--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Separation_Algebra/Separation_Algebra.thy-orig Thu Mar 13 20:06:29 2014 +0000
@@ -0,0 +1,815 @@
+(* Authors: Gerwin Klein and Rafal Kolanski, 2012
+ Maintainers: Gerwin Klein <kleing at cse.unsw.edu.au>
+ Rafal Kolanski <rafal.kolanski at nicta.com.au>
+*)
+
+header "Abstract Separation Algebra"
+
+theory Separation_Algebra
+imports Main
+begin
+
+
+text {* This theory is the main abstract separation algebra development *}
+
+
+section {* Input syntax for lifting boolean predicates to separation predicates *}
+
+abbreviation (input)
+ pred_and :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "and" 35) where
+ "a and b \<equiv> \<lambda>s. a s \<and> b s"
+
+abbreviation (input)
+ pred_or :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "or" 30) where
+ "a or b \<equiv> \<lambda>s. a s \<or> b s"
+
+abbreviation (input)
+ pred_not :: "('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" ("not _" [40] 40) where
+ "not a \<equiv> \<lambda>s. \<not>a s"
+
+abbreviation (input)
+ pred_imp :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (infixr "imp" 25) where
+ "a imp b \<equiv> \<lambda>s. a s \<longrightarrow> b s"
+
+abbreviation (input)
+ pred_K :: "'b \<Rightarrow> 'a \<Rightarrow> 'b" ("\<langle>_\<rangle>") where
+ "\<langle>f\<rangle> \<equiv> \<lambda>s. f"
+
+abbreviation (input)
+ pred_ex :: "('b \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (binder "EXS " 10) where
+ "EXS x. P x \<equiv> \<lambda>s. \<exists>x. P x s"
+
+abbreviation (input)
+ pred_all :: "('b \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool" (binder "ALLS " 10) where
+ "ALLS x. P x \<equiv> \<lambda>s. \<forall>x. P x s"
+
+
+section {* Associative/Commutative Monoid Basis of Separation Algebras *}
+
+class pre_sep_algebra = zero + plus +
+ fixes sep_disj :: "'a => 'a => bool" (infix "##" 60)
+
+ assumes sep_disj_zero [simp]: "x ## 0"
+ assumes sep_disj_commuteI: "x ## y \<Longrightarrow> y ## x"
+
+ assumes sep_add_zero [simp]: "x + 0 = x"
+ assumes sep_add_commute: "x ## y \<Longrightarrow> x + y = y + x"
+
+ assumes sep_add_assoc:
+ "\<lbrakk> x ## y; y ## z; x ## z \<rbrakk> \<Longrightarrow> (x + y) + z = x + (y + z)"
+begin
+
+lemma sep_disj_commute: "x ## y = y ## x"
+ by (blast intro: sep_disj_commuteI)
+
+lemma sep_add_left_commute:
+ assumes a: "a ## b" "b ## c" "a ## c"
+ shows "b + (a + c) = a + (b + c)" (is "?lhs = ?rhs")
+proof -
+ have "?lhs = b + a + c" using a
+ by (simp add: sep_add_assoc[symmetric] sep_disj_commute)
+ also have "... = a + b + c" using a
+ by (simp add: sep_add_commute sep_disj_commute)
+ also have "... = ?rhs" using a
+ by (simp add: sep_add_assoc sep_disj_commute)
+ finally show ?thesis .
+qed
+
+lemmas sep_add_ac = sep_add_assoc sep_add_commute sep_add_left_commute
+ sep_disj_commute (* nearly always necessary *)
+
+end
+
+
+section {* Separation Algebra as Defined by Calcagno et al. *}
+
+class sep_algebra = pre_sep_algebra +
+ assumes sep_disj_addD1: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## y"
+ assumes sep_disj_addI1: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x + y ## z"
+begin
+
+subsection {* Basic Construct Definitions and Abbreviations *}
+
+definition
+ sep_conj :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool)" (infixr "**" 35)
+ where
+ "P ** Q \<equiv> \<lambda>h. \<exists>x y. x ## y \<and> h = x + y \<and> P x \<and> Q y"
+
+notation
+ sep_conj (infixr "\<and>*" 35)
+
+definition
+ sep_empty :: "'a \<Rightarrow> bool" ("\<box>") where
+ "\<box> \<equiv> \<lambda>h. h = 0"
