Paper/document/root.tex
changeset 237 06a6db387cd2
parent 236 6b6d71d14e75
child 284 a21fb87bb0bd
equal deleted inserted replaced
236:6b6d71d14e75 237:06a6db387cd2
    47 
    47 
    48 \maketitle
    48 \maketitle
    49 
    49 
    50 
    50 
    51 \begin{abstract}
    51 \begin{abstract}
    52 We present a formalised theory of computability in the theorem prover
    52 We formalise results from computability theory in the theorem prover
    53 Isabelle/HOL. 
    53 Isabelle/HOL. 
    54 %This theorem prover is based on classical logic which
    54 %This theorem prover is based on classical logic which
    55 %precludes \emph{direct} reasoning about computability: every boolean
    55 %precludes \emph{direct} reasoning about computability: every boolean
    56 %predicate is either true or false because of the law of excluded
    56 %predicate is either true or false because of the law of excluded
    57 %middle. The only way to reason about computability in a classical
    57 %middle. The only way to reason about computability in a classical