intro!]: "\<box> 0"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
259  | 
by (simp add: sep_empty_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
260  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
261  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
262  | 
subsection {* Properties of @{text sep_true} and @{text sep_false} *}
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
263  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
264  | 
lemma sep_conj_sep_true:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
265  | 
"P h \<Longrightarrow> (P ** sep_true) h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
266  | 
by (simp add: sep_conjI[where y=0])  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
267  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
268  | 
lemma sep_conj_sep_true':  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
269  | 
"P h \<Longrightarrow> (sep_true ** P) h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
270  | 
by (simp add: sep_conjI[where x=0])  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
271  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
272  | 
lemma sep_conj_true [simp]:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
273  | 
"(sep_true ** sep_true) = sep_true"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
274  | 
unfolding sep_conj_def  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
275  | 
by (auto intro!: ext intro: disjoint_subheaps_exist)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
276  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
277  | 
lemma sep_conj_false_right [simp]:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
278  | 
"(P ** sep_false) = sep_false"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
279  | 
by (force elim: sep_conjE intro!: ext)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
280  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
281  | 
lemma sep_conj_false_left [simp]:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
282  | 
"(sep_false ** P) = sep_false"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
283  | 
by (subst sep_conj_commute) (rule sep_conj_false_right)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
284  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
285  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
286  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
287  | 
subsection {* Properties of zero (@{const sep_empty}) *}
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
288  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
289  | 
lemma sep_conj_empty [simp]:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
290  | 
"(P ** \<box>) = P"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
291  | 
by (simp add: sep_conj_def sep_empty_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
292  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
293  | 
lemma sep_conj_empty'[simp]:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
294  | 
"(\<box> ** P) = P"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
295  | 
by (subst sep_conj_commute, rule sep_conj_empty)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
296  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
297  | 
lemma sep_conj_sep_emptyI:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
298  | 
"P h \<Longrightarrow> (P ** \<box>) h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
299  | 
by simp  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
300  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
301  | 
lemma sep_conj_sep_emptyE:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
302  | 
"\<lbrakk> P s; (P ** \<box>) s \<Longrightarrow> (Q ** R) s \<rbrakk> \<Longrightarrow> (Q ** R) s"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
303  | 
by simp  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
304  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
305  | 
lemma monoid_add: "class.monoid_add (op **) \<box>"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
306  | 
by (unfold_locales) (auto simp: sep_conj_ac)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
307  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
308  | 
lemma comm_monoid_add: "class.comm_monoid_add op ** \<box>"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
309  | 
by (unfold_locales) (auto simp: sep_conj_ac)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
310  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
311  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
312  | 
subsection {* Properties of top (@{text sep_true}) *}
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
313  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
314  | 
lemma sep_conj_true_P [simp]:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
315  | 
"(sep_true ** (sep_true ** P)) = (sep_true ** P)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
316  | 
by (simp add: sep_conj_assoc[symmetric])  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
317  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
318  | 
lemma sep_conj_disj:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
319  | 
"((P or Q) ** R) = ((P ** R) or (Q ** R))"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
320  | 
by (auto simp: sep_conj_def intro!: ext)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
321  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
322  | 
lemma sep_conj_sep_true_left:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
323  | 
"(P ** Q) h \<Longrightarrow> (sep_true ** Q) h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
324  | 
by (erule sep_conj_impl, simp+)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
325  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
326  | 
lemma sep_conj_sep_true_right:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
327  | 
"(P ** Q) h \<Longrightarrow> (P ** sep_true) h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
328  | 
by (subst (asm) sep_conj_commute, drule sep_conj_sep_true_left,  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
329  | 
simp add: sep_conj_ac)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
330  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
331  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
332  | 
subsection {* Separating Conjunction with Quantifiers *}
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