+
+definition
+ sep_impl :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool)" (infixr "\<longrightarrow>*" 25)
+ where
+ "P \<longrightarrow>* Q \<equiv> \<lambda>h. \<forall>h'. h ## h' \<and> P h' \<longrightarrow> Q (h + h')"
+
+definition
+ sep_substate :: "'a => 'a => bool" (infix "\<preceq>" 60) where
+ "x \<preceq> y \<equiv> \<exists>z. x ## z \<and> x + z = y"
+
+(* We want these to be abbreviations not definitions, because basic True and
+ False will occur by simplification in sep_conj terms *)
+abbreviation
+ "sep_true \<equiv> \<langle>True\<rangle>"
+
+abbreviation
+ "sep_false \<equiv> \<langle>False\<rangle>"
+
+definition
+ sep_list_conj :: "('a \<Rightarrow> bool) list \<Rightarrow> ('a \<Rightarrow> bool)" ("\<And>* _" [60] 90) where
+ "sep_list_conj Ps \<equiv> foldl (op **) \<box> Ps"
+
+
+subsection {* Disjunction/Addition Properties *}
+
+lemma disjoint_zero_sym [simp]: "0 ## x"
+ by (simp add: sep_disj_commute)
+
+lemma sep_add_zero_sym [simp]: "0 + x = x"
+ by (simp add: sep_add_commute)
+
+lemma sep_disj_addD2: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## z"
+ by (metis sep_disj_addD1 sep_add_ac)
+
+lemma sep_disj_addD: "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x ## y \<and> x ## z"
+ by (metis sep_disj_addD1 sep_disj_addD2)
+
+lemma sep_add_disjD: "\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> x ## z \<and> y ## z"
+ by (metis sep_disj_addD sep_disj_commuteI)
+
+lemma sep_disj_addI2:
+ "\<lbrakk> x ## y + z; y ## z \<rbrakk> \<Longrightarrow> x + z ## y"
+ by (metis sep_add_ac sep_disj_addI1)
+
+lemma sep_add_disjI1:
+ "\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> x + z ## y"
+ by (metis sep_add_ac sep_add_disjD sep_disj_addI2)
+
+lemma sep_add_disjI2:
+ "\<lbrakk> x + y ## z; x ## y \<rbrakk> \<Longrightarrow> z + y ## x"
+ by (metis sep_add_ac sep_add_disjD sep_disj_addI2)
+
+lemma sep_disj_addI3:
+ "x + y ## z \<Longrightarrow> x ## y \<Longrightarrow> x ## y + z"
+ by (metis sep_add_ac sep_add_disjD sep_add_disjI2)
+
+lemma sep_disj_add:
+ "\<lbrakk> y ## z; x ## y \<rbrakk> \<Longrightarrow> x ## y + z = x + y ## z"
+ by (metis sep_disj_addI1 sep_disj_addI3)
+
+
+subsection {* Substate Properties *}
+
+lemma sep_substate_disj_add:
+ "x ## y \<Longrightarrow> x \<preceq> x + y"
+ unfolding sep_substate_def by blast
+
+lemma sep_substate_disj_add':
+ "x ## y \<Longrightarrow> x \<preceq> y + x"
+ by (simp add: sep_add_ac sep_substate_disj_add)
+
+
+subsection {* Separating Conjunction Properties *}
+
+lemma sep_conjD:
+ "(P \<and>* Q) h \<Longrightarrow> \<exists>x y. x ## y \<and> h = x + y \<and> P x \<and> Q y"
+ by (simp add: sep_conj_def)
+
+lemma sep_conjE:
+ "\<lbrakk> (P ** Q) h; \<And>x y. \<lbrakk> P x; Q y; x ## y; h = x + y \<rbrakk> \<Longrightarrow> X \<rbrakk> \<Longrightarrow> X"
+ by (auto simp: sep_conj_def)
+
+lemma sep_conjI:
+ "\<lbrakk> P x; Q y; x ## y; h = x + y \<rbrakk> \<Longrightarrow> (P ** Q) h"
+ by (auto simp: sep_conj_def)
+
+lemma sep_conj_commuteI:
+ "(P ** Q) h \<Longrightarrow> (Q ** P) h"
+ by (auto intro!: sep_conjI elim!: sep_conjE simp: sep_add_ac)
+
+lemma sep_conj_commute:
+ "(P ** Q) = (Q ** P)"
+ by (rule ext) (auto intro: sep_conj_commuteI)
+
+lemma sep_conj_assoc:
+ "((P ** Q) ** R) = (P ** Q ** R)" (is "?lhs = ?rhs")
+proof (rule ext, rule iffI)
+ fix h
+ assume a: "?lhs h"
+ then obtain x y z where "P x" and "Q y" and "R z"
+ and "x ## y" and "x ## z" and "y ## z" and "x + y ## z"
+ and "h = x + y + z"
+ by (auto dest!: sep_conjD dest: sep_add_disjD)
+ moreover
