author | Christian Urban <christian dot urban at kcl dot ac dot uk> |
Mon, 11 Feb 2013 08:31:48 +0000 | |
changeset 166 | 99a180fd4194 |
parent 163 | 67063c5365e1 |
child 169 | 6013ca0e6e22 |
permissions | -rw-r--r-- |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1 |
theory Recursive |
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
2 |
imports Rec_Def Abacus |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3 |
begin |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4 |
|
166
99a180fd4194
removed some dead code
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
163
diff
changeset
|
5 |
section {* Compiling from recursive functions to Abacus machines *} |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
6 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
7 |
text {* |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
8 |
Some auxilliary Abacus machines used to construct the result Abacus machines. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
9 |
*} |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
10 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
11 |
text {* |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
12 |
@{text "get_paras_num recf"} returns the arity of recursive function @{text "recf"}. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
13 |
*} |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
14 |
fun get_paras_num :: "recf \<Rightarrow> nat" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
15 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
16 |
"get_paras_num z = 1" | |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
17 |
"get_paras_num s = 1" | |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
18 |
"get_paras_num (id m n) = m" | |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
19 |
"get_paras_num (Cn n f gs) = n" | |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
20 |
"get_paras_num (Pr n f g) = Suc n" | |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
21 |
"get_paras_num (Mn n f) = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
22 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
23 |
fun addition :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_prog" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
24 |
where |
166
99a180fd4194
removed some dead code
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
163
diff
changeset
|
25 |
"addition m n p = [Dec m 4, Inc n, Inc p, Goto 0, Dec p 7, Inc m, Goto 4]" |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
26 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
27 |
fun mv_box :: "nat \<Rightarrow> nat \<Rightarrow> abc_prog" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
28 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
29 |
"mv_box m n = [Dec m 3, Inc n, Goto 0]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
30 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
31 |
fun abc_inst_shift :: "abc_inst \<Rightarrow> nat \<Rightarrow> abc_inst" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
32 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
33 |
"abc_inst_shift (Inc m) n = Inc m" | |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
34 |
"abc_inst_shift (Dec m e) n = Dec m (e + n)" | |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
35 |
"abc_inst_shift (Goto m) n = Goto (m + n)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
36 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
37 |
fun abc_shift :: "abc_inst list \<Rightarrow> nat \<Rightarrow> abc_inst list" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
38 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
39 |
"abc_shift xs n = map (\<lambda> x. abc_inst_shift x n) xs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
40 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
41 |
fun abc_append :: "abc_inst list \<Rightarrow> abc_inst list \<Rightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
42 |
abc_inst list" (infixl "[+]" 60) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
43 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
44 |
"abc_append al bl = (let al_len = length al in |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
45 |
al @ abc_shift bl al_len)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
46 |
|
166
99a180fd4194
removed some dead code
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
163
diff
changeset
|
47 |
text {* The compilation of @{text "z"}-operator. *} |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
48 |
definition rec_ci_z :: "abc_inst list" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
49 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
50 |
"rec_ci_z \<equiv> [Goto 1]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
51 |
|
166
99a180fd4194
removed some dead code
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
163
diff
changeset
|
52 |
text {* The compilation of @{text "s"}-operator. *} |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
53 |
definition rec_ci_s :: "abc_inst list" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
54 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
55 |
"rec_ci_s \<equiv> (addition 0 1 2 [+] [Inc 1])" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
56 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
57 |
|
166
99a180fd4194
removed some dead code
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
163
diff
changeset
|
58 |
text {* The compilation of @{text "id i j"}-operator *} |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
59 |
fun rec_ci_id :: "nat \<Rightarrow> nat \<Rightarrow> abc_inst list" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
60 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
61 |
"rec_ci_id i j = addition j i (i + 1)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
62 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
63 |
fun mv_boxes :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_inst list" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
64 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
65 |
"mv_boxes ab bb 0 = []" | |
166
99a180fd4194
removed some dead code
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
163
diff
changeset
|
66 |
"mv_boxes ab bb (Suc n) = mv_boxes ab bb n [+] mv_box (ab + n) (bb + n)" |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
67 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
68 |
fun empty_boxes :: "nat \<Rightarrow> abc_inst list" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
69 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
70 |
"empty_boxes 0 = []" | |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
71 |
"empty_boxes (Suc n) = empty_boxes n [+] [Dec n 2, Goto 0]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
72 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
73 |
fun cn_merge_gs :: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
74 |
"(abc_inst list \<times> nat \<times> nat) list \<Rightarrow> nat \<Rightarrow> abc_inst list" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
75 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
76 |
"cn_merge_gs [] p = []" | |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
77 |
"cn_merge_gs (g # gs) p = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
78 |
(let (gprog, gpara, gn) = g in |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
79 |
gprog [+] mv_box gpara p [+] cn_merge_gs gs (Suc p))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
80 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
81 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
82 |
text {* |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
83 |
The compiler of recursive functions, where @{text "rec_ci recf"} return |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
84 |
@{text "(ap, arity, fp)"}, where @{text "ap"} is the Abacus program, @{text "arity"} is the |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
85 |
arity of the recursive function @{text "recf"}, |
166
99a180fd4194
removed some dead code
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
163
diff
changeset
|
86 |
@{text "fp"} is the amount of memory which is going to be |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
87 |
used by @{text "ap"} for its execution. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
88 |
*} |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
89 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
90 |
function rec_ci :: "recf \<Rightarrow> abc_inst list \<times> nat \<times> nat" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
91 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
92 |
"rec_ci z = (rec_ci_z, 1, 2)" | |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
93 |
"rec_ci s = (rec_ci_s, 1, 3)" | |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
94 |
"rec_ci (id m n) = (rec_ci_id m n, m, m + 2)" | |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
95 |
"rec_ci (Cn n f gs) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
96 |
(let cied_gs = map (\<lambda> g. rec_ci g) (f # gs) in |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
97 |
let (fprog, fpara, fn) = hd cied_gs in |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
98 |
let pstr = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
99 |
Max (set (Suc n # fn # (map (\<lambda> (aprog, p, n). n) cied_gs))) in |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
100 |
let qstr = pstr + Suc (length gs) in |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
101 |
(cn_merge_gs (tl cied_gs) pstr [+] mv_boxes 0 qstr n [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
102 |
mv_boxes pstr 0 (length gs) [+] fprog [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
103 |
mv_box fpara pstr [+] empty_boxes (length gs) [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
104 |
mv_box pstr n [+] mv_boxes qstr 0 n, n, qstr + n))" | |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
105 |
"rec_ci (Pr n f g) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
106 |
(let (fprog, fpara, fn) = rec_ci f in |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
107 |
let (gprog, gpara, gn) = rec_ci g in |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
108 |
let p = Max (set ([n + 3, fn, gn])) in |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
109 |
let e = length gprog + 7 in |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
110 |
(mv_box n p [+] fprog [+] mv_box n (Suc n) [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
111 |
(([Dec p e] [+] gprog [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
112 |
[Inc n, Dec (Suc n) 3, Goto 1]) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
113 |
[Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length gprog + 4)]), |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
114 |
Suc n, p + 1))" | |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
115 |
"rec_ci (Mn n f) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
116 |
(let (fprog, fpara, fn) = rec_ci f in |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
117 |
let len = length (fprog) in |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
118 |
(fprog @ [Dec (Suc n) (len + 5), Dec (Suc n) (len + 3), |
166
99a180fd4194
removed some dead code
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
163
diff
changeset
|
119 |
Goto (len + 1), Inc n, Goto 0], n, max (Suc n) fn))" |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
120 |
by pat_completeness auto |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
121 |
termination |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
122 |
proof |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
123 |
show "wf (measure size)" by auto |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
124 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
125 |
fix n f gs x |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
126 |
assume "(x::recf) \<in> set (f # gs)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
127 |
thus "(x, Cn n f gs) \<in> measure size" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
128 |
by(induct gs, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
129 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