333  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
334  | 
lemma sep_conj_conj:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
335  | 
"((P and Q) ** R) h \<Longrightarrow> ((P ** R) and (Q ** R)) h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
336  | 
by (force intro: sep_conjI elim!: sep_conjE)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
337  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
338  | 
lemma sep_conj_exists1:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
339  | 
"((EXS x. P x) ** Q) = (EXS x. (P x ** Q))"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
340  | 
by (force intro!: ext intro: sep_conjI elim: sep_conjE)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
341  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
342  | 
lemma sep_conj_exists2:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
343  | 
"(P ** (EXS x. Q x)) = (EXS x. P ** Q x)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
344  | 
by (force intro!: sep_conjI ext elim!: sep_conjE)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
345  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
346  | 
lemmas sep_conj_exists = sep_conj_exists1 sep_conj_exists2  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
347  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
348  | 
lemma sep_conj_spec:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
349  | 
"((ALLS x. P x) ** Q) h \<Longrightarrow> (P x ** Q) h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
350  | 
by (force intro: sep_conjI elim: sep_conjE)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
351  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
352  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
353  | 
subsection {* Properties of Separating Implication *}
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
354  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
355  | 
lemma sep_implI:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
356  | 
assumes a: "\<And>h'. \<lbrakk> h ## h'; P h' \<rbrakk> \<Longrightarrow> Q (h + h')"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
357  | 
shows "(P \<longrightarrow>* Q) h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
358  | 
unfolding sep_impl_def by (auto elim: a)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
359  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
360  | 
lemma sep_implD:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
361  | 
"(x \<longrightarrow>* y) h \<Longrightarrow> \<forall>h'. h ## h' \<and> x h' \<longrightarrow> y (h + h')"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
362  | 
by (force simp: sep_impl_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
363  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
364  | 
lemma sep_implE:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
365  | 
"(x \<longrightarrow>* y) h \<Longrightarrow> (\<forall>h'. h ## h' \<and> x h' \<longrightarrow> y (h + h') \<Longrightarrow> Q) \<Longrightarrow> Q"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
366  | 
by (auto dest: sep_implD)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
367  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
368  | 
lemma sep_impl_sep_true [simp]:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
369  | 
"(P \<longrightarrow>* sep_true) = sep_true"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
370  | 
by (force intro!: sep_implI ext)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
371  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
372  | 
lemma sep_impl_sep_false [simp]:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
373  | 
"(sep_false \<longrightarrow>* P) = sep_true"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
374  | 
by (force intro!: sep_implI ext)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
375  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
376  | 
lemma sep_impl_sep_true_P:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
377  | 
"(sep_true \<longrightarrow>* P) h \<Longrightarrow> P h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
378  | 
by (clarsimp dest!: sep_implD elim!: allE[where x=0])  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
379  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
380  | 
lemma sep_impl_sep_true_false [simp]:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
381  | 
"(sep_true \<longrightarrow>* sep_false) = sep_false"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
382  | 
by (force intro!: ext dest: sep_impl_sep_true_P)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
383  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
384  | 
lemma sep_conj_sep_impl:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
385  | 
"\<lbrakk> P h; \<And>h. (P ** Q) h \<Longrightarrow> R h \<rbrakk> \<Longrightarrow> (Q \<longrightarrow>* R) h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
386  | 
proof (rule sep_implI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
387  | 
fix h' h  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
388  | 
assume "P h" and "h ## h'" and "Q h'"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
389  | 
hence "(P ** Q) (h + h')" by (force intro: sep_conjI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
390  | 
moreover assume "\<And>h. (P ** Q) h \<Longrightarrow> R h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
391  | 
ultimately show "R (h + h')" by simp  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
392  | 
qed  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
393  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
394  | 
lemma sep_conj_sep_impl2:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
395  | 
"\<lbrakk> (P ** Q) h; \<And>h. P h \<Longrightarrow> (Q \<longrightarrow>* R) h \<rbrakk> \<Longrightarrow> R h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
396  | 
by (force dest: sep_implD elim: sep_conjE)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
397  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
398  | 
lemma sep_conj_sep_impl_sep_conj2:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
399  | 
"(P ** R) h \<Longrightarrow> (P ** (Q \<longrightarrow>* (Q ** R))) h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
400  | 
by (erule (1) sep_conj_impl, erule sep_conj_sep_impl, simp add: sep_conj_ac)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
401  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
