scala/recs2.scala
changeset 269 fa40fd8abb54
parent 239 ac3309722536
child 270 ccec33db31d4
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/scala/recs2.scala	Wed Jun 26 14:35:43 2013 +0100
@@ -0,0 +1,349 @@
+package object recs2 {
+
+//Recursive Functions
+
+abstract class Rec {
+  def eval(ns: List[Int]) : Int
+  def eval(ns: Int*) : Int = eval(ns.toList)
+
+  //syntactic convenience for composition
+  def o(r: Rec) = Cn(r.arity, this, List(r))
+  def o(r: Rec, f: Rec) = Cn(r.arity, this, List(r, f))
+  def o(r: Rec, f: Rec, g: Rec) = Cn(r.arity, this, List(r, f, g))
+  def o(r: Rec, f: Rec, g: Rec, h: Rec) = Cn(r.arity, this, List(r, f, g, h))
+  def arity : Int
+}
+
+case object Z extends Rec {
+  override def eval(ns: List[Int]) = ns match {
+    case n::Nil => 0
+    case _ => throw new IllegalArgumentException("Z args: " + ns)
+  }
+  override def arity = 1
+} 
+
+case object S extends Rec {
+  override def eval(ns: List[Int]) = ns match {
+    case n::Nil => n + 1
+    case _ => throw new IllegalArgumentException("S args: " + ns)
+  }
+  override def arity = 1 
+} 
+
+case class Id(n: Int, m: Int) extends Rec {
+  require(m < n, println("Id m < n:" + m + " " + n))
+
+  override def eval(ns: List[Int]) = 
+    if (ns.length == n && m < n) ns(m)
+    else throw new IllegalArgumentException("Id args: " + ns + "," + n + "," + m)
+
+  override def arity = n
+}
+
+case class Cn(n: Int, f: Rec, gs: List[Rec]) extends Rec {
+  require(f.arity == gs.length, 
+          println("CN " + f + "  " + gs.mkString(",") + "\n" + 
+                  "f.arity gs.length:" + f.arity + " " + gs.length))
+  
+  override def eval(ns: List[Int]) = 
+    if (ns.length == n && gs.forall(_.arity == n) && f.arity == gs.length) f.eval(gs.map(_.eval(ns)))
+    else { 
+      val msg = List("Cn f: " + f, 
+                     "n: " + n,
+                     "f arity: " + f.arity, 
+                     "ns-args: " + ns,
+                     "gs arities: " + gs.map(_.arity).mkString(", "),
+                     "gs: " + gs.mkString(", "),
+                     "ns.length == n " + (ns.length == n).toString,
+                     "gs.forall(_.arity == n) " + (gs.forall(_.arity == n)).toString,
+                     "f.arity == gs.length " + (f.arity == gs.length).toString
+                    )
+      throw new IllegalArgumentException(msg.mkString("\n"))
+    }
+
+  override def arity = n
+  override def toString = f.toString + gs.map(_.toString).mkString ("(",", ", ")")
+}
+
+// syntactic convenience
+object Cn {
+  def apply(n: Int, f: Rec, g: Rec) : Rec = new Cn(n, f, List(g))
+}
+
+case class Pr(n: Int, f: Rec, g: Rec) extends Rec {
+  override def eval(ns: List[Int]) = 
+    if (ns.length == n + 1) {
+      if (ns.head == 0) f.eval(ns.tail)
+      else {
+        val r = Pr(n, f, g).eval(ns.head - 1 :: ns.tail)