+ then have "x ## y + z"
+ by (simp add: sep_disj_add)
+ ultimately
+ show "?rhs h"
+ by (auto simp: sep_add_ac intro!: sep_conjI)
+next
+ fix h
+ assume a: "?rhs h"
+ then obtain x y z where "P x" and "Q y" and "R z"
+ and "x ## y" and "x ## z" and "y ## z" and "x ## y + z"
+ and "h = x + y + z"
+ by (fastforce elim!: sep_conjE simp: sep_add_ac dest: sep_disj_addD)
+ thus "?lhs h"
+ by (metis sep_conj_def sep_disj_addI1)
+qed
+
+lemma sep_conj_impl:
+ "\<lbrakk> (P ** Q) h; \<And>h. P h \<Longrightarrow> P' h; \<And>h. Q h \<Longrightarrow> Q' h \<rbrakk> \<Longrightarrow> (P' ** Q') h"
+ by (erule sep_conjE, auto intro!: sep_conjI)
+
+lemma sep_conj_impl1:
+ assumes P: "\<And>h. P h \<Longrightarrow> I h"
+ shows "(P ** R) h \<Longrightarrow> (I ** R) h"
+ by (auto intro: sep_conj_impl P)
+
+lemma sep_globalise:
+ "\<lbrakk> (P ** R) h; (\<And>h. P h \<Longrightarrow> Q h) \<rbrakk> \<Longrightarrow> (Q ** R) h"
+ by (fast elim: sep_conj_impl)
+
+lemma sep_conj_trivial_strip2:
+ "Q = R \<Longrightarrow> (Q ** P) = (R ** P)" by simp
+
+lemma disjoint_subheaps_exist:
+ "\<exists>x y. x ## y \<and> h = x + y"
+ by (rule_tac x=0 in exI, auto)
+
+lemma sep_conj_left_commute: (* for permutative rewriting *)
+ "(P ** (Q ** R)) = (Q ** (P ** R))" (is "?x = ?y")
+proof -
+ have "?x = ((Q ** R) ** P)" by (simp add: sep_conj_commute)
+ also have "\<dots> = (Q ** (R ** P))" by (subst sep_conj_assoc, simp)
+ finally show ?thesis by (simp add: sep_conj_commute)
+qed
+
+lemmas sep_conj_ac = sep_conj_commute sep_conj_assoc sep_conj_left_commute
+
+lemma ab_semigroup_mult_sep_conj: "class.ab_semigroup_mult op **"
+ by (unfold_locales)
+ (auto simp: sep_conj_ac)
+
+lemma sep_empty_zero [simp,intro!]: "\<box> 0"
+ by (simp add: sep_empty_def)
+
+
+subsection {* Properties of @{text sep_true} and @{text sep_false} *}
+
+lemma sep_conj_sep_true:
+ "P h \<Longrightarrow> (P ** sep_true) h"
+ by (simp add: sep_conjI[where y=0])
+
+lemma sep_conj_sep_true':
+ "P h \<Longrightarrow> (sep_true ** P) h"
+ by (simp add: sep_conjI[where x=0])
+
+lemma sep_conj_true [simp]:
+ "(sep_true ** sep_true) = sep_true"
+ unfolding sep_conj_def
+ by (auto intro!: ext intro: disjoint_subheaps_exist)
+
+lemma sep_conj_false_right [simp]:
+ "(P ** sep_false) = sep_false"
+ by (force elim: sep_conjE intro!: ext)
+
+lemma sep_conj_false_left [simp]:
+ "(sep_false ** P) = sep_false"
+ by (subst sep_conj_commute) (rule sep_conj_false_right)
+
+
+
+subsection {* Properties of zero (@{const sep_empty}) *}
+
+lemma sep_conj_empty [simp]:
+ "(P ** \<box>) = P"
+ by (simp add: sep_conj_def sep_empty_def)
+
+lemma sep_conj_empty'[simp]:
+ "(\<box> ** P) = P"
+ by (subst sep_conj_commute, rule sep_conj_empty)
+
+lemma sep_conj_sep_emptyI:
+ "P h \<Longrightarrow> (P ** \<box>) h"
+ by simp
+
+lemma sep_conj_sep_emptyE:
+ "\<lbrakk> P s; (P ** \<box>) s \<Longrightarrow> (Q ** R) s \<rbrakk> \<Longrightarrow> (Q ** R) s"
+ by simp
+
+lemma monoid_add: "class.monoid_add (op **) \<box>"
+ by (unfold_locales) (auto simp: sep_conj_ac)
+
+lemma comm_monoid_add: "class.comm_monoid_add op ** \<box>"
+ by (unfold_locales) (auto simp: sep_conj_ac)
+
+
+subsection {* Properties of top (@{text sep_true}) *}
+
+lemma sep_conj_true_P [simp]:
+ "(sep_true ** (sep_true ** P)) = (sep_true ** P)"
+ by (simp add: sep_conj_assoc[symmetric])
+
+lemma sep_conj_disj:
+ "((P or Q) ** R) = ((P ** R) or (Q ** R))"
+ by (auto simp: sep_conj_def intro!: ext)
+
+lemma sep_conj_sep_true_left:
+ "(P ** Q) h \<Longrightarrow> (sep_true ** Q) h"
+ by (erule sep_conj_impl, simp+)
+
+lemma sep_conj_sep_true_right:
+ "(P ** Q) h \<Longrightarrow> (P ** sep_true) h"
+ by (subst (asm) sep_conj_commute, drule sep_conj_sep_true_left,
+ simp add: sep_conj_ac)
+
+
+subsection {* Separating Conjunction with Quantifiers *}
+
+lemma sep_conj_conj:
+ "((P and Q) ** R) h \<Longrightarrow> ((P ** R) and (Q ** R)) h"
+ by (force intro: sep_conjI elim!: sep_conjE)
+
+lemma sep_conj_exists1:
+ "((EXS x. P x) ** Q) = (EXS x. (P x ** Q))"
+ by (force intro!: ext intro: sep_conjI elim: sep_conjE)
+
+lemma sep_conj_exists2:
+ "(P ** (EXS x. Q x)) = (EXS x. P ** Q x)"
+ by (force intro!: sep_conjI ext elim!: sep_conjE)
+
+lemmas sep_conj_exists = sep_conj_exists1 sep_conj_exists2
+
+lemma sep_conj_spec:
+ "((ALLS x. P x) ** Q) h \<Longrightarrow> (P x ** Q) h"
+ by (force intro: sep_conjI elim: sep_conjE)
+
+
+subsection {* Properties of Separating Implication *}
+
+lemma sep_implI:
+ assumes a: "\<And>h'. \<lbrakk> h ## h'; P h' \<rbrakk> \<Longrightarrow> Q (h + h')"
+ shows "(P \<longrightarrow>* Q) h"
+ unfolding sep_impl_def by (auto elim: a)
+
+lemma sep_implD:
+ "(x \<longrightarrow>* y) h \<Longrightarrow> \<forall>h'. h ## h' \<and> x h' \<longrightarrow> y (h + h')"
+ by (force simp: sep_impl_def)
+
+lemma sep_implE:
+ "(x \<longrightarrow>* y) h \<Longrightarrow> (\<forall>h'. h ## h' \<and> x h' \<longrightarrow> y (h + h') \<Longrightarrow> Q) \<Longrightarrow> Q"
+ by (auto dest: sep_implD)
+
+lemma sep_impl_sep_true [simp]:
+ "(P \<longrightarrow>* sep_true) = sep_true"
+ by (force intro!: sep_implI ext)
+
+lemma sep_impl_sep_false [simp]:
+ "(sep_false \<longrightarrow>* P) = sep_true"
+ by (force intro!: sep_implI ext)
+
+lemma sep_impl_sep_true_P:
+ "(sep_true \<longrightarrow>* P) h \<Longrightarrow> P h"
+ by (clarsimp dest!: sep_implD elim!: allE[where x=0])
+
+lemma sep_impl_sep_true_false [simp]:
+ "(sep_true \<longrightarrow>* sep_false) = sep_false"
+ by (force intro!: ext dest: sep_impl_sep_true_P)
+
+lemma sep_conj_sep_impl:
+ "\<lbrakk> P h; \<And>h. (P ** Q) h \<Longrightarrow> R h \<rbrakk> \<Longrightarrow> (Q \<longrightarrow>* R) h"
+proof (rule sep_implI)
+ fix h' h
+ assume "P h" and "h ## h'" and "Q h'"
+ hence "(P ** Q) (h + h')" by (force intro: sep_conjI)
+ moreover assume "\<And>h. (P ** Q) h \<Longrightarrow> R h"
+ ultimately show "R (h + h')" by simp
+qed
+
+lemma sep_conj_sep_impl2:
+ "\<lbrakk> (P ** Q) h; \<And>h. P h \<Longrightarrow> (Q \<longrightarrow>* R) h \<rbrakk> \<Longrightarrow> R h"
+ by (force dest: sep_implD elim: sep_conjE)
+
+lemma sep_conj_sep_impl_sep_conj2:
+ "(P ** R) h \<Longrightarrow> (P ** (Q \<longrightarrow>* (Q ** R))) h"
+ by (erule (1) sep_conj_impl, erule sep_conj_sep_impl, simp add: sep_conj_ac)
+
+
+subsection {* Pure assertions *}
+
+definition
+ pure :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
+ "pure P \<equiv> \<forall>h h'. P h = P h'"
+
+lemma pure_sep_true:
+ "pure sep_true"
+ by (simp add: pure_def)
+
+lemma pure_sep_false:
+ "pure sep_true"
+ by (simp add: pure_def)
+
+lemma pure_split:
+ "pure P = (P = sep_true \<or> P = sep_false)"
+ by (force simp: pure_def intro!: ext)
+
+lemma pure_sep_conj:
+ "\<lbrakk> pure P; pure Q \<rbrakk> \<Longrightarrow> pure (P \<and>* Q)"
+ by (force simp: pure_split)
+
+lemma pure_sep_impl:
+ "\<lbrakk> pure P; pure Q \<rbrakk> \<Longrightarrow> pure (P \<longrightarrow>* Q)"
+ by (force simp: pure_split)
+
+lemma pure_conj_sep_conj:
+ "\<lbrakk> (P and Q) h; pure P \<or> pure Q \<rbrakk> \<Longrightarrow> (P \<and>* Q) h"
+ by (metis pure_def sep_add_zero sep_conjI sep_conj_commute sep_disj_zero)