402  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
403  | 
subsection {* Pure assertions *}
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
404  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
405  | 
definition  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
406  | 
  pure :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
407  | 
"pure P \<equiv> \<forall>h h'. P h = P h'"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
408  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
409  | 
lemma pure_sep_true:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
410  | 
"pure sep_true"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
411  | 
by (simp add: pure_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
412  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
413  | 
lemma pure_sep_false:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
414  | 
"pure sep_true"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
415  | 
by (simp add: pure_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
416  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
417  | 
lemma pure_split:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
418  | 
"pure P = (P = sep_true \<or> P = sep_false)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
419  | 
by (force simp: pure_def intro!: ext)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
420  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
421  | 
lemma pure_sep_conj:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
422  | 
"\<lbrakk> pure P; pure Q \<rbrakk> \<Longrightarrow> pure (P \<and>* Q)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
423  | 
by (force simp: pure_split)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
424  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
425  | 
lemma pure_sep_impl:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
426  | 
"\<lbrakk> pure P; pure Q \<rbrakk> \<Longrightarrow> pure (P \<longrightarrow>* Q)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
427  | 
by (force simp: pure_split)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
428  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
429  | 
lemma pure_conj_sep_conj:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
430  | 
"\<lbrakk> (P and Q) h; pure P \<or> pure Q \<rbrakk> \<Longrightarrow> (P \<and>* Q) h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
431  | 
by (metis pure_def sep_add_zero sep_conjI sep_conj_commute sep_disj_zero)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
432  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
433  | 
lemma pure_sep_conj_conj:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
434  | 
"\<lbrakk> (P \<and>* Q) h; pure P; pure Q \<rbrakk> \<Longrightarrow> (P and Q) h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
435  | 
by (force simp: pure_split)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
436  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
437  | 
lemma pure_conj_sep_conj_assoc:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
438  | 
"pure P \<Longrightarrow> ((P and Q) \<and>* R) = (P and (Q \<and>* R))"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
439  | 
by (auto simp: pure_split)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
440  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
441  | 
lemma pure_sep_impl_impl:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
442  | 
"\<lbrakk> (P \<longrightarrow>* Q) h; pure P \<rbrakk> \<Longrightarrow> P h \<longrightarrow> Q h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
443  | 
by (force simp: pure_split dest: sep_impl_sep_true_P)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
444  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
445  | 
lemma pure_impl_sep_impl:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
446  | 
"\<lbrakk> P h \<longrightarrow> Q h; pure P; pure Q \<rbrakk> \<Longrightarrow> (P \<longrightarrow>* Q) h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
447  | 
by (force simp: pure_split)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
448  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
449  | 
lemma pure_conj_right: "(Q \<and>* (\<langle>P'\<rangle> and Q')) = (\<langle>P'\<rangle> and (Q \<and>* Q'))"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
450  | 
by (rule ext, rule, rule, clarsimp elim!: sep_conjE)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
451  | 
(erule sep_conj_impl, auto)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
452  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
453  | 
lemma pure_conj_right': "(Q \<and>* (P' and \<langle>Q'\<rangle>)) = (\<langle>Q'\<rangle> and (Q \<and>* P'))"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
454  | 
by (simp add: conj_comms pure_conj_right)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
455  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
456  | 
lemma pure_conj_left: "((\<langle>P'\<rangle> and Q') \<and>* Q) = (\<langle>P'\<rangle> and (Q' \<and>* Q))"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
457  | 
by (simp add: pure_conj_right sep_conj_ac)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
458  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
459  | 
lemma pure_conj_left': "((P' and \<langle>Q'\<rangle>) \<and>* Q) = (\<langle>Q'\<rangle> and (P' \<and>* Q))"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
460  | 
by (subst conj_comms, subst pure_conj_left, simp)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
461  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
462  | 
lemmas pure_conj = pure_conj_right pure_conj_right' pure_conj_left  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
463  | 
pure_conj_left'  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
464  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
465  | 
declare pure_conj[simp add]  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
466  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
467  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
468  | 
subsection {* Intuitionistic assertions *}
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
469  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
470  | 
definition intuitionistic :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
471  | 
"intuitionistic P \<equiv> \<forall>h h'. P h \<and> h \<preceq> h' \<longrightarrow> P h'"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
