thys/Turing_Hoare.thy
changeset 163 67063c5365e1
parent 99 fe7a257bdff4
child 168 d7570dbf9f06
equal deleted inserted replaced
162:a63c3f8d7234 163:67063c5365e1
       
     1 theory Turing_Hoare
       
     2 imports Turing
       
     3 begin
       
     4 
       
     5 
       
     6 type_synonym assert = "tape \<Rightarrow> bool"
       
     7 
       
     8 definition 
       
     9   assert_imp :: "assert \<Rightarrow> assert \<Rightarrow> bool" ("_ \<mapsto> _" [0, 0] 100)
       
    10 where
       
    11   "P \<mapsto> Q \<equiv> \<forall>l r. P (l, r) \<longrightarrow> Q (l, r)"
       
    12 
       
    13 lemma [intro, simp]:
       
    14   "P \<mapsto> P"
       
    15 unfolding assert_imp_def by simp
       
    16 
       
    17 fun 
       
    18   holds_for :: "(tape \<Rightarrow> bool) \<Rightarrow> config \<Rightarrow> bool" ("_ holds'_for _" [100, 99] 100)
       
    19 where
       
    20   "P holds_for (s, l, r) = P (l, r)"  
       
    21 
       
    22 lemma is_final_holds[simp]:
       
    23   assumes "is_final c"
       
    24   shows "Q holds_for (steps c p n) = Q holds_for c"
       
    25 using assms 
       
    26 apply(induct n)
       
    27 apply(auto)
       
    28 apply(case_tac [!] c)
       
    29 apply(auto)
       
    30 done
       
    31 
       
    32 (* Hoare Rules *)
       
    33 
       
    34 (* halting case *)
       
    35 definition
       
    36   Hoare_halt :: "assert \<Rightarrow> tprog0 \<Rightarrow> assert \<Rightarrow> bool" ("({(1_)}/ (_)/ {(1_)})" 50)
       
    37 where
       
    38   "{P} p {Q} \<equiv> \<forall>tp. P tp \<longrightarrow> (\<exists>n. is_final (steps0 (1, tp) p n) \<and> Q holds_for (steps0 (1, tp) p n))"
       
    39 
       
    40 
       
    41 (* not halting case *)
       
    42 definition
       
    43   Hoare_unhalt :: "assert \<Rightarrow> tprog0 \<Rightarrow> bool" ("({(1_)}/ (_)) \<up>" 50)
       
    44 where
       
    45   "{P} p \<up> \<equiv> \<forall>tp. P tp \<longrightarrow> (\<forall> n . \<not> (is_final (steps0 (1, tp) p n)))"
       
    46 
       
    47 
       
    48 lemma Hoare_haltI:
       
    49   assumes "\<And>l r. P (l, r) \<Longrightarrow> \<exists>n. is_final (steps0 (1, (l, r)) p n) \<and> Q holds_for (steps0 (1, (l, r)) p n)"
       
    50   shows "{P} p {Q}"
       
    51 unfolding Hoare_halt_def 
       
    52 using assms by auto
       
    53 
       
    54 lemma Hoare_unhaltI:
       
    55   assumes "\<And>l r n. P (l, r) \<Longrightarrow> \<not> is_final (steps0 (1, (l, r)) p n)"
       
    56   shows "{P} p \<up>"
       
    57 unfolding Hoare_unhalt_def 
       
    58 using assms by auto
       
    59 
       
    60 
       
    61 
       
    62 
       
    63 text {*
       
    64   {P} A {Q}   {Q} B {S}  A well-formed
       
    65   -----------------------------------------
       
    66   {P} A |+| B {S}
       
    67 *}
       
    68 
       
    69 
       
    70 lemma Hoare_plus_halt [case_names A_halt B_halt A_wf]: 
       
    71   assumes A_halt : "{P} A {Q}"
       
    72   and B_halt : "{Q} B {S}"
       
    73   and A_wf : "tm_wf (A, 0)"
       
    74   shows "{P} A |+| B {S}"
       
    75 proof(rule Hoare_haltI)
       
    76   fix l r
       
    77   assume h: "P (l, r)"
       
    78   then obtain n1 l' r' 
       
    79     where "is_final (steps0 (1, l, r) A n1)"  
       
    80       and a1: "Q holds_for (steps0 (1, l, r) A n1)"
       
    81       and a2: "steps0 (1, l, r) A n1 = (0, l', r')"
       
    82     using A_halt unfolding Hoare_halt_def
       
    83     by (metis is_final_eq surj_pair) 
       