+        g.eval(ns.head - 1 :: r :: ns.tail)
+      }
+    }
+    else {
+      val msg = List("Pr f: " + f, 
+                     "g: " + g,
+                     "n: " + n,
+                     "f arity: " + f.arity,
+                     "g arity: " + g.arity,
+                     "ns-args: " + ns)
+      throw new IllegalArgumentException(msg.mkString("\n"))
+    }
+
+  override def arity = n + 1
+  override def toString = "Pr(" + f.toString + ", " + g.toString + ")"
+}
+
+// syntactic convenience
+object Pr {
+  def apply(r: Rec, f: Rec) : Rec = Pr(r.arity, r, f) 
+}
+
+case class Mn(n: Int, f: Rec) extends Rec {
+  def evaln(ns: List[Int], n: Int) : Int = 
+    if (f.eval(n :: ns) == 0) n else evaln(ns, n + 1)
+
+  override def eval(ns: List[Int]) = 
+    if (ns.length == n) evaln(ns, 0) 
+    else throw new IllegalArgumentException("Mn: args")
+
+  override def arity = n
+}
+
+object Mn {
+  def apply(f: Rec) : Rec = Mn(f.arity - 1, f)
+}
+
+
+
+
+// Recursive Function examples
+def Const(n: Int) : Rec = n match {
+  case 0 => Z
+  case n => S o Const(n - 1)
+}
+
+def Swap(f: Rec) = f o (Id(2, 1), Id(2, 0))
+val Add = Pr(Id(1, 0), S o Id(3, 1))
+val Mult = Pr(Z, Add o (Id(3, 1), Id(3, 2)))
+val Power = Swap(Pr(Const(1), Mult o (Id(3, 1), Id(3, 2))))
+val Fact = (Pr (Const(1), Mult o (S o Id(3, 0), Id(3, 1)))) o (Id(1, 0), Id(1, 0))
+val Pred = Pr(Z, Id(3, 0)) o (Id(1, 0), Id(1, 0))
+val Minus = Swap(Pr(Id(1, 0), Pred o Id(3, 1)))
+
+val Sign = Minus o (Const(1), Minus o (Const(1), Id(1, 0)))
+val Not = Minus o (Const(1), Id(1, 0))
+val Eq = Minus o (Const(1) o Id(2, 0), Add o (Minus, Swap(Minus))) 
+val Noteq = Not o Eq 
+val Conj = Sign o Mult
+val Disj = Sign o Add 
+val Imp = Disj o (Not o Id(2, 0), Id(2, 1))
+val Ifz = Pr(Id(2, 0), Id(4, 3))
+val If = Ifz o (Not o Id(3, 0), Id(3, 1), Id (3, 2))
+
+val Less = Sign o (Swap(Minus))
+val Le = Disj o (Less, Eq)
+
+def Sigma1(f: Rec) = Pr(f o (Z o (Id(1, 0)), Id(1, 0)), 
+                        Add o (Id(3, 1), f o (S o Id(3, 0), Id(3, 2))))
+def Sigma2(f: Rec) = Pr(f o (Z o (Id(2, 0)), Id(2, 0), Id(2, 1)), 
+                        Add o (Id(4, 1), f o (S o Id(4, 0), Id(4, 2), Id(4, 3))))
+
+def Accum1(f: Rec) = Pr(f o (Z o (Id(1, 0)), Id(1, 0)), 
+                        Mult o (Id(3, 1), f o (S o Id(3, 0), Id(3, 2))))
+def Accum2(f: Rec) = Pr(f o (Z o (Id(2, 0)), Id(2, 0), Id(2, 1)), 
+                        Mult o (Id(4, 1), f o (S o Id(4, 0), Id(4, 2), Id(4, 3))))
+def Accum3(f: Rec) = Pr(f o (Z o (Id(3, 0)), Id(3, 0), Id(3, 1), Id(3, 2)), 
+                        Mult o (Id(5, 1), f o (S o Id(5, 0), Id(5, 2), Id(5, 3), Id(5, 4))))
+
+def All1(f: Rec) = Sign o (Accum1(f))
+def All2(f: Rec) = Sign o (Accum2(f))
+def All3(f: Rec) = Sign o (Accum3(f))
+
+def All1_less(f: Rec) = {
+  val cond1 = Eq o (Id(3, 0), Id(3, 1))
+  val cond2 = f o (Id(3, 0), Id(3, 2))