130 |
fix n f g |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
131 |
show "(f, Pr n f g) \<in> measure size" by auto |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
132 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
133 |
fix n f g x xa y xb ya |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
134 |
show "(g, Pr n f g) \<in> measure size" by auto |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
135 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
136 |
fix n f |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
137 |
show "(f, Mn n f) \<in> measure size" by auto |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
138 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
139 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
140 |
declare rec_ci.simps [simp del] rec_ci_s_def[simp del] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
141 |
rec_ci_z_def[simp del] rec_ci_id.simps[simp del] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
142 |
mv_boxes.simps[simp del] abc_append.simps[simp del] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
143 |
mv_box.simps[simp del] addition.simps[simp del] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
144 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
145 |
declare abc_steps_l.simps[simp del] abc_fetch.simps[simp del] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
146 |
abc_step_l.simps[simp del] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
147 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
148 |
lemma abc_steps_add: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
149 |
"abc_steps_l (as, lm) ap (m + n) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
150 |
abc_steps_l (abc_steps_l (as, lm) ap m) ap n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
151 |
apply(induct m arbitrary: n as lm, simp add: abc_steps_l.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
152 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
153 |
fix m n as lm |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
154 |
assume ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
155 |
"\<And>n as lm. abc_steps_l (as, lm) ap (m + n) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
156 |
abc_steps_l (abc_steps_l (as, lm) ap m) ap n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
157 |
show "abc_steps_l (as, lm) ap (Suc m + n) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
158 |
abc_steps_l (abc_steps_l (as, lm) ap (Suc m)) ap n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
159 |
apply(insert ind[of as lm "Suc n"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
160 |
apply(insert ind[of as lm "Suc 0"], simp add: abc_steps_l.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
161 |
apply(case_tac "(abc_steps_l (as, lm) ap m)", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
162 |
apply(simp add: abc_steps_l.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
163 |
apply(case_tac "abc_step_l (a, b) (abc_fetch a ap)", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
164 |
simp add: abc_steps_l.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
165 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
166 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
167 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
168 |
(*lemmas: rec_ci and rec_calc_rel*) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
169 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
170 |
lemma rec_calc_inj_case_z: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
171 |
"\<lbrakk>rec_calc_rel z l x; rec_calc_rel z l y\<rbrakk> \<Longrightarrow> x = y" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
172 |
apply(auto elim: calc_z_reverse) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
173 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
174 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
175 |
lemma rec_calc_inj_case_s: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
176 |
"\<lbrakk>rec_calc_rel s l x; rec_calc_rel s l y\<rbrakk> \<Longrightarrow> x = y" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
177 |
apply(auto elim: calc_s_reverse) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
178 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
179 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
180 |
lemma rec_calc_inj_case_id: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
181 |
"\<lbrakk>rec_calc_rel (recf.id nat1 nat2) l x; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
182 |
rec_calc_rel (recf.id nat1 nat2) l y\<rbrakk> \<Longrightarrow> x = y" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
183 |
apply(auto elim: calc_id_reverse) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
184 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
185 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
186 |
lemma rec_calc_inj_case_mn: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
187 |
assumes ind: "\<And> l x y. \<lbrakk>rec_calc_rel f l x; rec_calc_rel f l y\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
188 |
\<Longrightarrow> x = y" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
189 |
and h: "rec_calc_rel (Mn n f) l x" "rec_calc_rel (Mn n f) l y" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
190 |
shows "x = y" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
191 |
apply(insert h) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
192 |
apply(elim calc_mn_reverse) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
193 |
apply(case_tac "x > y", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
194 |
apply(erule_tac x = "y" in allE, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
195 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
196 |
fix v va |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
197 |
assume "rec_calc_rel f (l @ [y]) 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
198 |
"rec_calc_rel f (l @ [y]) v" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
199 |
"0 < v" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
200 |
thus "False" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
201 |
apply(insert ind[of "l @ [y]" 0 v], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
202 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
203 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
204 |
fix v va |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
205 |
assume |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
206 |
"rec_calc_rel f (l @ [x]) 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
207 |
"\<forall>x<y. \<exists>v. rec_calc_rel f (l @ [x]) v \<and> 0 < v" "\<not> y < x" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
208 |
thus "x = y" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
209 |
apply(erule_tac x = "x" in allE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
210 |
apply(case_tac "x = y", auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
211 |
apply(drule_tac y = v in ind, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
212 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
213 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
214 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
215 |
lemma rec_calc_inj_case_pr: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
216 |
assumes f_ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
217 |
"\<And>l x y. \<lbrakk>rec_calc_rel f l x; rec_calc_rel f l y\<rbrakk> \<Longrightarrow> x = y" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
218 |
and g_ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
219 |
"\<And>x xa y xb ya l xc yb. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
220 |
\<lbrakk>x = rec_ci f; (xa, y) = x; (xb, ya) = y; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
221 |
rec_calc_rel g l xc; rec_calc_rel g l yb\<rbrakk> \<Longrightarrow> xc = yb" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
222 |
and h: "rec_calc_rel (Pr n f g) l x" "rec_calc_rel (Pr n f g) l y" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
223 |
shows "x = y" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
224 |
apply(case_tac "rec_ci f") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
225 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
226 |
fix a b c |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
227 |
assume "rec_ci f = (a, b, c)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
228 |
hence ng_ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
229 |
"\<And> l xc yb. \<lbrakk>rec_calc_rel g l xc; rec_calc_rel g l yb\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
230 |
\<Longrightarrow> xc = yb" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
231 |
apply(insert g_ind[of "(a, b, c)" "a" "(b, c)" b c], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
232 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
233 |
from h show "x = y" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
234 |
apply(erule_tac calc_pr_reverse, erule_tac calc_pr_reverse) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
235 |
apply(erule f_ind, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
236 |
apply(erule_tac calc_pr_reverse, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
237 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
238 |
fix la ya ry laa yaa rya |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
239 |
assume k1: "rec_calc_rel g (la @ [ya, ry]) x" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
240 |
"rec_calc_rel g (la @ [ya, rya]) y" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
241 |
and k2: "rec_calc_rel (Pr (length la) f g) (la @ [ya]) ry" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
242 |
"rec_calc_rel (Pr (length la) f g) (la @ [ya]) rya" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
243 |
from k2 have "ry = rya" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
244 |
apply(induct ya arbitrary: ry rya) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
245 |
apply(erule_tac calc_pr_reverse, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
246 |
erule_tac calc_pr_reverse, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
247 |
apply(erule f_ind, simp, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
248 |
apply(erule_tac calc_pr_reverse, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
249 |
apply(erule_tac rSucy = rya in calc_pr_reverse, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
250 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
251 |
fix ya ry rya l y ryb laa yb ryc |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
252 |
assume ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
253 |
"\<And>ry rya. \<lbrakk>rec_calc_rel (Pr (length l) f g) (l @ [y]) ry; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
254 |
rec_calc_rel (Pr (length l) f g) (l @ [y]) rya\<rbrakk> \<Longrightarrow> ry = rya" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
255 |
and j: "rec_calc_rel (Pr (length l) f g) (l @ [y]) ryb" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
256 |
"rec_calc_rel g (l @ [y, ryb]) ry" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
257 |
"rec_calc_rel (Pr (length l) f g) (l @ [y]) ryc" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
258 |
"rec_calc_rel g (l @ [y, ryc]) rya" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
259 |
from j show "ry = rya" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
260 |
apply(insert ind[of ryb ryc], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
261 |
apply(insert ng_ind[of "l @ [y, ryc]" ry rya], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
262 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
263 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
264 |
from k1 and this show "x = y" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
265 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
266 |
apply(insert ng_ind[of "la @ [ya, rya]" x y], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
267 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
268 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
269 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
270 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
