implemented new UF in scala; made some small adjustments to the definitions in the theory
files
package object recs2 {
//Recursive Functions
abstract class Rec {
def eval(ns: List[Int]) : Int
def eval(ns: Int*) : Int = eval(ns.toList)
//syntactic convenience for composition
def o(r: Rec) = Cn(r.arity, this, List(r))
def o(r: Rec, f: Rec) = Cn(r.arity, this, List(r, f))
def o(r: Rec, f: Rec, g: Rec) = Cn(r.arity, this, List(r, f, g))
def o(r: Rec, f: Rec, g: Rec, h: Rec) = Cn(r.arity, this, List(r, f, g, h))
def arity : Int
}
case object Z extends Rec {
override def eval(ns: List[Int]) = ns match {
case n::Nil => 0
case _ => throw new IllegalArgumentException("Z args: " + ns)
}
override def arity = 1
}
case object S extends Rec {
override def eval(ns: List[Int]) = ns match {
case n::Nil => n + 1
case _ => throw new IllegalArgumentException("S args: " + ns)
}
override def arity = 1
}
case class Id(n: Int, m: Int) extends Rec {
require(m < n, println("Id m < n:" + m + " " + n))
override def eval(ns: List[Int]) =
if (ns.length == n && m < n) ns(m)
else throw new IllegalArgumentException("Id args: " + ns + "," + n + "," + m)
override def arity = n
}
case class Cn(n: Int, f: Rec, gs: List[Rec]) extends Rec {
require(f.arity == gs.length,
println("CN " + f + " " + gs.mkString(",") + "\n" +
"f.arity gs.length:" + f.arity + " " + gs.length))
override def eval(ns: List[Int]) =
if (ns.length == n && gs.forall(_.arity == n) && f.arity == gs.length) f.eval(gs.map(_.eval(ns)))
else {
val msg = List("Cn f: " + f,
"n: " + n,
"f arity: " + f.arity,
"ns-args: " + ns,
"gs arities: " + gs.map(_.arity).mkString(", "),
"gs: " + gs.mkString(", "),
"ns.length == n " + (ns.length == n).toString,
"gs.forall(_.arity == n) " + (gs.forall(_.arity == n)).toString,
"f.arity == gs.length " + (f.arity == gs.length).toString
)
throw new IllegalArgumentException(msg.mkString("\n"))
}
override def arity = n
override def toString = f.toString + gs.map(_.toString).mkString ("(",", ", ")")
}
// syntactic convenience
object Cn {
def apply(n: Int, f: Rec, g: Rec) : Rec = new Cn(n, f, List(g))
}
case class Pr(n: Int, f: Rec, g: Rec) extends Rec {
override def eval(ns: List[Int]) =
if (ns.length == n + 1) {
if (ns.head == 0) f.eval(ns.tail)
else {
val r = Pr(n, f, g).eval(ns.head - 1 :: ns.tail)
g.eval(ns.head - 1 :: r :: ns.tail)
}
}
else {
val msg = List("Pr f: " + f,
"g: " + g,
"n: " + n,
"f arity: " + f.arity,
"g arity: " + g.arity,
"ns-args: " + ns)
throw new IllegalArgumentException(msg.mkString("\n"))
}
override def arity = n + 1
override def toString = "Pr(" + f.toString + ", " + g.toString + ")"
}
// syntactic convenience
object Pr {
def apply(r: Rec, f: Rec) : Rec = Pr(r.arity, r, f)
}
case class Mn(n: Int, f: Rec) extends Rec {
def evaln(ns: List[Int], n: Int) : Int =
if (f.eval(n :: ns) == 0) n else evaln(ns, n + 1)
override def eval(ns: List[Int]) =
if (ns.length == n) evaln(ns, 0)
else throw new IllegalArgumentException("Mn: args")
override def arity = n
}
object Mn {
def apply(f: Rec) : Rec = Mn(f.arity - 1, f)
}
// Recursive Function examples
def Const(n: Int) : Rec = n match {
case 0 => Z
case n => S o Const(n - 1)
}
def Swap(f: Rec) = f o (Id(2, 1), Id(2, 0))
val Add = Pr(Id(1, 0), S o Id(3, 1))
val Mult = Pr(Z, Add o (Id(3, 1), Id(3, 2)))
