diff -r 860f05037c36 -r fe7a257bdff4 Paper/Paper.thy --- a/Paper/Paper.thy Wed Jan 30 02:29:47 2013 +0000 +++ b/Paper/Paper.thy Wed Jan 30 03:33:05 2013 +0000 @@ -118,10 +118,10 @@ done lemmas HR1 = - Hoare_plus_halt_simple[where ?P1.0="P" and ?P2.0="Q" and ?P3.0="R\" and ?A="p\<^isub>1" and B="p\<^isub>2"] + Hoare_plus_halt[where ?S.0="R\" and ?A="p\<^isub>1" and B="p\<^isub>2"] lemmas HR2 = - Hoare_plus_unhalt_simple[where ?P1.0="P" and ?P2.0="Q" and ?A="p\<^isub>1" and B="p\<^isub>2"] + Hoare_plus_unhalt[where ?A="p\<^isub>1" and B="p\<^isub>2"] lemma inv_begin01: assumes "n > 1" @@ -765,6 +765,14 @@ \end{center} \noindent + For our Hoare-triples we can easily prove the following consequence rule + + \begin{equation} + @{thm[mode=Rule] Hoare_consequence} + \end{equation} + + + \noindent Like Asperti and Ricciotti with their notion of realisability, we have set up our Hoare-rules so that we can deal explicitly with total correctness and non-terminantion, rather than have @@ -928,7 +936,7 @@ \begin{center} - @{thm haltP_def[where lm="ns"]} + @{thm haltP_def} \end{center}