--- a/Paper/Paper.thy Wed Jan 30 02:29:47 2013 +0000
+++ b/Paper/Paper.thy Wed Jan 30 03:33:05 2013 +0000
@@ -118,10 +118,10 @@
done
lemmas HR1 =
- Hoare_plus_halt_simple[where ?P1.0="P" and ?P2.0="Q" and ?P3.0="R\<iota>" and ?A="p\<^isub>1" and B="p\<^isub>2"]
+ Hoare_plus_halt[where ?S.0="R\<iota>" and ?A="p\<^isub>1" and B="p\<^isub>2"]
lemmas HR2 =
- Hoare_plus_unhalt_simple[where ?P1.0="P" and ?P2.0="Q" and ?A="p\<^isub>1" and B="p\<^isub>2"]
+ Hoare_plus_unhalt[where ?A="p\<^isub>1" and B="p\<^isub>2"]
lemma inv_begin01:
assumes "n > 1"
@@ -765,6 +765,14 @@
\end{center}
\noindent
+ For our Hoare-triples we can easily prove the following consequence rule
+
+ \begin{equation}
+ @{thm[mode=Rule] Hoare_consequence}
+ \end{equation}
+
+
+ \noindent
Like Asperti and Ricciotti with their notion of realisability, we
have set up our Hoare-rules so that we can deal explicitly
with total correctness and non-terminantion, rather than have
@@ -928,7 +936,7 @@
\begin{center}
- @{thm haltP_def[where lm="ns"]}
+ @{thm haltP_def}
\end{center}