val Power = Swap(Pr(Const(1), Mult o (Id(3, 1), Id(3, 2))))
val Fact = (Pr (Const(1), Mult o (S o Id(3, 0), Id(3, 1)))) o (Id(1, 0), Id(1, 0))
val Pred = Pr(Z, Id(3, 0)) o (Id(1, 0), Id(1, 0))
val Minus = Swap(Pr(Id(1, 0), Pred o Id(3, 1)))
val Sign = Minus o (Const(1), Minus o (Const(1), Id(1, 0)))
val Not = Minus o (Const(1), Id(1, 0))
val Eq = Minus o (Const(1) o Id(2, 0), Add o (Minus, Swap(Minus)))
val Noteq = Not o Eq
val Conj = Sign o Mult
val Disj = Sign o Add
val Imp = Disj o (Not o Id(2, 0), Id(2, 1))
val Ifz = Pr(Id(2, 0), Id(4, 3))
val If = Ifz o (Not o Id(3, 0), Id(3, 1), Id (3, 2))
val Less = Sign o (Swap(Minus))
val Le = Disj o (Less, Eq)
def Sigma1(f: Rec) = Pr(f o (Z o (Id(1, 0)), Id(1, 0)),
Add o (Id(3, 1), f o (S o Id(3, 0), Id(3, 2))))
def Sigma2(f: Rec) = Pr(f o (Z o (Id(2, 0)), Id(2, 0), Id(2, 1)),
Add o (Id(4, 1), f o (S o Id(4, 0), Id(4, 2), Id(4, 3))))
def Accum1(f: Rec) = Pr(f o (Z o (Id(1, 0)), Id(1, 0)),
Mult o (Id(3, 1), f o (S o Id(3, 0), Id(3, 2))))
def Accum2(f: Rec) = Pr(f o (Z o (Id(2, 0)), Id(2, 0), Id(2, 1)),
Mult o (Id(4, 1), f o (S o Id(4, 0), Id(4, 2), Id(4, 3))))
def Accum3(f: Rec) = Pr(f o (Z o (Id(3, 0)), Id(3, 0), Id(3, 1), Id(3, 2)),
Mult o (Id(5, 1), f o (S o Id(5, 0), Id(5, 2), Id(5, 3), Id(5, 4))))
def All1(f: Rec) = Sign o (Accum1(f))
def All2(f: Rec) = Sign o (Accum2(f))
def All3(f: Rec) = Sign o (Accum3(f))
def All1_less(f: Rec) = {
val cond1 = Eq o (Id(3, 0), Id(3, 1))
val cond2 = f o (Id(3, 0), Id(3, 2))
All2(Disj o (cond1, cond2)) o (Id(2, 0), Id(2, 0), Id(2, 1))
}
def All2_less(f: Rec) = {
val cond1 = Eq o (Id(4, 0), Id(4, 1))
val cond2 = f o (Id(4, 0), Id(4, 2), Id(4, 3))
All3(Disj o (cond1, cond2)) o (Id(3, 0), Id(3, 0), Id(3, 1), Id(3, 2))
}
def Ex1(f: Rec) = Sign o (Sigma1(f))
def Ex2(f: Rec) = Sign o (Sigma2(f))
val Quo = {
val lhs = S o (Id(3, 0))
val rhs = Mult o (Id(3, 2), S o (Id(3, 1)))
val cond = Eq o (lhs, rhs)
val if_stmt = If o (cond, S o (Id(3, 1)), Id(3, 1))
Pr(Z, if_stmt)
}
def Iter(f: Rec) = Pr(Id(1, 0), f o (Id(3, 1)))
def Max1(f: Rec) = Pr(Z, Ifz o (f o (S o (Id(3, 0)), Id(3, 2)), S o (Id(3, 0)), Id(3, 1)))
def Max2(f: Rec) = Pr(Z, Ifz o (f o (S o (Id(4, 0)), Id(4, 2), Id(4, 3)), S o (Id(4, 0)), Id(4, 1)))
val Triangle = Quo o (Mult o (Id(1, 0), S), Const(2))
val MaxTriangle = {
val cond = Not o (Le o (Triangle o (Id(2, 0)), Id(2, 1)))
Max1(cond) o (Id(1, 0), Id(1, 0))
}
val MaxTriangle2 = {
Pred o Mn(Le o (Triangle o (Id(2, 0)), Id(2, 1)))
}
case object MaxTriangleFast extends Rec {
def triangle(n: Int) : Int = (n * (n + 1)) / 2
def search(m: Int, n: Int) : Int = {
if (triangle(n) > m) n - 1 else search(m, n + 1)
}
override def eval(ns: List[Int]) = ns match {
case n::Nil => search(n, 0)
case _ => throw new IllegalArgumentException("MT args: " + ns)
}
override def arity = 1
}
case object TriangleFast extends Rec {
def triangle(n: Int) : Int = (n * (n + 1)) / 2
override def eval(ns: List[Int]) = ns match {
case n::Nil => triangle(n)
case _ => throw new IllegalArgumentException("Tr args: " + ns)
}
override def arity = 1
}
//(0 until 200).map(MaxTriangleFast.eval(_))
val Penc = Add o (TriangleFast o (Add o (Id(2, 0), Id(2, 1))), Id(2, 0))
val Pdec1 = Minus o (Id(1, 0), Triangle o (MaxTriangle o (Id(1, 0))))
val Pdec2 = Minus o (MaxTriangle o (Id(1, 0)), Pdec1 o (Id(1, 0)))