271 |
lemma Suc_nth_part_eq: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
272 |
"\<forall>k<Suc (length list). (a # xs) ! k = (aa # list) ! k |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
273 |
\<Longrightarrow> \<forall>k<(length list). (xs) ! k = (list) ! k" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
274 |
apply(rule allI, rule impI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
275 |
apply(erule_tac x = "Suc k" in allE, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
276 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
277 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
278 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
279 |
lemma list_eq_intro: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
280 |
"\<lbrakk>length xs = length ys; \<forall> k < length xs. xs ! k = ys ! k\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
281 |
\<Longrightarrow> xs = ys" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
282 |
apply(induct xs arbitrary: ys, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
283 |
apply(case_tac ys, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
284 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
285 |
fix a xs ys aa list |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
286 |
assume ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
287 |
"\<And>ys. \<lbrakk>length list = length ys; \<forall>k<length ys. xs ! k = ys ! k\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
288 |
\<Longrightarrow> xs = ys" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
289 |
and h: "length xs = length list" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
290 |
"\<forall>k<Suc (length list). (a # xs) ! k = (aa # list) ! k" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
291 |
from h show "a = aa \<and> xs = list" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
292 |
apply(insert ind[of list], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
293 |
apply(frule Suc_nth_part_eq, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
294 |
apply(erule_tac x = "0" in allE, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
295 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
296 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
297 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
298 |
lemma rec_calc_inj_case_cn: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
299 |
assumes ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
300 |
"\<And>x l xa y. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
301 |
\<lbrakk>x = f \<or> x \<in> set gs; rec_calc_rel x l xa; rec_calc_rel x l y\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
302 |
\<Longrightarrow> xa = y" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
303 |
and h: "rec_calc_rel (Cn n f gs) l x" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
304 |
"rec_calc_rel (Cn n f gs) l y" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
305 |
shows "x = y" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
306 |
apply(insert h, elim calc_cn_reverse) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
307 |
apply(subgoal_tac "rs = rsa") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
308 |
apply(rule_tac x = f and l = rsa and xa = x and y = y in ind, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
309 |
simp, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
310 |
apply(intro list_eq_intro, simp, rule allI, rule impI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
311 |
apply(erule_tac x = k in allE, rule_tac x = k in allE, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
312 |
apply(rule_tac x = "gs ! k" in ind, simp, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
313 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
314 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
315 |
lemma rec_calc_inj: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
316 |
"\<lbrakk>rec_calc_rel f l x; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
317 |
rec_calc_rel f l y\<rbrakk> \<Longrightarrow> x = y" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
318 |
apply(induct f arbitrary: l x y rule: rec_ci.induct) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
319 |
apply(simp add: rec_calc_inj_case_z) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
320 |
apply(simp add: rec_calc_inj_case_s) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
321 |
apply(simp add: rec_calc_inj_case_id, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
322 |
apply(erule rec_calc_inj_case_cn,simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
323 |
apply(erule rec_calc_inj_case_pr, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
324 |
apply(erule rec_calc_inj_case_mn, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
325 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
326 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
327 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
328 |
lemma calc_rel_reverse_ind_step_ex: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
329 |
"\<lbrakk>rec_calc_rel (Pr n f g) (lm @ [Suc x]) rs\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
330 |
\<Longrightarrow> \<exists> rs. rec_calc_rel (Pr n f g) (lm @ [x]) rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
331 |
apply(erule calc_pr_reverse, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
332 |
apply(rule_tac x = rk in exI, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
333 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
334 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
335 |
lemma [simp]: "Suc x \<le> y \<Longrightarrow> Suc (y - Suc x) = y - x" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
336 |
by arith |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
337 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
338 |
lemma calc_pr_para_not_null: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
339 |
"rec_calc_rel (Pr n f g) lm rs \<Longrightarrow> lm \<noteq> []" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
340 |
apply(erule calc_pr_reverse, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
341 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
342 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
343 |
lemma calc_pr_less_ex: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
344 |
"\<lbrakk>rec_calc_rel (Pr n f g) lm rs; x \<le> last lm\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
345 |
\<exists>rs. rec_calc_rel (Pr n f g) (butlast lm @ [last lm - x]) rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
346 |
apply(subgoal_tac "lm \<noteq> []") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
347 |
apply(induct x, rule_tac x = rs in exI, simp, simp, erule exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
348 |
apply(rule_tac rs = xa in calc_rel_reverse_ind_step_ex, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
349 |
apply(simp add: calc_pr_para_not_null) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
350 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
351 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
352 |
lemma calc_pr_zero_ex: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
353 |
"rec_calc_rel (Pr n f g) lm rs \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
354 |
\<exists>rs. rec_calc_rel f (butlast lm) rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
355 |
apply(drule_tac x = "last lm" in calc_pr_less_ex, simp, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
356 |
erule_tac exE, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
357 |
apply(erule_tac calc_pr_reverse, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
358 |
apply(rule_tac x = rs in exI, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
359 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
360 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
361 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
362 |
lemma abc_steps_ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
363 |
"abc_steps_l (as, am) ap (Suc stp) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
364 |
abc_steps_l (abc_steps_l (as, am) ap stp) ap (Suc 0)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
365 |
apply(insert abc_steps_add[of as am ap stp "Suc 0"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
366 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
367 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
368 |
lemma abc_steps_zero: "abc_steps_l asm ap 0 = asm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
369 |
apply(case_tac asm, simp add: abc_steps_l.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
370 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
371 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
372 |
lemma abc_append_nth: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
373 |
"n < length ap + length bp \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
374 |
(ap [+] bp) ! n = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
375 |
(if n < length ap then ap ! n |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
376 |
else abc_inst_shift (bp ! (n - length ap)) (length ap))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
377 |
apply(simp add: abc_append.simps nth_append map_nth split: if_splits) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
378 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
379 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
380 |
lemma abc_state_keep: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
381 |
"as \<ge> length bp \<Longrightarrow> abc_steps_l (as, lm) bp stp = (as, lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
382 |
apply(induct stp, simp add: abc_steps_zero) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
383 |
apply(simp add: abc_steps_ind) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
384 |
apply(simp add: abc_steps_zero) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
385 |
apply(simp add: abc_steps_l.simps abc_fetch.simps abc_step_l.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
386 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
387 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
388 |
lemma abc_halt_equal: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
389 |
"\<lbrakk>abc_steps_l (0, lm) bp stpa = (length bp, lm1); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
390 |
abc_steps_l (0, lm) bp stpb = (length bp, lm2)\<rbrakk> \<Longrightarrow> lm1 = lm2" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
391 |
apply(case_tac "stpa - stpb > 0") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
392 |
apply(insert abc_steps_add[of 0 lm bp stpb "stpa - stpb"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
393 |
apply(insert abc_state_keep[of bp "length bp" lm2 "stpa - stpb"], |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
394 |
simp, simp add: abc_steps_zero) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
395 |
apply(insert abc_steps_add[of 0 lm bp stpa "stpb - stpa"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
396 |
apply(insert abc_state_keep[of bp "length bp" lm1 "stpb - stpa"], |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
397 |
simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
398 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
399 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
400 |
lemma abc_halt_point_ex: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
401 |
"\<lbrakk>\<exists>stp. abc_steps_l (0, lm) bp stp = (bs, lm'); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
402 |
bs = length bp; bp \<noteq> []\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
403 |
\<Longrightarrow> \<exists> stp. (\<lambda> (s, l). s < bs \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
404 |
(abc_steps_l (s, l) bp (Suc 0)) = (bs, lm')) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
405 |
(abc_steps_l (0, lm) bp stp) " |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
406 |
apply(erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
407 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
408 |
fix stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
409 |
