--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys/Turing_Hoare.thy Sun Feb 10 19:49:07 2013 +0000
@@ -0,0 +1,159 @@
+theory Turing_Hoare
+imports Turing
+begin
+
+
+type_synonym assert = "tape \<Rightarrow> bool"
+
+definition
+ assert_imp :: "assert \<Rightarrow> assert \<Rightarrow> bool" ("_ \<mapsto> _" [0, 0] 100)
+where
+ "P \<mapsto> Q \<equiv> \<forall>l r. P (l, r) \<longrightarrow> Q (l, r)"
+
+lemma [intro, simp]:
+ "P \<mapsto> P"
+unfolding assert_imp_def by simp
+
+fun
+ holds_for :: "(tape \<Rightarrow> bool) \<Rightarrow> config \<Rightarrow> bool" ("_ holds'_for _" [100, 99] 100)
+where
+ "P holds_for (s, l, r) = P (l, r)"
+
+lemma is_final_holds[simp]:
+ assumes "is_final c"
+ shows "Q holds_for (steps c p n) = Q holds_for c"
+using assms
+apply(induct n)
+apply(auto)
+apply(case_tac [!] c)
+apply(auto)
+done
+
+(* Hoare Rules *)
+
+(* halting case *)
+definition
+ Hoare_halt :: "assert \<Rightarrow> tprog0 \<Rightarrow> assert \<Rightarrow> bool" ("({(1_)}/ (_)/ {(1_)})" 50)
+where
+ "{P} p {Q} \<equiv> \<forall>tp. P tp \<longrightarrow> (\<exists>n. is_final (steps0 (1, tp) p n) \<and> Q holds_for (steps0 (1, tp) p n))"
+
+
+(* not halting case *)
+definition
+ Hoare_unhalt :: "assert \<Rightarrow> tprog0 \<Rightarrow> bool" ("({(1_)}/ (_)) \<up>" 50)
+where
+ "{P} p \<up> \<equiv> \<forall>tp. P tp \<longrightarrow> (\<forall> n . \<not> (is_final (steps0 (1, tp) p n)))"
+
+
+lemma Hoare_haltI:
+ assumes "\<And>l r. P (l, r) \<Longrightarrow> \<exists>n. is_final (steps0 (1, (l, r)) p n) \<and> Q holds_for (steps0 (1, (l, r)) p n)"
+ shows "{P} p {Q}"
+unfolding Hoare_halt_def
+using assms by auto
+
+lemma Hoare_unhaltI:
+ assumes "\<And>l r n. P (l, r) \<Longrightarrow> \<not> is_final (steps0 (1, (l, r)) p n)"
+ shows "{P} p \<up>"
+unfolding Hoare_unhalt_def
+using assms by auto
+
+
+
+
+text {*
+ {P} A {Q} {Q} B {S} A well-formed
+ -----------------------------------------
+ {P} A |+| B {S}
+*}
+
+
+lemma Hoare_plus_halt [case_names A_halt B_halt A_wf]:
+ assumes A_halt : "{P} A {Q}"
+ and B_halt : "{Q} B {S}"
+ and A_wf : "tm_wf (A, 0)"
+ shows "{P} A |+| B {S}"
+proof(rule Hoare_haltI)
+ fix l r
+ assume h: "P (l, r)"
+ then obtain n1 l' r'
+ where "is_final (steps0 (1, l, r) A n1)"
+ and a1: "Q holds_for (steps0 (1, l, r) A n1)"
+ and a2: "steps0 (1, l, r) A n1 = (0, l', r')"
+ using A_halt unfolding Hoare_halt_def
+ by (metis is_final_eq surj_pair)
+ then obtain n2
+ where "steps0 (1, l, r) (A |+| B) n2 = (Suc (length A div 2), l', r')"
+ using A_wf by (rule_tac tm_comp_pre_halt_same)
+ moreover
+ from a1 a2 have "Q (l', r')" by (simp)
+ then obtain n3 l'' r''
+ where "is_final (steps0 (1, l', r') B n3)"
+ and b1: "S holds_for (steps0 (1, l', r') B n3)"
+ and b2: "steps0 (1, l', r') B n3 = (0, l'', r'')"
+ using B_halt unfolding Hoare_halt_def
+ by (metis is_final_eq surj_pair)
+ then have "steps0 (Suc (length A div 2), l', r') (A |+| B) n3 = (0, l'', r'')"
+ using A_wf by (rule_tac tm_comp_second_halt_same)
+ ultimately show
+ "\<exists>n. is_final (steps0 (1, l, r) (A |+| B) n) \<and> S holds_for (steps0 (1, l, r) (A |+| B) n)"
+ using b1 b2 by (rule_tac x = "n2 + n3" in exI) (simp)
+qed
+
+text {*
+ {P} A {Q} {Q} B loops A well-formed
+ ------------------------------------------
+ {P} A |+| B loops
+*}
+
+lemma Hoare_plus_unhalt [case_names A_halt B_unhalt A_wf]:
+ assumes A_halt: "{P} A {Q}"
+ and B_uhalt: "{Q} B \<up>"
+ and A_wf : "tm_wf (A, 0)"
+ shows "{P} (A |+| B) \<up>"
+proof(rule_tac Hoare_unhaltI)
+ fix n l r
+ assume h: "P (l, r)"
+ then obtain n1 l' r'
+ where a: "is_final (steps0 (1, l, r) A n1)"
+ and b: "Q holds_for (steps0 (1, l, r) A n1)"
+ and c: "steps0 (1, l, r) A n1 = (0, l', r')"
+ using A_halt unfolding Hoare_halt_def
+ by (metis is_final_eq surj_pair)
+ then obtain n2 where eq: "steps0 (1, l, r) (A |+| B) n2 = (Suc (length A div 2), l', r')"
+ using A_wf by (rule_tac tm_comp_pre_halt_same)
+ then show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
+ proof(cases "n2 \<le> n")
+ case True
+ from b c have "Q (l', r')" by simp
+ then have "\<forall> n. \<not> is_final (steps0 (1, l', r') B n) "
+ using B_uhalt unfolding Hoare_unhalt_def by simp
+ then have "\<not> is_final (steps0 (1, l', r') B (n - n2))" by auto
+ then obtain s'' l'' r''
+ where "steps0 (1, l', r') B (n - n2) = (s'', l'', r'')"
+ and "\<not> is_final (s'', l'', r'')" by (metis surj_pair)
+ then have "steps0 (Suc (length A div 2), l', r') (A |+| B) (n - n2) = (s''+ length A div 2, l'', r'')"
+ using A_wf by (auto dest: tm_comp_second_same simp del: tm_wf.simps)
+ then have "\<not> is_final (steps0 (1, l, r) (A |+| B) (n2 + (n - n2)))"
+ using A_wf by (simp only: steps_add eq) (simp add: tm_wf.simps)
+ then show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
+ using `n2 \<le> n` by simp
+ next
+ case False
+ then obtain n3 where "n = n2 - n3"
+ by (metis diff_le_self le_imp_diff_is_add nat_add_commute nat_le_linear)
+ moreover
+ with eq show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
+ by (simp add: not_is_final[where ?n1.0="n2"])
+ qed
+qed
+
+lemma Hoare_consequence:
+ assumes "P' \<mapsto> P" "{P} p {Q}" "Q \<mapsto> Q'"
+ shows "{P'} p {Q'}"
+using assms
+unfolding Hoare_halt_def assert_imp_def
+by (metis holds_for.simps surj_pair)
+
+
+
+end
\ No newline at end of file