def Lenc(fs: List[Rec]) : Rec = fs match {
case Nil => Z
case f::fs => Penc o (S o (f), Lenc(fs))
}
val Ldec = Pred o (Pdec1 o (Swap (Iter(Pdec2))))
val Within = Less o (Z o (Id(2, 0)), Swap (Iter(Pdec2)))
val Enclen = (Max1(Not o (Within o (Id(2, 1), Pred o (Id(2, 0)))))) o (Id(1, 0), Id(1, 0))
val Read = Ldec o (Id(1, 0), Const(0))
val Write = Penc o (S o (Id(2, 0)), Pdec2 o (Id(2, 1)))
val Newleft = {
val cond0 = Eq o (Id(3, 2), Const(0))
val cond1 = Eq o (Id(3, 2), Const(1))
val cond2 = Eq o (Id(3, 2), Const(2))
val cond3 = Eq o (Id(3, 2), Const(3))
val case3 = Penc o (S o (Read o (Id(3, 1))), Id(3, 0))
If o (cond0,
Id(3, 0),
If o (cond1,
Id(3, 0),
If o (cond2,
Pdec2 o (Id(3, 0)),
If o (cond3, case3, Id(3, 0)))))
}
val Newright = {
val cond0 = Eq o (Id(3, 2), Const(0))
val cond1 = Eq o (Id(3, 2), Const(1))
val cond2 = Eq o (Id(3, 2), Const(2))
val cond3 = Eq o (Id(3, 2), Const(3))
val case2 = Penc o (S o (Read o (Id(3, 0))), Id(3, 1))
If o (cond0,
Write o (Const(0), Id(3, 1)),
If o (cond1,
Write o (Const(1), Id(3, 1)),
If o (cond2,
case2,
If o (cond3, Pdec2 o (Id(3, 1)), Id(3, 0)))))
}
val Actn = Swap (Pr(Pdec1 o (Pdec1 o (Id(1, 0))), Pdec1 o (Pdec2 o (Id(3, 2)))))
val Action = {
val cond1 = Noteq o (Id(3, 1), Z)
val cond2 = Within o (Id(3, 0), Pred o (Id(3, 1)))
val if_branch = Actn o (Ldec o (Id(3, 0), Pred o (Id(3, 1))), Id(3, 2))
If o (Conj o (cond1, cond2), if_branch, Const(4))
}
val Newstat = Swap (Pr (Pdec2 o (Pdec1 o (Id(1, 0))),
Pdec2 o (Pdec2 o (Id(3, 2)))))
val Newstate = {
val cond = Noteq o (Id(3, 1), Z)
val if_branch = Newstat o (Ldec o (Id(3, 0), Pred o (Id(3, 1))), Id(3, 2))
If o (cond, if_branch, Z)
}
val Conf = Lenc (List(Id(3, 0), Id(3, 1), Id(3, 2)))
val State = Ldec o (Id(1, 0), Z)
val Left = Ldec o (Id(1, 0), Const(1))
val Right = Ldec o (Id(1, 0), Const(2))
val Step = {
val left = Left o (Id(2, 0))
val right = Right o (Id(2, 0))
val state = State o (Id(2, 0))
val read = Read o (right)
val action = Action o (Id(2, 1), state, read)
val newstate = Newstate o (Id(2, 1), state, read)
val newleft = Newleft o (left, right, action)
val newright = Newright o (left, right, action)
Conf o (newstate, newleft, newright)
}
val Steps = Pr (Id(2, 0), Step o (Id(4, 1), Id(4, 3)))
val Stknum = Minus o (Sigma1(Ldec o (Id(2, 1), Id(2, 0))) o (Enclen o (Id(1, 0)), Id(1, 0)),
Ldec o (Id(1, 0), Enclen o (Id(1, 0))))
val Right_std = {
val bound = Enclen o (Id(1, 0))
val cond1 = Le o (Const(1) o (Id(2, 0)), Id(2, 0))
val cond2 = All1_less (Eq o (Ldec o (Id(2, 1), Id(2, 0)), Const(1)))
val bound2 = Minus o (Enclen o (Id(2, 1)), Id(2, 0))
val cond3 =
(All2_less (Eq o (Ldec o (Id(3, 2), Add o (Id(3, 1), Id(3, 0))), Z))) o (bound2, Id(2, 0), Id(2, 1))
Ex1(Conj o (Conj o (cond1, cond2), cond3)) o (bound, Id(1, 0))
}
val Left_std = {
val cond = Eq o (Ldec o (Id(2, 1), Id(2, 0)), Z)
(All1_less(cond)) o (Enclen o (Id(1, 0)), Id(1, 0))
}
val Std = Conj o (Left_std o (Left o (Id(1, 0))), Right_std o (Right o (Id(1, 0))))
val Final = Eq o (State o (Id(1, 0)), Z)
val Stop = {
val stps = Steps o (Id(3, 2), Id(3, 1), Id(3, 0))
Conj o (Final o (stps), Std o (stps))
}
val Halt = Mn (Not o (Stop o (Id(3, 1), Id(3, 2), Id(3, 0))))
val UF = Pred o (Stknum o (Right o (Steps o (Halt o (Id(2, 0), Id(2, 1)), Id(2, 1), Id(2, 0)))))
}