assume "bs = length bp" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
410 |
"abc_steps_l (0, lm) bp stp = (bs, lm')" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
411 |
"bp \<noteq> []" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
412 |
thus |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
413 |
"\<exists>stp. (\<lambda>(s, l). s < bs \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
414 |
abc_steps_l (s, l) bp (Suc 0) = (bs, lm')) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
415 |
(abc_steps_l (0, lm) bp stp)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
416 |
apply(induct stp, simp add: abc_steps_zero, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
417 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
418 |
fix stpa |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
419 |
assume ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
420 |
"abc_steps_l (0, lm) bp stpa = (length bp, lm') |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
421 |
\<Longrightarrow> \<exists>stp. (\<lambda>(s, l). s < length bp \<and> abc_steps_l (s, l) bp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
422 |
(Suc 0) = (length bp, lm')) (abc_steps_l (0, lm) bp stp)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
423 |
and h: "abc_steps_l (0, lm) bp (Suc stpa) = (length bp, lm')" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
424 |
"abc_steps_l (0, lm) bp stp = (length bp, lm')" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
425 |
"bp \<noteq> []" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
426 |
from h show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
427 |
"\<exists>stp. (\<lambda>(s, l). s < length bp \<and> abc_steps_l (s, l) bp (Suc 0) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
428 |
= (length bp, lm')) (abc_steps_l (0, lm) bp stp)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
429 |
apply(case_tac "abc_steps_l (0, lm) bp stpa", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
430 |
case_tac "a = length bp") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
431 |
apply(insert ind, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
432 |
apply(subgoal_tac "b = lm'", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
433 |
apply(rule_tac abc_halt_equal, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
434 |
apply(rule_tac x = stpa in exI, simp add: abc_steps_ind) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
435 |
apply(simp add: abc_steps_zero) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
436 |
apply(rule classical, simp add: abc_steps_l.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
437 |
abc_fetch.simps abc_step_l.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
438 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
439 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
440 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
441 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
442 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
443 |
lemma abc_append_empty_r[simp]: "[] [+] ab = ab" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
444 |
apply(simp add: abc_append.simps abc_inst_shift.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
445 |
apply(induct ab, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
446 |
apply(case_tac a, simp_all add: abc_inst_shift.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
447 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
448 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
449 |
lemma abc_append_empty_l[simp]: "ab [+] [] = ab" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
450 |
apply(simp add: abc_append.simps abc_inst_shift.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
451 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
452 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
453 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
454 |
lemma abc_append_length[simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
455 |
"length (ap [+] bp) = length ap + length bp" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
456 |
apply(simp add: abc_append.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
457 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
458 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
459 |
declare Let_def[simp] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
460 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
461 |
lemma abc_append_commute: "as [+] bs [+] cs = as [+] (bs [+] cs)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
462 |
apply(simp add: abc_append.simps abc_shift.simps abc_inst_shift.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
463 |
apply(induct cs, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
464 |
apply(case_tac a, auto simp: abc_inst_shift.simps Let_def) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
465 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
466 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
467 |
lemma abc_halt_point_step[simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
468 |
"\<lbrakk>a < length bp; abc_steps_l (a, b) bp (Suc 0) = (length bp, lm')\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
469 |
\<Longrightarrow> abc_steps_l (length ap + a, b) (ap [+] bp [+] cp) (Suc 0) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
470 |
(length ap + length bp, lm')" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
471 |
apply(simp add: abc_steps_l.simps abc_fetch.simps abc_append_nth) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
472 |
apply(case_tac "bp ! a", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
473 |
auto simp: abc_steps_l.simps abc_step_l.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
474 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
475 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
476 |
lemma abc_step_state_in: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
477 |
"\<lbrakk>bs < length bp; abc_steps_l (a, b) bp (Suc 0) = (bs, l)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
478 |
\<Longrightarrow> a < length bp" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
479 |
apply(simp add: abc_steps_l.simps abc_fetch.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
480 |
apply(rule_tac classical, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
481 |
simp add: abc_step_l.simps abc_steps_l.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
482 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
483 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
484 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
485 |
lemma abc_append_state_in_exc: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
486 |
"\<lbrakk>bs < length bp; abc_steps_l (0, lm) bp stpa = (bs, l)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
487 |
\<Longrightarrow> abc_steps_l (length ap, lm) (ap [+] bp [+] cp) stpa = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
488 |
(length ap + bs, l)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
489 |
apply(induct stpa arbitrary: bs l, simp add: abc_steps_zero) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
490 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
491 |
fix stpa bs l |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
492 |
assume ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
493 |
"\<And>bs l. \<lbrakk>bs < length bp; abc_steps_l (0, lm) bp stpa = (bs, l)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
494 |
\<Longrightarrow> abc_steps_l (length ap, lm) (ap [+] bp [+] cp) stpa = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
495 |
(length ap + bs, l)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
496 |
and h: "bs < length bp" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
497 |
"abc_steps_l (0, lm) bp (Suc stpa) = (bs, l)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
498 |
from h show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
499 |
"abc_steps_l (length ap, lm) (ap [+] bp [+] cp) (Suc stpa) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
500 |
(length ap + bs, l)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
501 |
apply(simp add: abc_steps_ind) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
502 |
apply(case_tac "(abc_steps_l (0, lm) bp stpa)", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
503 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
504 |
fix a b |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
505 |
assume g: "abc_steps_l (0, lm) bp stpa = (a, b)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
506 |
"abc_steps_l (a, b) bp (Suc 0) = (bs, l)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
507 |
from h and g have k1: "a < length bp" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
508 |
apply(simp add: abc_step_state_in) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
509 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
510 |
from h and g and k1 show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
511 |
"abc_steps_l (abc_steps_l (length ap, lm) (ap [+] bp [+] cp) stpa) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
512 |
(ap [+] bp [+] cp) (Suc 0) = (length ap + bs, l)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
513 |
apply(insert ind[of a b], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
514 |
apply(simp add: abc_steps_l.simps abc_fetch.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
515 |
abc_append_nth) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
516 |
apply(case_tac "bp ! a", auto simp: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
517 |
abc_steps_l.simps abc_step_l.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
518 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
519 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
520 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
521 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
522 |
lemma [simp]: "abc_steps_l (0, am) [] stp = (0, am)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
523 |
apply(induct stp, simp add: abc_steps_zero) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
524 |
apply(simp add: abc_steps_ind) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
525 |
apply(simp add: abc_steps_zero abc_steps_l.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
526 |
abc_fetch.simps abc_step_l.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
527 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
528 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
529 |
lemma abc_append_exc1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
530 |
"\<lbrakk>\<exists> stp. abc_steps_l (0, lm) bp stp = (bs, lm'); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
531 |
bs = length bp; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
532 |
as = length ap\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
533 |
\<Longrightarrow> \<exists> stp. abc_steps_l (as, lm) (ap [+] bp [+] cp) stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
534 |
= (as + bs, lm')" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
535 |
apply(case_tac "bp = []", erule_tac exE, simp, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
536 |
rule_tac x = 0 in exI, simp add: abc_steps_zero) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
537 |
apply(frule_tac abc_halt_point_ex, simp, simp, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
538 |
erule_tac exE, erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
539 |
apply(rule_tac x = "stpa + Suc 0" in exI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
540 |
apply(case_tac "(abc_steps_l (0, lm) bp stpa)", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
541 |
simp add: abc_steps_ind) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
542 |
apply(subgoal_tac |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
543 |
"abc_steps_l (length ap, lm) (ap [+] bp [+] cp) stpa |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
544 |
= (length ap + a, b)", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
545 |
apply(simp add: abc_steps_zero) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
546 |
apply(rule_tac abc_append_state_in_exc, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