472  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
473  | 
lemma intuitionisticI:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
474  | 
"(\<And>h h'. \<lbrakk> P h; h \<preceq> h' \<rbrakk> \<Longrightarrow> P h') \<Longrightarrow> intuitionistic P"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
475  | 
by (unfold intuitionistic_def, fast)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
476  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
477  | 
lemma intuitionisticD:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
478  | 
"\<lbrakk> intuitionistic P; P h; h \<preceq> h' \<rbrakk> \<Longrightarrow> P h'"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
479  | 
by (unfold intuitionistic_def, fast)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
480  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
481  | 
lemma pure_intuitionistic:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
482  | 
"pure P \<Longrightarrow> intuitionistic P"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
483  | 
by (clarsimp simp: intuitionistic_def pure_def, fast)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
484  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
485  | 
lemma intuitionistic_conj:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
486  | 
"\<lbrakk> intuitionistic P; intuitionistic Q \<rbrakk> \<Longrightarrow> intuitionistic (P and Q)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
487  | 
by (force intro: intuitionisticI dest: intuitionisticD)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
488  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
489  | 
lemma intuitionistic_disj:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
490  | 
"\<lbrakk> intuitionistic P; intuitionistic Q \<rbrakk> \<Longrightarrow> intuitionistic (P or Q)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
491  | 
by (force intro: intuitionisticI dest: intuitionisticD)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
492  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
493  | 
lemma intuitionistic_forall:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
494  | 
"(\<And>x. intuitionistic (P x)) \<Longrightarrow> intuitionistic (ALLS x. P x)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
495  | 
by (force intro: intuitionisticI dest: intuitionisticD)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
496  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
497  | 
lemma intuitionistic_exists:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
498  | 
"(\<And>x. intuitionistic (P x)) \<Longrightarrow> intuitionistic (EXS x. P x)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
499  | 
by (force intro: intuitionisticI dest: intuitionisticD)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
500  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
501  | 
lemma intuitionistic_sep_conj_sep_true:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
502  | 
"intuitionistic (sep_true \<and>* P)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
503  | 
proof (rule intuitionisticI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
504  | 
fix h h' r  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
505  | 
assume a: "(sep_true \<and>* P) h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
506  | 
then obtain x y where P: "P y" and h: "h = x + y" and xyd: "x ## y"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
507  | 
by - (drule sep_conjD, clarsimp)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
508  | 
moreover assume a2: "h \<preceq> h'"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
509  | 
then obtain z where h': "h' = h + z" and hzd: "h ## z"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
510  | 
by (clarsimp simp: sep_substate_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
511  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
512  | 
moreover have "(P \<and>* sep_true) (y + (x + z))"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
513  | 
using P h hzd xyd  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
514  | 
by (metis sep_add_disjI1 sep_disj_commute sep_conjI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
515  | 
ultimately show "(sep_true \<and>* P) h'" using hzd  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
516  | 
by (auto simp: sep_conj_commute sep_add_ac dest!: sep_disj_addD)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
517  | 
qed  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
518  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
519  | 
lemma intuitionistic_sep_impl_sep_true:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
520  | 
"intuitionistic (sep_true \<longrightarrow>* P)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
521  | 
proof (rule intuitionisticI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
522  | 
fix h h'  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
523  | 
assume imp: "(sep_true \<longrightarrow>* P) h" and hh': "h \<preceq> h'"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
524  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
525  | 
from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
526  | 
by (clarsimp simp: sep_substate_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
527  | 
show "(sep_true \<longrightarrow>* P) h'" using imp h' hzd  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
528  | 
apply (clarsimp dest!: sep_implD)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
529  | 
apply (metis sep_add_assoc sep_add_disjD sep_disj_addI3 sep_implI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
530  | 
done  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
531  | 
qed  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
532  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
533  | 
lemma intuitionistic_sep_conj:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
534  | 
  assumes ip: "intuitionistic (P::('a \<Rightarrow> bool))"
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
535  | 
shows "intuitionistic (P \<and>* Q)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
536  | 
proof (rule intuitionisticI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
537  | 
fix h h'  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
538  | 
assume sc: "(P \<and>* Q) h" and hh': "h \<preceq> h'"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