+
+lemma pure_sep_conj_conj:
+ "\<lbrakk> (P \<and>* Q) h; pure P; pure Q \<rbrakk> \<Longrightarrow> (P and Q) h"
+ by (force simp: pure_split)
+
+lemma pure_conj_sep_conj_assoc:
+ "pure P \<Longrightarrow> ((P and Q) \<and>* R) = (P and (Q \<and>* R))"
+ by (auto simp: pure_split)
+
+lemma pure_sep_impl_impl:
+ "\<lbrakk> (P \<longrightarrow>* Q) h; pure P \<rbrakk> \<Longrightarrow> P h \<longrightarrow> Q h"
+ by (force simp: pure_split dest: sep_impl_sep_true_P)
+
+lemma pure_impl_sep_impl:
+ "\<lbrakk> P h \<longrightarrow> Q h; pure P; pure Q \<rbrakk> \<Longrightarrow> (P \<longrightarrow>* Q) h"
+ by (force simp: pure_split)
+
+lemma pure_conj_right: "(Q \<and>* (\<langle>P'\<rangle> and Q')) = (\<langle>P'\<rangle> and (Q \<and>* Q'))"
+ by (rule ext, rule, rule, clarsimp elim!: sep_conjE)
+ (erule sep_conj_impl, auto)
+
+lemma pure_conj_right': "(Q \<and>* (P' and \<langle>Q'\<rangle>)) = (\<langle>Q'\<rangle> and (Q \<and>* P'))"
+ by (simp add: conj_comms pure_conj_right)
+
+lemma pure_conj_left: "((\<langle>P'\<rangle> and Q') \<and>* Q) = (\<langle>P'\<rangle> and (Q' \<and>* Q))"
+ by (simp add: pure_conj_right sep_conj_ac)
+
+lemma pure_conj_left': "((P' and \<langle>Q'\<rangle>) \<and>* Q) = (\<langle>Q'\<rangle> and (P' \<and>* Q))"
+ by (subst conj_comms, subst pure_conj_left, simp)
+
+lemmas pure_conj = pure_conj_right pure_conj_right' pure_conj_left
+ pure_conj_left'
+
+declare pure_conj[simp add]
+
+
+subsection {* Intuitionistic assertions *}
+
+definition intuitionistic :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
+ "intuitionistic P \<equiv> \<forall>h h'. P h \<and> h \<preceq> h' \<longrightarrow> P h'"
+
+lemma intuitionisticI:
+ "(\<And>h h'. \<lbrakk> P h; h \<preceq> h' \<rbrakk> \<Longrightarrow> P h') \<Longrightarrow> intuitionistic P"
+ by (unfold intuitionistic_def, fast)
+
+lemma intuitionisticD:
+ "\<lbrakk> intuitionistic P; P h; h \<preceq> h' \<rbrakk> \<Longrightarrow> P h'"
+ by (unfold intuitionistic_def, fast)
+
+lemma pure_intuitionistic:
+ "pure P \<Longrightarrow> intuitionistic P"
+ by (clarsimp simp: intuitionistic_def pure_def, fast)
+
+lemma intuitionistic_conj:
+ "\<lbrakk> intuitionistic P; intuitionistic Q \<rbrakk> \<Longrightarrow> intuitionistic (P and Q)"
+ by (force intro: intuitionisticI dest: intuitionisticD)
+
+lemma intuitionistic_disj:
+ "\<lbrakk> intuitionistic P; intuitionistic Q \<rbrakk> \<Longrightarrow> intuitionistic (P or Q)"
+ by (force intro: intuitionisticI dest: intuitionisticD)
+
+lemma intuitionistic_forall:
+ "(\<And>x. intuitionistic (P x)) \<Longrightarrow> intuitionistic (ALLS x. P x)"
+ by (force intro: intuitionisticI dest: intuitionisticD)
+
+lemma intuitionistic_exists:
+ "(\<And>x. intuitionistic (P x)) \<Longrightarrow> intuitionistic (EXS x. P x)"
+ by (force intro: intuitionisticI dest: intuitionisticD)
+
+lemma intuitionistic_sep_conj_sep_true:
+ "intuitionistic (sep_true \<and>* P)"
+proof (rule intuitionisticI)
+ fix h h' r
+ assume a: "(sep_true \<and>* P) h"
+ then obtain x y where P: "P y" and h: "h = x + y" and xyd: "x ## y"
+ by - (drule sep_conjD, clarsimp)
+ moreover assume a2: "h \<preceq> h'"
+ then obtain z where h': "h' = h + z" and hzd: "h ## z"
+ by (clarsimp simp: sep_substate_def)
+
+ moreover have "(P \<and>* sep_true) (y + (x + z))"
+ using P h hzd xyd
+ by (metis sep_add_disjI1 sep_disj_commute sep_conjI)
+ ultimately show "(sep_true \<and>* P) h'" using hzd
+ by (auto simp: sep_conj_commute sep_add_ac dest!: sep_disj_addD)
+qed
+
+lemma intuitionistic_sep_impl_sep_true:
+ "intuitionistic (sep_true \<longrightarrow>* P)"
+proof (rule intuitionisticI)
+ fix h h'
+ assume imp: "(sep_true \<longrightarrow>* P) h" and hh': "h \<preceq> h'"
+
+ from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"
+ by (clarsimp simp: sep_substate_def)
+ show "(sep_true \<longrightarrow>* P) h'" using imp h' hzd
+ apply (clarsimp dest!: sep_implD)
+ apply (metis sep_add_assoc sep_add_disjD sep_disj_addI3 sep_implI)
+ done
+qed
+
+lemma intuitionistic_sep_conj:
+ assumes ip: "intuitionistic (P::('a \<Rightarrow> bool))"
+ shows "intuitionistic (P \<and>* Q)"
+proof (rule intuitionisticI)
+ fix h h'
+ assume sc: "(P \<and>* Q) h" and hh': "h \<preceq> h'"
+
+ from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"
+ by (clarsimp simp: sep_substate_def)
+
+ from sc obtain x y where px: "P x" and qy: "Q y"
+ and h: "h = x + y" and xyd: "x ## y"
+ by (clarsimp simp: sep_conj_def)
+
+ have "x ## z" using hzd h xyd
+ by (metis sep_add_disjD)
+
+ with ip px have "P (x + z)"
+ by (fastforce elim: intuitionisticD sep_substate_disj_add)
+
+ thus "(P \<and>* Q) h'" using h' h hzd qy xyd
+ by (metis (full_types) sep_add_commute sep_add_disjD sep_add_disjI2
+ sep_add_left_commute sep_conjI)
+qed
+
+lemma intuitionistic_sep_impl:
+ assumes iq: "intuitionistic Q"
+ shows "intuitionistic (P \<longrightarrow>* Q)"
+proof (rule intuitionisticI)
+ fix h h'
+ assume imp: "(P \<longrightarrow>* Q) h" and hh': "h \<preceq> h'"
+
+ from hh' obtain z where h': "h' = h + z" and hzd: "h ## z"
+ by (clarsimp simp: sep_substate_def)
+
+ {
+ fix x
+ assume px: "P x" and hzx: "h + z ## x"
+
+ have "h + x \<preceq> h + x + z" using hzx hzd
+ by (metis sep_add_disjI1 sep_substate_def)
+
+ with imp hzd iq px hzx
+ have "Q (h + z + x)"
+ by (metis intuitionisticD sep_add_assoc sep_add_ac sep_add_disjD sep_implE)
+ }
+
+ with imp h' hzd iq show "(P \<longrightarrow>* Q) h'"
+ by (fastforce intro: sep_implI)
+qed
+
+lemma strongest_intuitionistic:
+ "\<not> (\<exists>Q. (\<forall>h. (Q h \<longrightarrow> (P \<and>* sep_true) h)) \<and> intuitionistic Q \<and>
+ Q \<noteq> (P \<and>* sep_true) \<and> (\<forall>h. P h \<longrightarrow> Q h))"
+ by (fastforce intro!: ext sep_substate_disj_add
+ dest!: sep_conjD intuitionisticD)
+
+lemma weakest_intuitionistic:
+ "\<not> (\<exists>Q. (\<forall>h. ((sep_true \<longrightarrow>* P) h \<longrightarrow> Q h)) \<and> intuitionistic Q \<and>
+ Q \<noteq> (sep_true \<longrightarrow>* P) \<and> (\<forall>h. Q h \<longrightarrow> P h))"
+ apply (clarsimp intro!: ext)
+ apply (rule iffI)
+ apply (rule sep_implI)
+ apply (drule_tac h="x" and h'="x + h'" in intuitionisticD)
+ apply (clarsimp simp: sep_add_ac sep_substate_disj_add)+
+ done
+
+lemma intuitionistic_sep_conj_sep_true_P:
+ "\<lbrakk> (P \<and>* sep_true) s; intuitionistic P \<rbrakk> \<Longrightarrow> P s"
+ by (force dest: intuitionisticD elim: sep_conjE sep_substate_disj_add)
+
+lemma intuitionistic_sep_conj_sep_true_simp:
+ "intuitionistic P \<Longrightarrow> (P \<and>* sep_true) = P"
+ by (fast intro!: sep_conj_sep_true ext
+ elim: intuitionistic_sep_conj_sep_true_P)
+
+lemma intuitionistic_sep_impl_sep_true_P:
+ "\<lbrakk> P h; intuitionistic P \<rbrakk> \<Longrightarrow> (sep_true \<longrightarrow>* P) h"
+ by (force intro!: sep_implI dest: intuitionisticD
+ intro: sep_substate_disj_add)
+
+lemma intuitionistic_sep_impl_sep_true_simp:
+ "intuitionistic P \<Longrightarrow> (sep_true \<longrightarrow>* P) = P"
+ by (fast intro!: ext
+ elim: sep_impl_sep_true_P intuitionistic_sep_impl_sep_true_P)
+
+
+subsection {* Strictly exact assertions *}