547 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
548 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
549 |
lemma abc_append_exc3: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
550 |
"\<lbrakk>\<exists> stp. abc_steps_l (0, am) bp stp = (bs, bm); ss = length ap\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
551 |
\<Longrightarrow> \<exists> stp. abc_steps_l (ss, am) (ap [+] bp) stp = (bs + ss, bm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
552 |
apply(erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
553 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
554 |
fix stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
555 |
assume h: "abc_steps_l (0, am) bp stp = (bs, bm)" "ss = length ap" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
556 |
thus " \<exists>stp. abc_steps_l (ss, am) (ap [+] bp) stp = (bs + ss, bm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
557 |
proof(induct stp arbitrary: bs bm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
558 |
fix bs bm |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
559 |
assume "abc_steps_l (0, am) bp 0 = (bs, bm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
560 |
thus "\<exists>stp. abc_steps_l (ss, am) (ap [+] bp) stp = (bs + ss, bm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
561 |
apply(rule_tac x = 0 in exI, simp add: abc_steps_l.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
562 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
563 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
564 |
fix stp bs bm |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
565 |
assume ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
566 |
"\<And>bs bm. \<lbrakk>abc_steps_l (0, am) bp stp = (bs, bm); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
567 |
ss = length ap\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
568 |
\<exists>stp. abc_steps_l (ss, am) (ap [+] bp) stp = (bs + ss, bm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
569 |
and g: "abc_steps_l (0, am) bp (Suc stp) = (bs, bm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
570 |
from g show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
571 |
"\<exists>stp. abc_steps_l (ss, am) (ap [+] bp) stp = (bs + ss, bm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
572 |
apply(insert abc_steps_add[of 0 am bp stp "Suc 0"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
573 |
apply(case_tac "(abc_steps_l (0, am) bp stp)", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
574 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
575 |
fix a b |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
576 |
assume "(bs, bm) = abc_steps_l (a, b) bp (Suc 0)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
577 |
"abc_steps_l (0, am) bp (Suc stp) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
578 |
abc_steps_l (a, b) bp (Suc 0)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
579 |
"abc_steps_l (0, am) bp stp = (a, b)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
580 |
thus "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
581 |
apply(insert ind[of a b], simp add: h, erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
582 |
apply(rule_tac x = "Suc stp" in exI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
583 |
apply(simp only: abc_steps_ind, simp add: abc_steps_zero) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
584 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
585 |
fix stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
586 |
assume "(bs, bm) = abc_steps_l (a, b) bp (Suc 0)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
587 |
thus "abc_steps_l (a + length ap, b) (ap [+] bp) (Suc 0) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
588 |
= (bs + length ap, bm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
589 |
apply(simp add: abc_steps_l.simps abc_steps_zero |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
590 |
abc_fetch.simps split: if_splits) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
591 |
apply(case_tac "bp ! a", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
592 |
simp_all add: abc_inst_shift.simps abc_append_nth |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
593 |
abc_steps_l.simps abc_steps_zero abc_step_l.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
594 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
595 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
596 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
597 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
598 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
599 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
600 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
601 |
lemma abc_add_equal: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
602 |
"\<lbrakk>ap \<noteq> []; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
603 |
abc_steps_l (0, am) ap astp = (a, b); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
604 |
a < length ap\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
605 |
\<Longrightarrow> (abc_steps_l (0, am) (ap @ bp) astp) = (a, b)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
606 |
apply(induct astp arbitrary: a b, simp add: abc_steps_l.simps, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
607 |
apply(simp add: abc_steps_ind) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
608 |
apply(case_tac "(abc_steps_l (0, am) ap astp)") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
609 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
610 |
fix astp a b aa ba |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
611 |
assume ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
612 |
"\<And>a b. \<lbrakk>abc_steps_l (0, am) ap astp = (a, b); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
613 |
a < length ap\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
614 |
abc_steps_l (0, am) (ap @ bp) astp = (a, b)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
615 |
and h: "abc_steps_l (abc_steps_l (0, am) ap astp) ap (Suc 0) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
616 |
= (a, b)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
617 |
"a < length ap" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
618 |
"abc_steps_l (0, am) ap astp = (aa, ba)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
619 |
from h show "abc_steps_l (abc_steps_l (0, am) (ap @ bp) astp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
620 |
(ap @ bp) (Suc 0) = (a, b)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
621 |
apply(insert ind[of aa ba], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
622 |
apply(subgoal_tac "aa < length ap", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
623 |
apply(simp add: abc_steps_l.simps abc_fetch.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
624 |
nth_append abc_steps_zero) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
625 |
apply(rule abc_step_state_in, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
626 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
627 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
628 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
629 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
630 |
lemma abc_add_exc1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
631 |
"\<lbrakk>\<exists> astp. abc_steps_l (0, am) ap astp = (as, bm); as = length ap\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
632 |
\<Longrightarrow> \<exists> stp. abc_steps_l (0, am) (ap @ bp) stp = (as, bm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
633 |
apply(case_tac "ap = []", simp, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
634 |
rule_tac x = 0 in exI, simp add: abc_steps_zero) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
635 |
apply(drule_tac abc_halt_point_ex, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
636 |
apply(erule_tac exE, case_tac "(abc_steps_l (0, am) ap astp)", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
637 |
apply(rule_tac x = "Suc astp" in exI, simp add: abc_steps_ind, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
638 |
apply(frule_tac bp = bp in abc_add_equal, simp, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
639 |
apply(simp add: abc_steps_l.simps abc_steps_zero |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
640 |
abc_fetch.simps nth_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
641 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
642 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
643 |
declare abc_shift.simps[simp del] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
644 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
645 |
lemma abc_append_exc2: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
646 |
"\<lbrakk>\<exists> astp. abc_steps_l (0, am) ap astp = (as, bm); as = length ap; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
647 |
\<exists> bstp. abc_steps_l (0, bm) bp bstp = (bs, bm'); bs = length bp; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
648 |
cs = as + bs; bp \<noteq> []\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
649 |
\<Longrightarrow> \<exists> stp. abc_steps_l (0, am) (ap [+] bp) stp = (cs, bm')" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
650 |
apply(insert abc_append_exc1[of bm bp bs bm' as ap "[]"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
651 |
apply(drule_tac bp = "abc_shift bp (length ap)" in abc_add_exc1, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
652 |
apply(subgoal_tac "ap @ abc_shift bp (length ap) = ap [+] bp", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
653 |
simp, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
654 |
apply(rule_tac x = "stpa + stp" in exI, simp add: abc_steps_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
655 |
apply(simp add: abc_append.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
656 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
657 |
lemma exponent_add_iff: "a\<up>b @ a\<up>c@ xs = a\<up>(b+c) @ xs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
658 |
apply(auto simp: replicate_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
659 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
660 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
661 |
lemma exponent_cons_iff: "a # a\<up>c @ xs = a\<up>(Suc c) @ xs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
662 |
apply(auto simp: replicate_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
663 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
664 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
665 |
lemma [simp]: "length lm = n \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
666 |
abc_steps_l (Suc 0, lm @ Suc x # 0 # suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
667 |
[Inc n, Dec (Suc n) 3, Goto (Suc 0)] (Suc (Suc 0)) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
668 |
= (3, lm @ Suc x # 0 # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
669 |
apply(simp add: abc_steps_l.simps abc_fetch.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
670 |
abc_step_l.simps abc_lm_v.simps abc_lm_s.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
671 |
nth_append list_update_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
672 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
673 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
674 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
675 |
"length lm = n \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
676 |
abc_steps_l (Suc 0, lm @ Suc x # Suc y # suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
677 |
[Inc n, Dec (Suc n) 3, Goto (Suc 0)] (Suc (Suc 0)) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
678 |
= (Suc 0, lm @ Suc x # y # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
679 |
apply(simp add: abc_steps_l.simps abc_fetch.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
680 |
abc_step_l.simps abc_lm_v.simps abc_lm_s.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
681 |
nth_append list_update_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
682 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