    84   then obtain n2 
       
    85     where "steps0 (1, l, r) (A |+| B) n2 = (Suc (length A div 2), l', r')"
       
    86     using A_wf by (rule_tac tm_comp_pre_halt_same) 
       
    87   moreover
       
    88   from a1 a2 have "Q (l', r')" by (simp)
       
    89   then obtain n3 l'' r''
       
    90     where "is_final (steps0 (1, l', r') B n3)" 
       
    91     and b1: "S holds_for (steps0 (1, l', r') B n3)"
       
    92     and b2: "steps0 (1, l', r') B n3 = (0, l'', r'')"
       
    93     using B_halt unfolding Hoare_halt_def 
       
    94     by (metis is_final_eq surj_pair) 
       
    95   then have "steps0 (Suc (length A div 2), l', r')  (A |+| B) n3 = (0, l'', r'')"
       
    96     using A_wf by (rule_tac tm_comp_second_halt_same) 
       
    97   ultimately show 
       
    98     "\<exists>n. is_final (steps0 (1, l, r) (A |+| B) n) \<and> S holds_for (steps0 (1, l, r) (A |+| B) n)"
       
    99     using b1 b2 by (rule_tac x = "n2 + n3" in exI) (simp)
       
   100 qed
       
   101 
       
   102 text {*
       
   103   {P} A {Q}   {Q} B loops   A well-formed
       
   104   ------------------------------------------
       
   105           {P} A |+| B  loops
       
   106 *}
       
   107 
       
   108 lemma Hoare_plus_unhalt [case_names A_halt B_unhalt A_wf]:
       
   109   assumes A_halt: "{P} A {Q}"
       
   110   and B_uhalt: "{Q} B \<up>"
       
   111   and A_wf : "tm_wf (A, 0)"
       
   112   shows "{P} (A |+| B) \<up>"
       
   113 proof(rule_tac Hoare_unhaltI)
       
   114   fix n l r 
       
   115   assume h: "P (l, r)"
       
   116   then obtain n1 l' r'
       
   117     where a: "is_final (steps0 (1, l, r) A n1)" 
       
   118     and b: "Q holds_for (steps0 (1, l, r) A n1)"
       
   119     and c: "steps0 (1, l, r) A n1 = (0, l', r')"
       
   120     using A_halt unfolding Hoare_halt_def 
       
   121     by (metis is_final_eq surj_pair) 
       
   122   then obtain n2 where eq: "steps0 (1, l, r) (A |+| B) n2 = (Suc (length A div 2), l', r')"
       
   123     using A_wf by (rule_tac tm_comp_pre_halt_same)
       
   124   then show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
       
   125   proof(cases "n2 \<le> n")
       
   126     case True
       
   127     from b c have "Q (l', r')" by simp
       
   128     then have "\<forall> n. \<not> is_final (steps0 (1, l', r') B n)  "
       
   129       using B_uhalt unfolding Hoare_unhalt_def by simp
       
   130     then have "\<not> is_final (steps0 (1, l', r') B (n - n2))" by auto
       
   131     then obtain s'' l'' r'' 
       
   132       where "steps0 (1, l', r') B (n - n2) = (s'', l'', r'')" 
       
   133       and "\<not> is_final (s'', l'', r'')" by (metis surj_pair)
       
   134     then have "steps0 (Suc (length A div 2), l', r') (A |+| B) (n - n2) = (s''+ length A div 2, l'', r'')"
       
   135       using A_wf by (auto dest: tm_comp_second_same simp del: tm_wf.simps)
       
   136     then have "\<not> is_final (steps0 (1, l, r) (A |+| B) (n2 + (n  - n2)))"
       
   137       using A_wf by (simp only: steps_add eq) (simp add: tm_wf.simps)
       
   138     then show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)" 
       
   139       using `n2 \<le> n` by simp
       
   140   next 
       
   141     case False
       
   142     then obtain n3 where "n = n2 - n3"
       
   143       by (metis diff_le_self le_imp_diff_is_add nat_add_commute nat_le_linear)
       
   144     moreover
       
   145     with eq show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
       
   146       by (simp add: not_is_final[where ?n1.0="n2"])
       
   147   qed
       
   148 qed
       
   149 
       
   150 lemma Hoare_consequence:
       
   151   assumes "P' \<mapsto> P" "{P} p {Q}" "Q \<mapsto> Q'"
       
   152   shows "{P'} p {Q'}"
       
   153 using assms
       
   154 unfolding Hoare_halt_def assert_imp_def
       
   155 by (metis holds_for.simps surj_pair)
       
   156 
       
   157 
       
   158 
       
   159 end