539  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
540  | 
from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
541  | 
by (clarsimp simp: sep_substate_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
542  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
543  | 
from sc obtain x y where px: "P x" and qy: "Q y"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
544  | 
and h: "h = x + y" and xyd: "x ## y"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
545  | 
by (clarsimp simp: sep_conj_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
546  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
547  | 
have "x ## z" using hzd h xyd  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
548  | 
by (metis sep_add_disjD)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
549  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
550  | 
with ip px have "P (x + z)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
551  | 
by (fastforce elim: intuitionisticD sep_substate_disj_add)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
552  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
553  | 
thus "(P \<and>* Q) h'" using h' h hzd qy xyd  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
554  | 
by (metis (full_types) sep_add_commute sep_add_disjD sep_add_disjI2  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
555  | 
sep_add_left_commute sep_conjI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
556  | 
qed  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
557  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
558  | 
lemma intuitionistic_sep_impl:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
559  | 
assumes iq: "intuitionistic Q"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
560  | 
shows "intuitionistic (P \<longrightarrow>* Q)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
561  | 
proof (rule intuitionisticI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
562  | 
fix h h'  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
563  | 
assume imp: "(P \<longrightarrow>* Q) h" and hh': "h \<preceq> h'"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
564  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
565  | 
from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
566  | 
by (clarsimp simp: sep_substate_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
567  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
568  | 
  {
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
569  | 
fix x  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
570  | 
assume px: "P x" and hzx: "h + z ## x"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
571  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
572  | 
have "h + x \<preceq> h + x + z" using hzx hzd  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
573  | 
by (metis sep_add_disjI1 sep_substate_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
574  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
575  | 
with imp hzd iq px hzx  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
576  | 
have "Q (h + z + x)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
577  | 
by (metis intuitionisticD sep_add_assoc sep_add_ac sep_add_disjD sep_implE)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
578  | 
}  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
579  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
580  | 
with imp h' hzd iq show "(P \<longrightarrow>* Q) h'"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
581  | 
by (fastforce intro: sep_implI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
582  | 
qed  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
583  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
584  | 
lemma strongest_intuitionistic:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
585  | 
"\<not> (\<exists>Q. (\<forall>h. (Q h \<longrightarrow> (P \<and>* sep_true) h)) \<and> intuitionistic Q \<and>  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
586  | 
Q \<noteq> (P \<and>* sep_true) \<and> (\<forall>h. P h \<longrightarrow> Q h))"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
587  | 
by (fastforce intro!: ext sep_substate_disj_add  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
588  | 
dest!: sep_conjD intuitionisticD)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
589  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
590  | 
lemma weakest_intuitionistic:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
591  | 
"\<not> (\<exists>Q. (\<forall>h. ((sep_true \<longrightarrow>* P) h \<longrightarrow> Q h)) \<and> intuitionistic Q \<and>  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
592  | 
Q \<noteq> (sep_true \<longrightarrow>* P) \<and> (\<forall>h. Q h \<longrightarrow> P h))"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
593  | 
apply (clarsimp intro!: ext)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
594  | 
apply (rule iffI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
595  | 
apply (rule sep_implI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
596  | 
apply (drule_tac h="x" and h'="x + h'" in intuitionisticD)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
597  | 
apply (clarsimp simp: sep_add_ac sep_substate_disj_add)+  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
598  | 
done  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
599  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
600  | 
lemma intuitionistic_sep_conj_sep_true_P:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
601  | 
"\<lbrakk> (P \<and>* sep_true) s; intuitionistic P \<rbrakk> \<Longrightarrow> P s"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
602  | 
by (force dest: intuitionisticD elim: sep_conjE sep_substate_disj_add)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
603  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
604  | 
lemma intuitionistic_sep_conj_sep_true_simp:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
605  | 
"intuitionistic P \<Longrightarrow> (P \<and>* sep_true) = P"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
606  | 
by (fast intro!: sep_conj_sep_true ext  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
607  | 
elim: intuitionistic_sep_conj_sep_true_P)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
608  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
609  | 