683 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
684 |
lemma pr_cycle_part_middle_inv: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
685 |
"\<lbrakk>length lm = n\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
686 |
\<exists> stp. abc_steps_l (0, lm @ x # y # suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
687 |
[Inc n, Dec (Suc n) 3, Goto (Suc 0)] stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
688 |
= (3, lm @ Suc x # 0 # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
689 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
690 |
assume h: "length lm = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
691 |
hence k1: "\<exists> stp. abc_steps_l (0, lm @ x # y # suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
692 |
[Inc n, Dec (Suc n) 3, Goto (Suc 0)] stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
693 |
= (Suc 0, lm @ Suc x # y # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
694 |
apply(rule_tac x = "Suc 0" in exI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
695 |
apply(simp add: abc_steps_l.simps abc_step_l.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
696 |
abc_lm_v.simps abc_lm_s.simps nth_append |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
697 |
list_update_append abc_fetch.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
698 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
699 |
from h have k2: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
700 |
"\<exists> stp. abc_steps_l (Suc 0, lm @ Suc x # y # suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
701 |
[Inc n, Dec (Suc n) 3, Goto (Suc 0)] stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
702 |
= (3, lm @ Suc x # 0 # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
703 |
apply(induct y) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
704 |
apply(rule_tac x = "Suc (Suc 0)" in exI, simp, simp, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
705 |
erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
706 |
apply(rule_tac x = "Suc (Suc 0) + stp" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
707 |
simp only: abc_steps_add, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
708 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
709 |
from k1 and k2 show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
710 |
"\<exists> stp. abc_steps_l (0, lm @ x # y # suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
711 |
[Inc n, Dec (Suc n) 3, Goto (Suc 0)] stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
712 |
= (3, lm @ Suc x # 0 # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
713 |
apply(erule_tac exE, erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
714 |
apply(rule_tac x = "stp + stpa" in exI, simp add: abc_steps_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
715 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
716 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
717 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
718 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
719 |
"length lm = Suc n \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
720 |
(abc_steps_l (length ap, lm @ x # Suc y # suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
721 |
(ap @ [Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length ap)]) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
722 |
(Suc (Suc (Suc 0)))) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
723 |
= (length ap, lm @ Suc x # y # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
724 |
apply(simp add: abc_steps_l.simps abc_fetch.simps abc_step_l.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
725 |
abc_lm_v.simps list_update_append nth_append abc_lm_s.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
726 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
727 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
728 |
lemma switch_para_inv: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
729 |
assumes bp_def:"bp = ap @ [Dec (Suc (Suc n)) 0, Inc (Suc n), Goto ss]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
730 |
and h: "rec_ci (Pr n f g) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
731 |
"ss = length ap" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
732 |
"length lm = Suc n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
733 |
shows " \<exists>stp. abc_steps_l (ss, lm @ x # y # suf_lm) bp stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
734 |
(0, lm @ (x + y) # 0 # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
735 |
apply(induct y arbitrary: x) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
736 |
apply(rule_tac x = "Suc 0" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
737 |
simp add: bp_def mv_box.simps abc_steps_l.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
738 |
abc_fetch.simps h abc_step_l.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
739 |
abc_lm_v.simps list_update_append nth_append |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
740 |
abc_lm_s.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
741 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
742 |
fix y x |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
743 |
assume ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
744 |
"\<And>x. \<exists>stp. abc_steps_l (ss, lm @ x # y # suf_lm) bp stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
745 |
(0, lm @ (x + y) # 0 # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
746 |
show "\<exists>stp. abc_steps_l (ss, lm @ x # Suc y # suf_lm) bp stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
747 |
(0, lm @ (x + Suc y) # 0 # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
748 |
apply(insert ind[of "Suc x"], erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
749 |
apply(rule_tac x = "Suc (Suc (Suc 0)) + stp" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
750 |
simp only: abc_steps_add bp_def h) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
751 |
apply(simp add: h) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
752 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
753 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
754 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
755 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
756 |
"length lm = rs_pos \<and> Suc (Suc rs_pos) < a_md \<and> 0 < rs_pos \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
757 |
a_md - Suc 0 < Suc (Suc (Suc (a_md + length suf_lm - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
758 |
Suc (Suc (Suc 0)))))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
759 |
apply(arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
760 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
761 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
762 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
763 |
"Suc (Suc rs_pos) < a_md \<and> 0 < rs_pos \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
764 |
\<not> a_md - Suc 0 < rs_pos - Suc 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
765 |
apply(arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
766 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
767 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
768 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
769 |
"Suc (Suc rs_pos) < a_md \<and> 0 < rs_pos \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
770 |
\<not> a_md - rs_pos < Suc (Suc (a_md - Suc (Suc rs_pos)))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
771 |
apply(arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
772 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
773 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
774 |
lemma butlast_append_last: "lm \<noteq> [] \<Longrightarrow> lm = butlast lm @ [last lm]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
775 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
776 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
777 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
778 |
lemma [simp]: "rec_ci (Pr n f g) = (aprog, rs_pos, a_md) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
779 |
\<Longrightarrow> (Suc (Suc rs_pos)) < a_md" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
780 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
781 |
apply(case_tac "rec_ci f", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
782 |
apply(case_tac "rec_ci g", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
783 |
apply(arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
784 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
785 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
786 |
lemma ci_pr_para_eq: "rec_ci (Pr n f g) = (aprog, rs_pos, a_md) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
787 |
\<Longrightarrow> rs_pos = Suc n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
788 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
789 |
apply(case_tac "rec_ci g", case_tac "rec_ci f", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
790 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
791 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
792 |
lemma [intro]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
793 |
"\<lbrakk>rec_ci z = (aprog, rs_pos, a_md); rec_calc_rel z lm xs\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
794 |
\<Longrightarrow> length lm = rs_pos" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
795 |
apply(simp add: rec_ci.simps rec_ci_z_def) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
796 |
apply(erule_tac calc_z_reverse, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
797 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
798 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
799 |
lemma [intro]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
800 |
"\<lbrakk>rec_ci s = (aprog, rs_pos, a_md); rec_calc_rel s lm xs\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
801 |
\<Longrightarrow> length lm = rs_pos" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
802 |
apply(simp add: rec_ci.simps rec_ci_s_def) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
803 |
apply(erule_tac calc_s_reverse, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
804 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
805 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
806 |
lemma [intro]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
807 |
"\<lbrakk>rec_ci (recf.id nat1 nat2) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
808 |
rec_calc_rel (recf.id nat1 nat2) lm xs\<rbrakk> \<Longrightarrow> length lm = rs_pos" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
809 |
apply(simp add: rec_ci.simps rec_ci_id.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
810 |
apply(erule_tac calc_id_reverse, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
811 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
812 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
813 |
lemma [intro]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
814 |
"\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
815 |
rec_calc_rel (Cn n f gs) lm xs\<rbrakk> \<Longrightarrow> length lm = rs_pos" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
816 |
apply(erule_tac calc_cn_reverse, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
817 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
818 |
apply(case_tac "rec_ci f", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
819 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
820 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
821 |
lemma [intro]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
822 |
"\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
823 |
rec_calc_rel (Pr n f g) lm xs\<rbrakk> \<Longrightarrow> length lm = rs_pos" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
824 |
apply(erule_tac calc_pr_reverse, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
825 |
apply(drule_tac ci_pr_para_eq, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
826 |
apply(drule_tac ci_pr_para_eq, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
827 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
828 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