+  All2(Disj o (cond1, cond2)) o (Id(2, 0), Id(2, 0), Id(2, 1))
+}
+
+def All2_less(f: Rec) = {
+  val cond1 = Eq o (Id(4, 0), Id(4, 1))
+  val cond2 = f o (Id(4, 0), Id(4, 2), Id(4, 3))
+  All3(Disj o (cond1, cond2)) o (Id(3, 0), Id(3, 0), Id(3, 1), Id(3, 2))
+}
+
+def Ex1(f: Rec) = Sign o (Sigma1(f))
+def Ex2(f: Rec) = Sign o (Sigma2(f))
+
+val Quo = {
+  val lhs = S o (Id(3, 0))
+  val rhs = Mult o (Id(3, 2), S o (Id(3, 1)))
+  val cond = Eq o (lhs, rhs)
+  val if_stmt = If o (cond, S o (Id(3, 1)), Id(3, 1))
+  Pr(Z, if_stmt)
+}
+
+def Iter(f: Rec) = Pr(Id(1, 0), f o (Id(3, 1)))
+
+def Max1(f: Rec) = Pr(Z, Ifz o (f o (S o (Id(3, 0)), Id(3, 2)), S o (Id(3, 0)), Id(3, 1)))
+def Max2(f: Rec) = Pr(Z, Ifz o (f o (S o (Id(4, 0)), Id(4, 2), Id(4, 3)), S o (Id(4, 0)), Id(4, 1)))
+ 
+val Triangle = Quo o (Mult o (Id(1, 0), S), Const(2))
+
+val MaxTriangle = {
+  val cond = Not o (Le o (Triangle o (Id(2, 0)), Id(2, 1))) 
+  Max1(cond) o (Id(1, 0), Id(1, 0))
+}
+
+val MaxTriangle2 = {
+  Pred o Mn(Le o (Triangle o (Id(2, 0)), Id(2, 1)))
+}
+
+case object MaxTriangleFast extends Rec {
+  def triangle(n: Int) : Int = (n * (n + 1)) / 2
+
+  def search(m: Int, n: Int) : Int = {
+    if (triangle(n) > m) n - 1 else search(m, n + 1)
+  }
+
+  override def eval(ns: List[Int]) = ns match {
+    case n::Nil => search(n, 0)
+    case _ => throw new IllegalArgumentException("MT args: " + ns)
+  }
+
+  override def arity = 1
+}
+
+case object TriangleFast extends Rec {
+  def triangle(n: Int) : Int = (n * (n + 1)) / 2
+
+  override def eval(ns: List[Int]) = ns match {
+    case n::Nil => triangle(n)
+    case _ => throw new IllegalArgumentException("Tr args: " + ns)
+  }
+
+  override def arity = 1
+}
+
+//(0 until 200).map(MaxTriangleFast.eval(_))
+
+
+val Penc = Add o (TriangleFast o (Add o (Id(2, 0), Id(2, 1))), Id(2, 0))
+val Pdec1 = Minus o (Id(1, 0), Triangle o (MaxTriangle o (Id(1, 0)))) 
+val Pdec2 = Minus o (MaxTriangle o (Id(1, 0)), Pdec1 o (Id(1, 0))) 
+
+def Lenc(fs: List[Rec]) : Rec = fs match {
+  case Nil => Z
+  case f::fs => Penc o (S o (f), Lenc(fs))
+}
+
+val Ldec = Pred o (Pdec1 o (Swap (Iter(Pdec2))))
+
+val Within = Less o (Z o (Id(2, 0)), Swap (Iter(Pdec2)))
+val Enclen = (Max1(Not o (Within o (Id(2, 1), Pred o (Id(2, 0)))))) o (Id(1, 0), Id(1, 0))
+ 
+
+val Read = Ldec o (Id(1, 0), Const(0))
+val Write = Penc o (S o (Id(2, 0)), Pdec2 o (Id(2, 1)))
+
+val Newleft = {
+  val cond0 = Eq o (Id(3, 2), Const(0))
+  val cond1 = Eq o (Id(3, 2), Const(1))
+  val cond2 = Eq o (Id(3, 2), Const(2))
+  val cond3 = Eq o (Id(3, 2), Const(3))
+  val case3 = Penc o (S o (Read o (Id(3, 1))), Id(3, 0)) 
+  If o (cond0, 
+        Id(3, 0),
+        If o (cond1, 
+              Id(3, 0),  
+              If o (cond2, 
+                    Pdec2 o (Id(3, 0)),
+                    If o (cond3, case3, Id(3, 0)))))
+}