lemma intuitionistic_sep_impl_sep_true_P:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
610  | 
"\<lbrakk> P h; intuitionistic P \<rbrakk> \<Longrightarrow> (sep_true \<longrightarrow>* P) h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
611  | 
by (force intro!: sep_implI dest: intuitionisticD  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
612  | 
intro: sep_substate_disj_add)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
613  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
614  | 
lemma intuitionistic_sep_impl_sep_true_simp:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
615  | 
"intuitionistic P \<Longrightarrow> (sep_true \<longrightarrow>* P) = P"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
616  | 
by (fast intro!: ext  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
617  | 
elim: sep_impl_sep_true_P intuitionistic_sep_impl_sep_true_P)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
618  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
619  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
620  | 
subsection {* Strictly exact assertions *}
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
621  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
622  | 
definition strictly_exact :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
623  | 
"strictly_exact P \<equiv> \<forall>h h'. P h \<and> P h' \<longrightarrow> h = h'"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
624  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
625  | 
lemma strictly_exactD:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
626  | 
"\<lbrakk> strictly_exact P; P h; P h' \<rbrakk> \<Longrightarrow> h = h'"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
627  | 
by (unfold strictly_exact_def, fast)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
628  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
629  | 
lemma strictly_exactI:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
630  | 
"(\<And>h h'. \<lbrakk> P h; P h' \<rbrakk> \<Longrightarrow> h = h') \<Longrightarrow> strictly_exact P"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
631  | 
by (unfold strictly_exact_def, fast)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
632  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
633  | 
lemma strictly_exact_sep_conj:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
634  | 
"\<lbrakk> strictly_exact P; strictly_exact Q \<rbrakk> \<Longrightarrow> strictly_exact (P \<and>* Q)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
635  | 
apply (rule strictly_exactI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
636  | 
apply (erule sep_conjE)+  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
637  | 
apply (drule_tac h="x" and h'="xa" in strictly_exactD, assumption+)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
638  | 
apply (drule_tac h="y" and h'="ya" in strictly_exactD, assumption+)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
639  | 
apply clarsimp  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
640  | 
done  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
641  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
642  | 
lemma strictly_exact_conj_impl:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
643  | 
"\<lbrakk> (Q \<and>* sep_true) h; P h; strictly_exact Q \<rbrakk> \<Longrightarrow> (Q \<and>* (Q \<longrightarrow>* P)) h"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
644  | 
by (force intro: sep_conjI sep_implI dest: strictly_exactD elim!: sep_conjE  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
645  | 
simp: sep_add_commute sep_add_assoc)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
646  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
647  | 
end  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
648  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
649  | 
interpretation sep: ab_semigroup_mult "op **"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
650  | 
by (rule ab_semigroup_mult_sep_conj)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
651  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
652  | 
interpretation sep: comm_monoid_add "op **" \<box>  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
653  | 
by (rule comm_monoid_add)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
654  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
655  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
656  | 
section {* Separation Algebra with Stronger, but More Intuitive Disjunction Axiom *}
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
657  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
658  | 
class stronger_sep_algebra = pre_sep_algebra +  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
659  | 
assumes sep_add_disj_eq [simp]: "y ## z \<Longrightarrow> x ## y + z = (x ## y \<and> x ## z)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
660  | 
begin  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
661  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
662  | 
lemma sep_disj_add_eq [simp]: "x ## y \<Longrightarrow> x + y ## z = (x ## z \<and> y ## z)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
663  | 
by (metis sep_add_disj_eq sep_disj_commute)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
664  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
665  | 
subclass sep_algebra by default auto  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
666  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
667  | 
end  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
668  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
669  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
670  | 
section {* Folding separating conjunction over lists of predicates *}
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
671  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
672  | 
lemma sep_list_conj_Nil [simp]: "\<And>* [] = \<box>"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
673  | 
by (simp add: sep_list_conj_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
674  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
675  | 
(* apparently these two are rarely used and had to be removed from List.thy *)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
676  | 
lemma (in semigroup_add) foldl_assoc:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
677  | 
shows "foldl op+ (x+y) zs = x + (foldl op+ y zs)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