829 |
lemma [intro]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
830 |
"\<lbrakk>rec_ci (Mn n f) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
831 |
rec_calc_rel (Mn n f) lm xs\<rbrakk> \<Longrightarrow> length lm = rs_pos" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
832 |
apply(erule_tac calc_mn_reverse) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
833 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
834 |
apply(case_tac "rec_ci f", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
835 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
836 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
837 |
lemma para_pattern: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
838 |
"\<lbrakk>rec_ci f = (aprog, rs_pos, a_md); rec_calc_rel f lm xs\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
839 |
\<Longrightarrow> length lm = rs_pos" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
840 |
apply(case_tac f, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
841 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
842 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
843 |
lemma ci_pr_g_paras: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
844 |
"\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
845 |
rec_ci g = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
846 |
rec_calc_rel (Pr n f g) (lm @ [x]) rs; x > 0\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
847 |
aa = Suc rs_pos " |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
848 |
apply(erule calc_pr_reverse, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
849 |
apply(subgoal_tac "length (args @ [k, rk]) = aa", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
850 |
apply(subgoal_tac "rs_pos = Suc n", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
851 |
apply(simp add: ci_pr_para_eq) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
852 |
apply(erule para_pattern, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
853 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
854 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
855 |
lemma ci_pr_g_md_less: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
856 |
"\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
857 |
rec_ci g = (a, aa, ba)\<rbrakk> \<Longrightarrow> ba < a_md" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
858 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
859 |
apply(case_tac "rec_ci f", auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
860 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
861 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
862 |
lemma [intro]: "rec_ci z = (ap, rp, ad) \<Longrightarrow> rp < ad" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
863 |
by(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
864 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
865 |
lemma [intro]: "rec_ci s = (ap, rp, ad) \<Longrightarrow> rp < ad" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
866 |
by(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
867 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
868 |
lemma [intro]: "rec_ci (recf.id nat1 nat2) = (ap, rp, ad) \<Longrightarrow> rp < ad" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
869 |
by(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
870 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
871 |
lemma [intro]: "rec_ci (Cn n f gs) = (ap, rp, ad) \<Longrightarrow> rp < ad" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
872 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
873 |
apply(case_tac "rec_ci f", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
874 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
875 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
876 |
lemma [intro]: "rec_ci (Pr n f g) = (ap, rp, ad) \<Longrightarrow> rp < ad" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
877 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
878 |
by(case_tac "rec_ci f", case_tac "rec_ci g", auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
879 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
880 |
lemma [intro]: "rec_ci (Mn n f) = (ap, rp, ad) \<Longrightarrow> rp < ad" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
881 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
882 |
apply(case_tac "rec_ci f", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
883 |
apply(arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
884 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
885 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
886 |
lemma ci_ad_ge_paras: "rec_ci f = (ap, rp, ad) \<Longrightarrow> ad > rp" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
887 |
apply(case_tac f, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
888 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
889 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
890 |
lemma [elim]: "\<lbrakk>a [+] b = []; a \<noteq> [] \<or> b \<noteq> []\<rbrakk> \<Longrightarrow> RR" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
891 |
apply(auto simp: abc_append.simps abc_shift.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
892 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
893 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
894 |
lemma [intro]: "rec_ci z = ([], aa, ba) \<Longrightarrow> False" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
895 |
by(simp add: rec_ci.simps rec_ci_z_def) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
896 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
897 |
lemma [intro]: "rec_ci s = ([], aa, ba) \<Longrightarrow> False" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
898 |
by(auto simp: rec_ci.simps rec_ci_s_def addition.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
899 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
900 |
lemma [intro]: "rec_ci (id m n) = ([], aa, ba) \<Longrightarrow> False" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
901 |
by(auto simp: rec_ci.simps rec_ci_id.simps addition.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
902 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
903 |
lemma [intro]: "rec_ci (Cn n f gs) = ([], aa, ba) \<Longrightarrow> False" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
904 |
apply(case_tac "rec_ci f", auto simp: rec_ci.simps abc_append.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
905 |
apply(simp add: abc_shift.simps mv_box.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
906 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
907 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
908 |
lemma [intro]: "rec_ci (Pr n f g) = ([], aa, ba) \<Longrightarrow> False" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
909 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
910 |
apply(case_tac "rec_ci f", case_tac "rec_ci g") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
911 |
by(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
912 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
913 |
lemma [intro]: "rec_ci (Mn n f) = ([], aa, ba) \<Longrightarrow> False" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
914 |
apply(case_tac "rec_ci f", auto simp: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
915 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
916 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
917 |
lemma rec_ci_not_null: "rec_ci g = (a, aa, ba) \<Longrightarrow> a \<noteq> []" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
918 |
by(case_tac g, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
919 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
920 |
lemma calc_pr_g_def: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
921 |
"\<lbrakk>rec_calc_rel (Pr rs_pos f g) (lm @ [Suc x]) rsa; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
922 |
rec_calc_rel (Pr rs_pos f g) (lm @ [x]) rsxa\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
923 |
\<Longrightarrow> rec_calc_rel g (lm @ [x, rsxa]) rsa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
924 |
apply(erule_tac calc_pr_reverse, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
925 |
apply(subgoal_tac "rsxa = rk", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
926 |
apply(erule_tac rec_calc_inj, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
927 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
928 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
929 |
lemma ci_pr_md_def: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
930 |
"\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
931 |
rec_ci g = (a, aa, ba); rec_ci f = (ab, ac, bc)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
932 |
\<Longrightarrow> a_md = Suc (max (n + 3) (max bc ba))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
933 |
by(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
934 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
935 |
lemma ci_pr_f_paras: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
936 |
"\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
937 |
rec_calc_rel (Pr n f g) lm rs; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
938 |
rec_ci f = (ab, ac, bc)\<rbrakk> \<Longrightarrow> ac = rs_pos - Suc 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
939 |
apply(subgoal_tac "\<exists>rs. rec_calc_rel f (butlast lm) rs", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
940 |
erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
941 |
apply(drule_tac f = f and lm = "butlast lm" in para_pattern, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
942 |
simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
943 |
apply(drule_tac para_pattern, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
944 |
apply(subgoal_tac "lm \<noteq> []", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
945 |
apply(erule_tac calc_pr_reverse, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
946 |
apply(erule calc_pr_zero_ex) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
947 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
948 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
949 |
lemma ci_pr_md_ge_f: "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
950 |
rec_ci f = (ab, ac, bc)\<rbrakk> \<Longrightarrow> Suc bc \<le> a_md" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
951 |
apply(case_tac "rec_ci g") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
952 |
apply(simp add: rec_ci.simps, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
953 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
954 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
955 |
lemma ci_pr_md_ge_g: "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
956 |
rec_ci g = (ab, ac, bc)\<rbrakk> \<Longrightarrow> bc < a_md" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
957 |
apply(case_tac "rec_ci f") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
958 |
apply(simp add: rec_ci.simps, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
959 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
960 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
961 |
lemma rec_calc_rel_def0: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
962 |
"\<lbrakk>rec_calc_rel (Pr n f g) lm rs; rec_calc_rel f (butlast lm) rsa\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
963 |
\<Longrightarrow> rec_calc_rel (Pr n f g) (butlast lm @ [0]) rsa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
964 |
apply(rule_tac calc_pr_zero, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
965 |
apply(erule_tac calc_pr_reverse, simp, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
966 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
967 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
968 |
lemma [simp]: "length (mv_box m n) = 3" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
969 |
by (auto simp: mv_box.simps) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
970 |
|
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
971 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
972 |
lemma [simp]: "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); rec_calc_rel (Pr n f g) lm rs\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