+
+val Newright = {
+  val cond0 = Eq o (Id(3, 2), Const(0))
+  val cond1 = Eq o (Id(3, 2), Const(1))
+  val cond2 = Eq o (Id(3, 2), Const(2))
+  val cond3 = Eq o (Id(3, 2), Const(3))
+  val case2 = Penc o (S o (Read o (Id(3, 0))), Id(3, 1))
+  If o (cond0, 
+        Write o (Const(0), Id(3, 1)),
+        If o (cond1, 
+              Write o (Const(1), Id(3, 1)),  
+              If o (cond2, 
+                    case2,
+                    If o (cond3, Pdec2 o (Id(3, 1)), Id(3, 0)))))
+}
+
+val Actn = Swap (Pr(Pdec1 o (Pdec1 o (Id(1, 0))), Pdec1 o (Pdec2 o (Id(3, 2)))))
+
+val Action = {
+  val cond1 = Noteq o (Id(3, 1), Z)
+  val cond2 = Within o (Id(3, 0), Pred o (Id(3, 1)))
+  val if_branch = Actn o (Ldec o (Id(3, 0), Pred o (Id(3, 1))), Id(3, 2))
+  If o (Conj o (cond1, cond2), if_branch, Const(4))
+}
+
+val Newstat = Swap (Pr (Pdec2 o (Pdec1 o (Id(1, 0))),
+                        Pdec2 o (Pdec2 o (Id(3, 2)))))
+
+val Newstate = {
+  val cond = Noteq o (Id(3, 1), Z)
+  val if_branch = Newstat o (Ldec o (Id(3, 0), Pred o (Id(3, 1))), Id(3, 2))
+  If o (cond, if_branch, Z)
+}
+
+val Conf = Lenc (List(Id(3, 0), Id(3, 1), Id(3, 2)))
+
+val State = Ldec o (Id(1, 0), Z)
+
+val Left = Ldec o (Id(1, 0), Const(1))
+
+val Right = Ldec o (Id(1, 0), Const(2))
+
+val Step = {
+  val left = Left o (Id(2, 0))
+  val right = Right o (Id(2, 0))
+  val state = State o (Id(2, 0))
+  val read = Read o (right)
+  val action = Action o (Id(2, 1), state, read)
+  val newstate = Newstate o (Id(2, 1), state, read)
+  val newleft = Newleft o (left, right, action)
+  val newright = Newright o (left, right, action) 
+  Conf o (newstate, newleft, newright)
+ } 
+
+val Steps = Pr (Id(2, 0), Step o (Id(4, 1), Id(4, 3)))
+
+val Stknum = Minus o (Sigma1(Ldec o (Id(2, 1), Id(2, 0))) o (Enclen o (Id(1, 0)), Id(1, 0)),
+                      Ldec o (Id(1, 0), Enclen o (Id(1, 0))))
+
+val Right_std = {
+  val bound = Enclen o (Id(1, 0))
+  val cond1 = Le o (Const(1) o (Id(2, 0)), Id(2, 0))
+  val cond2 = All1_less (Eq o (Ldec o (Id(2, 1), Id(2, 0)), Const(1)))
+  val bound2 = Minus o (Enclen o (Id(2, 1)), Id(2, 0))
+  val cond3 = 
+    (All2_less (Eq o (Ldec o (Id(3, 2), Add o (Id(3, 1), Id(3, 0))), Z))) o (bound2, Id(2, 0), Id(2, 1)) 
+  Ex1(Conj o (Conj o (cond1, cond2), cond3)) o (bound, Id(1, 0))
+}
+
+val Left_std = {
+  val cond = Eq o (Ldec o (Id(2, 1), Id(2, 0)), Z)
+  (All1_less(cond)) o (Enclen o (Id(1, 0)), Id(1, 0))
+}
+
+val Std = Conj o (Left_std o (Left o (Id(1, 0))), Right_std o (Right o (Id(1, 0))))
+
+val Final = Eq o (State o (Id(1, 0)), Z)
+
+val Stop = {
+  val stps = Steps o (Id(3, 2), Id(3, 1), Id(3, 0))
+  Conj o (Final o (stps), Std o (stps))
+}
+
+val Halt = Mn (Not o (Stop o (Id(3, 1), Id(3, 2), Id(3, 0))))
+
+val UF = Pred o (Stknum o (Right o (Steps o (Halt o (Id(2, 0), Id(2, 1)), Id(2, 1), Id(2, 0)))))
+
+}