678  | 
by (induct zs arbitrary: y) (simp_all add:add_assoc)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
679  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
680  | 
lemma (in monoid_add) foldl_absorb0:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
681  | 
shows "x + (foldl op+ 0 zs) = foldl op+ x zs"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
682  | 
by (induct zs) (simp_all add:foldl_assoc)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
683  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
684  | 
lemma sep_list_conj_Cons [simp]: "\<And>* (x#xs) = (x ** \<And>* xs)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
685  | 
by (simp add: sep_list_conj_def sep.foldl_absorb0)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
686  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
687  | 
lemma sep_list_conj_append [simp]: "\<And>* (xs @ ys) = (\<And>* xs ** \<And>* ys)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
688  | 
by (simp add: sep_list_conj_def sep.foldl_absorb0)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
689  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
690  | 
lemma (in comm_monoid_add) foldl_map_filter:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
691  | 
"foldl op + 0 (map f (filter P xs)) +  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
692  | 
foldl op + 0 (map f (filter (not P) xs))  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
693  | 
= foldl op + 0 (map f xs)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
694  | 
proof (induct xs)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
695  | 
case Nil thus ?case by clarsimp  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
696  | 
next  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
697  | 
case (Cons x xs)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
698  | 
hence IH: "foldl op + 0 (map f xs) =  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
699  | 
foldl op + 0 (map f (filter P xs)) +  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
700  | 
foldl op + 0 (map f [x\<leftarrow>xs . \<not> P x])"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
701  | 
by (simp only: eq_commute)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
702  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
703  | 
have foldl_Cons':  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
704  | 
"\<And>x xs. foldl op + 0 (x # xs) = x + (foldl op + 0 xs)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
705  | 
by (simp, subst foldl_absorb0[symmetric], rule refl)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
706  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
707  | 
  { assume "P x"
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
708  | 
hence ?case by (auto simp del: foldl_Cons simp add: foldl_Cons' IH add_ac)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
709  | 
  } moreover {
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
710  | 
assume "\<not> P x"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
711  | 
hence ?case by (auto simp del: foldl_Cons simp add: foldl_Cons' IH add_ac)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
712  | 
}  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
713  | 
ultimately show ?case by blast  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
714  | 
qed  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
715  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
716  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
717  | 
section {* Separation Algebra with a Cancellative Monoid (for completeness) *}
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
718  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
719  | 
text {*
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
720  | 
Separation algebra with a cancellative monoid. The results of being a precise  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
721  | 
assertion (distributivity over separating conjunction) require this.  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
722  | 
although we never actually use this property in our developments, we keep  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
723  | 
it here for completeness.  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
724  | 
*}  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
725  | 
class cancellative_sep_algebra = sep_algebra +  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
726  | 
assumes sep_add_cancelD: "\<lbrakk> x + z = y + z ; x ## z ; y ## z \<rbrakk> \<Longrightarrow> x = y"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
727  | 
begin  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
728  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
729  | 
definition  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
730  | 
(* In any heap, there exists at most one subheap for which P holds *)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
731  | 
  precise :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
732  | 
"precise P = (\<forall>h hp hp'. hp \<preceq> h \<and> P hp \<and> hp' \<preceq> h \<and> P hp' \<longrightarrow> hp = hp')"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
733  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
734  | 
lemma "precise (op = s)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
735  | 
by (metis (full_types) precise_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
736  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
737  | 
lemma sep_add_cancel:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
738  | 
"x ## z \<Longrightarrow> y ## z \<Longrightarrow> (x + z = y + z) = (x = y)"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
739  | 
by (metis sep_add_cancelD)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
740  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
741  | 
lemma precise_distribute:  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
742  | 
"precise P = (\<forall>Q R. ((Q and R) \<and>* P) = ((Q \<and>* P) and (R \<and>* P)))"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
743  | 
proof (rule iffI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
744  | 
assume pp: "precise P"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
745  | 
  {
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
746  | 
fix Q R  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
747  | 