+
+definition strictly_exact :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
+ "strictly_exact P \<equiv> \<forall>h h'. P h \<and> P h' \<longrightarrow> h = h'"
+
+lemma strictly_exactD:
+ "\<lbrakk> strictly_exact P; P h; P h' \<rbrakk> \<Longrightarrow> h = h'"
+ by (unfold strictly_exact_def, fast)
+
+lemma strictly_exactI:
+ "(\<And>h h'. \<lbrakk> P h; P h' \<rbrakk> \<Longrightarrow> h = h') \<Longrightarrow> strictly_exact P"
+ by (unfold strictly_exact_def, fast)
+
+lemma strictly_exact_sep_conj:
+ "\<lbrakk> strictly_exact P; strictly_exact Q \<rbrakk> \<Longrightarrow> strictly_exact (P \<and>* Q)"
+ apply (rule strictly_exactI)
+ apply (erule sep_conjE)+
+ apply (drule_tac h="x" and h'="xa" in strictly_exactD, assumption+)
+ apply (drule_tac h="y" and h'="ya" in strictly_exactD, assumption+)
+ apply clarsimp
+ done
+
+lemma strictly_exact_conj_impl:
+ "\<lbrakk> (Q \<and>* sep_true) h; P h; strictly_exact Q \<rbrakk> \<Longrightarrow> (Q \<and>* (Q \<longrightarrow>* P)) h"
+ by (force intro: sep_conjI sep_implI dest: strictly_exactD elim!: sep_conjE
+ simp: sep_add_commute sep_add_assoc)
+
+end
+
+interpretation sep: ab_semigroup_mult "op **"
+ by (rule ab_semigroup_mult_sep_conj)
+
+interpretation sep: comm_monoid_add "op **" \<box>
+ by (rule comm_monoid_add)
+
+
+section {* Separation Algebra with Stronger, but More Intuitive Disjunction Axiom *}
+
+class stronger_sep_algebra = pre_sep_algebra +
+ assumes sep_add_disj_eq [simp]: "y ## z \<Longrightarrow> x ## y + z = (x ## y \<and> x ## z)"
+begin
+
+lemma sep_disj_add_eq [simp]: "x ## y \<Longrightarrow> x + y ## z = (x ## z \<and> y ## z)"
+ by (metis sep_add_disj_eq sep_disj_commute)
+
+subclass sep_algebra by default auto
+
+end
+
+
+section {* Folding separating conjunction over lists of predicates *}
+
+lemma sep_list_conj_Nil [simp]: "\<And>* [] = \<box>"
+ by (simp add: sep_list_conj_def)
+
+(* apparently these two are rarely used and had to be removed from List.thy *)
+lemma (in semigroup_add) foldl_assoc:
+shows "foldl op+ (x+y) zs = x + (foldl op+ y zs)"
+by (induct zs arbitrary: y) (simp_all add:add_assoc)
+
+lemma (in monoid_add) foldl_absorb0:
+shows "x + (foldl op+ 0 zs) = foldl op+ x zs"
+by (induct zs) (simp_all add:foldl_assoc)
+
+lemma sep_list_conj_Cons [simp]: "\<And>* (x#xs) = (x ** \<And>* xs)"
+ by (simp add: sep_list_conj_def sep.foldl_absorb0)
+
+lemma sep_list_conj_append [simp]: "\<And>* (xs @ ys) = (\<And>* xs ** \<And>* ys)"
+ by (simp add: sep_list_conj_def sep.foldl_absorb0)
+
+lemma (in comm_monoid_add) foldl_map_filter:
+ "foldl op + 0 (map f (filter P xs)) +
+ foldl op + 0 (map f (filter (not P) xs))
+ = foldl op + 0 (map f xs)"
+proof (induct xs)
+ case Nil thus ?case by clarsimp
+next
+ case (Cons x xs)
+ hence IH: "foldl op + 0 (map f xs) =
+ foldl op + 0 (map f (filter P xs)) +
+ foldl op + 0 (map f [x\<leftarrow>xs . \<not> P x])"
+ by (simp only: eq_commute)
+
+ have foldl_Cons':
+ "\<And>x xs. foldl op + 0 (x # xs) = x + (foldl op + 0 xs)"
+ by (simp, subst foldl_absorb0[symmetric], rule refl)
+
+ { assume "P x"
+ hence ?case by (auto simp del: foldl_Cons simp add: foldl_Cons' IH add_ac)
+ } moreover {
+ assume "\<not> P x"
+ hence ?case by (auto simp del: foldl_Cons simp add: foldl_Cons' IH add_ac)
+ }
+ ultimately show ?case by blast
+qed
+
+
+section {* Separation Algebra with a Cancellative Monoid (for completeness) *}
+
+text {*
+ Separation algebra with a cancellative monoid. The results of being a precise
+ assertion (distributivity over separating conjunction) require this.