fix h hp hp' s  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
748  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
749  | 
    { assume a: "((Q and R) \<and>* P) s"
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
750  | 
hence "((Q \<and>* P) and (R \<and>* P)) s"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
751  | 
by (fastforce dest!: sep_conjD elim: sep_conjI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
752  | 
}  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
753  | 
moreover  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
754  | 
    { assume qs: "(Q \<and>* P) s" and qr: "(R \<and>* P) s"
 | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
755  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
756  | 
from qs obtain x y where sxy: "s = x + y" and xy: "x ## y"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
757  | 
and x: "Q x" and y: "P y"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
758  | 
by (fastforce dest!: sep_conjD)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
759  | 
from qr obtain x' y' where sxy': "s = x' + y'" and xy': "x' ## y'"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
760  | 
and x': "R x'" and y': "P y'"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
761  | 
by (fastforce dest!: sep_conjD)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
762  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
763  | 
from sxy have ys: "y \<preceq> x + y" using xy  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
764  | 
by (fastforce simp: sep_substate_disj_add' sep_disj_commute)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
765  | 
from sxy' have ys': "y' \<preceq> x' + y'" using xy'  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
766  | 
by (fastforce simp: sep_substate_disj_add' sep_disj_commute)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
767  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
768  | 
from pp have yy: "y = y'" using sxy sxy' xy xy' y y' ys ys'  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
769  | 
by (fastforce simp: precise_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
770  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
771  | 
hence "x = x'" using sxy sxy' xy xy'  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
772  | 
by (fastforce dest!: sep_add_cancelD)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
773  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
774  | 
hence "((Q and R) \<and>* P) s" using sxy x x' yy y' xy'  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
775  | 
by (fastforce intro: sep_conjI)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
776  | 
}  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
777  | 
ultimately  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
778  | 
have "((Q and R) \<and>* P) s = ((Q \<and>* P) and (R \<and>* P)) s" using pp by blast  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
779  | 
}  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
780  | 
thus "\<forall>Q R. ((Q and R) \<and>* P) = ((Q \<and>* P) and (R \<and>* P))" by (blast intro!: ext)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
781  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
782  | 
next  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
783  | 
assume a: "\<forall>Q R. ((Q and R) \<and>* P) = ((Q \<and>* P) and (R \<and>* P))"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
784  | 
thus "precise P"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
785  | 
proof (clarsimp simp: precise_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
786  | 
fix h hp hp' Q R  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
787  | 
assume hp: "hp \<preceq> h" and hp': "hp' \<preceq> h" and php: "P hp" and php': "P hp'"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
788  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
789  | 
obtain z where hhp: "h = hp + z" and hpz: "hp ## z" using hp  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
790  | 
by (clarsimp simp: sep_substate_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
791  | 
obtain z' where hhp': "h = hp' + z'" and hpz': "hp' ## z'" using hp'  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
792  | 
by (clarsimp simp: sep_substate_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
793  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
794  | 
have h_eq: "z' + hp' = z + hp" using hhp hhp' hpz hpz'  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
795  | 
by (fastforce simp: sep_add_ac)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
796  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
797  | 
from hhp hhp' a hpz hpz' h_eq  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
798  | 
have "\<forall>Q R. ((Q and R) \<and>* P) (z + hp) = ((Q \<and>* P) and (R \<and>* P)) (z' + hp')"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
799  | 
by (fastforce simp: h_eq sep_add_ac sep_conj_commute)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
800  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
801  | 
hence "((op = z and op = z') \<and>* P) (z + hp) =  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
802  | 
((op = z \<and>* P) and (op = z' \<and>* P)) (z' + hp')" by blast  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
803  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
804  | 
thus "hp = hp'" using php php' hpz hpz' h_eq  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
805  | 
by (fastforce dest!: iffD2 cong: conj_cong  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
806  | 
simp: sep_add_ac sep_add_cancel sep_conj_def)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
807  | 
qed  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
808  | 
qed  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
809  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
810  | 
lemma strictly_precise: "strictly_exact P \<Longrightarrow> precise P"  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
811  | 
by (metis precise_def strictly_exactD)  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
812  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
813  | 
end  | 
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
814  | 
|
| 
 
995eb45bbadc
added original Separation_Algebra theory
 
Christian Urban <christian dot urban at kcl dot ac dot uk> 
parents:  
diff
changeset
 | 
815  | 
end  |