+ although we never actually use this property in our developments, we keep
+ it here for completeness.
+ *}
+class cancellative_sep_algebra = sep_algebra +
+ assumes sep_add_cancelD: "\<lbrakk> x + z = y + z ; x ## z ; y ## z \<rbrakk> \<Longrightarrow> x = y"
+begin
+
+definition
+ (* In any heap, there exists at most one subheap for which P holds *)
+ precise :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where
+ "precise P = (\<forall>h hp hp'. hp \<preceq> h \<and> P hp \<and> hp' \<preceq> h \<and> P hp' \<longrightarrow> hp = hp')"
+
+lemma "precise (op = s)"
+ by (metis (full_types) precise_def)
+
+lemma sep_add_cancel:
+ "x ## z \<Longrightarrow> y ## z \<Longrightarrow> (x + z = y + z) = (x = y)"
+ by (metis sep_add_cancelD)
+
+lemma precise_distribute:
+ "precise P = (\<forall>Q R. ((Q and R) \<and>* P) = ((Q \<and>* P) and (R \<and>* P)))"
+proof (rule iffI)
+ assume pp: "precise P"
+ {
+ fix Q R
+ fix h hp hp' s
+
+ { assume a: "((Q and R) \<and>* P) s"
+ hence "((Q \<and>* P) and (R \<and>* P)) s"
+ by (fastforce dest!: sep_conjD elim: sep_conjI)
+ }
+ moreover
+ { assume qs: "(Q \<and>* P) s" and qr: "(R \<and>* P) s"
+
+ from qs obtain x y where sxy: "s = x + y" and xy: "x ## y"
+ and x: "Q x" and y: "P y"
+ by (fastforce dest!: sep_conjD)
+ from qr obtain x' y' where sxy': "s = x' + y'" and xy': "x' ## y'"
+ and x': "R x'" and y': "P y'"
+ by (fastforce dest!: sep_conjD)
+
+ from sxy have ys: "y \<preceq> x + y" using xy
+ by (fastforce simp: sep_substate_disj_add' sep_disj_commute)
+ from sxy' have ys': "y' \<preceq> x' + y'" using xy'
+ by (fastforce simp: sep_substate_disj_add' sep_disj_commute)
+
+ from pp have yy: "y = y'" using sxy sxy' xy xy' y y' ys ys'
+ by (fastforce simp: precise_def)
+
+ hence "x = x'" using sxy sxy' xy xy'
+ by (fastforce dest!: sep_add_cancelD)
+
+ hence "((Q and R) \<and>* P) s" using sxy x x' yy y' xy'
+ by (fastforce intro: sep_conjI)
+ }
+ ultimately
+ have "((Q and R) \<and>* P) s = ((Q \<and>* P) and (R \<and>* P)) s" using pp by blast
+ }
+ thus "\<forall>Q R. ((Q and R) \<and>* P) = ((Q \<and>* P) and (R \<and>* P))" by (blast intro!: ext)
+
+next
+ assume a: "\<forall>Q R. ((Q and R) \<and>* P) = ((Q \<and>* P) and (R \<and>* P))"
+ thus "precise P"
+ proof (clarsimp simp: precise_def)
+ fix h hp hp' Q R
+ assume hp: "hp \<preceq> h" and hp': "hp' \<preceq> h" and php: "P hp" and php': "P hp'"
+
+ obtain z where hhp: "h = hp + z" and hpz: "hp ## z" using hp
+ by (clarsimp simp: sep_substate_def)
+ obtain z' where hhp': "h = hp' + z'" and hpz': "hp' ## z'" using hp'
+ by (clarsimp simp: sep_substate_def)
+
+ have h_eq: "z' + hp' = z + hp" using hhp hhp' hpz hpz'
+ by (fastforce simp: sep_add_ac)
+
+ from hhp hhp' a hpz hpz' h_eq
+ have "\<forall>Q R. ((Q and R) \<and>* P) (z + hp) = ((Q \<and>* P) and (R \<and>* P)) (z' + hp')"
+ by (fastforce simp: h_eq sep_add_ac sep_conj_commute)
+
+ hence "((op = z and op = z') \<and>* P) (z + hp) =
+ ((op = z \<and>* P) and (op = z' \<and>* P)) (z' + hp')" by blast
+
+ thus "hp = hp'" using php php' hpz hpz' h_eq
+ by (fastforce dest!: iffD2 cong: conj_cong
+ simp: sep_add_ac sep_add_cancel sep_conj_def)
+ qed
+qed
+
+lemma strictly_precise: "strictly_exact P \<Longrightarrow> precise P"
+ by (metis precise_def strictly_exactD)
+
+end
+
+end