973 |
\<Longrightarrow> rs_pos = Suc n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
974 |
apply(simp add: ci_pr_para_eq) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
975 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
976 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
977 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
978 |
lemma [simp]: "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); rec_calc_rel (Pr n f g) lm rs\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
979 |
\<Longrightarrow> length lm = Suc n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
980 |
apply(subgoal_tac "rs_pos = Suc n", rule_tac para_pattern, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
981 |
apply(case_tac "rec_ci f", case_tac "rec_ci g", simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
982 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
983 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
984 |
lemma [simp]: "rec_ci (Pr n f g) = (a, rs_pos, a_md) \<Longrightarrow> Suc (Suc n) < a_md" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
985 |
apply(case_tac "rec_ci f", case_tac "rec_ci g", simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
986 |
apply arith |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
987 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
988 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
989 |
lemma [simp]: "rec_ci (Pr n f g) = (aprog, rs_pos, a_md) \<Longrightarrow> 0 < rs_pos" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
990 |
apply(case_tac "rec_ci f", case_tac "rec_ci g") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
991 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
992 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
993 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
994 |
lemma [simp]: "Suc (Suc rs_pos) < a_md \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
995 |
butlast lm @ (last lm - xa) # (rsa::nat) # 0 # 0\<up>(a_md - Suc (Suc (Suc rs_pos))) @ xa # suf_lm = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
996 |
butlast lm @ (last lm - xa) # rsa # 0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
997 |
apply(simp add: replicate_Suc[THEN sym]) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
998 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
999 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1000 |
lemma pr_cycle_part_ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1001 |
assumes g_ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1002 |
"\<And>lm rs suf_lm. rec_calc_rel g lm rs \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1003 |
\<exists>stp. abc_steps_l (0, lm @ 0\<up>(ba - aa) @ suf_lm) a stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1004 |
(length a, lm @ rs # 0\<up>(ba - Suc aa) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1005 |
and ap_def: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1006 |
"ap = ([Dec (a_md - Suc 0) (length a + 7)] [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1007 |
(a [+] [Inc (rs_pos - Suc 0), Dec rs_pos 3, Goto (Suc 0)])) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1008 |
[Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length a + 4)]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1009 |
and h: "rec_ci (Pr n f g) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1010 |
"rec_calc_rel (Pr n f g) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1011 |
(butlast lm @ [last lm - Suc xa]) rsxa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1012 |
"Suc xa \<le> last lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1013 |
"rec_ci g = (a, aa, ba)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1014 |
"rec_calc_rel (Pr n f g) (butlast lm @ [last lm - xa]) rsa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1015 |
"lm \<noteq> []" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1016 |
shows |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1017 |
"\<exists>stp. abc_steps_l |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1018 |
(0, butlast lm @ (last lm - Suc xa) # rsxa # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1019 |
0\<up>(a_md - Suc (Suc rs_pos)) @ Suc xa # suf_lm) ap stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1020 |
(0, butlast lm @ (last lm - xa) # rsa |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1021 |
# 0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1022 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1023 |
have k1: "\<exists>stp. abc_steps_l (0, butlast lm @ (last lm - Suc xa) # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1024 |
rsxa # 0\<up>(a_md - Suc (Suc rs_pos)) @ Suc xa # suf_lm) ap stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1025 |
(length a + 4, butlast lm @ (last lm - xa) # 0 # rsa # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1026 |
0\<up>(a_md - Suc (Suc (Suc rs_pos))) @ xa # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1027 |
apply(simp add: ap_def, rule_tac abc_add_exc1) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1028 |
apply(rule_tac as = "Suc 0" and |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1029 |
bm = "butlast lm @ (last lm - Suc xa) # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1030 |
rsxa # 0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm" in abc_append_exc2, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1031 |
auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1032 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1033 |
show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1034 |
"\<exists>astp. abc_steps_l (0, butlast lm @ (last lm - Suc xa) # rsxa |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1035 |
# 0\<up>(a_md - Suc (Suc rs_pos)) @ Suc xa # suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1036 |
[Dec (a_md - Suc 0)(length a + 7)] astp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1037 |
(Suc 0, butlast lm @ (last lm - Suc xa) # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1038 |
rsxa # 0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1039 |
apply(rule_tac x = "Suc 0" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1040 |
simp add: abc_steps_l.simps abc_step_l.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1041 |
abc_fetch.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1042 |
apply(subgoal_tac "length lm = Suc n \<and> rs_pos = Suc n \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1043 |
a_md > Suc (Suc rs_pos)") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1044 |
apply(simp add: abc_lm_v.simps nth_append abc_lm_s.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1045 |
apply(insert nth_append[of |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1046 |
"(last lm - Suc xa) # rsxa # 0\<up>(a_md - Suc (Suc rs_pos))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1047 |
"Suc xa # suf_lm" "(a_md - rs_pos)"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1048 |
apply(simp add: list_update_append del: list_update.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1049 |
apply(insert list_update_append[of "(last lm - Suc xa) # rsxa # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1050 |
0\<up>(a_md - Suc (Suc rs_pos))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1051 |
"Suc xa # suf_lm" "a_md - rs_pos" "xa"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1052 |
apply(case_tac a_md, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1053 |
apply(insert h, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1054 |
apply(insert para_pattern[of "Pr n f g" aprog rs_pos a_md |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1055 |
"(butlast lm @ [last lm - Suc xa])" rsxa], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1056 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1057 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1058 |
show "\<exists>bstp. abc_steps_l (0, butlast lm @ (last lm - Suc xa) # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1059 |
rsxa # 0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm) (a [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1060 |
[Inc (rs_pos - Suc 0), Dec rs_pos 3, Goto (Suc 0)]) bstp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1061 |
(3 + length a, butlast lm @ (last lm - xa) # 0 # rsa # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1062 |
0\<up>(a_md - Suc (Suc (Suc rs_pos))) @ xa # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1063 |
apply(rule_tac as = "length a" and |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1064 |
bm = "butlast lm @ (last lm - Suc xa) # rsxa # rsa # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1065 |
0\<up>(a_md - Suc (Suc (Suc rs_pos))) @ xa # suf_lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1066 |
in abc_append_exc2, simp_all) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1067 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1068 |
from h have j1: "aa = Suc rs_pos \<and> a_md > ba \<and> ba > Suc rs_pos" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1069 |
apply(insert h) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1070 |
apply(insert ci_pr_g_paras[of n f g aprog rs_pos |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1071 |
a_md a aa ba "butlast lm" "last lm - xa" rsa], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1072 |
apply(drule_tac ci_pr_md_ge_g, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1073 |
apply(erule_tac ci_ad_ge_paras) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1074 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1075 |
from h have j2: "rec_calc_rel g (butlast lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1076 |
[last lm - Suc xa, rsxa]) rsa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1077 |
apply(rule_tac calc_pr_g_def, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1078 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1079 |
from j1 and j2 show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1080 |
"\<exists>astp. abc_steps_l (0, butlast lm @ (last lm - Suc xa) # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1081 |
rsxa # 0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm) a astp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1082 |
(length a, butlast lm @ (last lm - Suc xa) # rsxa # rsa |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1083 |
# 0\<up>(a_md - Suc (Suc (Suc rs_pos))) @ xa # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1084 |
apply(insert g_ind[of |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1085 |
"butlast lm @ (last lm - Suc xa) # [rsxa]" rsa |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1086 |
"0\<up>(a_md - ba - Suc 0) @ xa # suf_lm"], simp, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1087 |
apply(simp add: exponent_add_iff) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1088 |
apply(rule_tac x = stp in exI, simp add: numeral_3_eq_3) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1089 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1090 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1091 |
from h have j3: "length lm = rs_pos \<and> rs_pos > 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1092 |
apply(rule_tac conjI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1093 |
apply(drule_tac lm = "(butlast lm @ [last lm - Suc xa])" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1094 |
and xs = rsxa in para_pattern, simp, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1095 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1096 |
from h have j4: "Suc (last lm - Suc xa) = last lm - xa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1097 |
apply(case_tac "last lm", simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1098 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1099 |
from j3 and j4 show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1100 |
"\<exists>bstp. abc_steps_l (0, butlast lm @ (last lm - Suc xa) # rsxa # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1101 |
rsa # 0\<up>(a_md - Suc (Suc (Suc rs_pos))) @ xa # suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1102 |
[Inc (rs_pos - Suc 0), Dec rs_pos 3, Goto (Suc 0)] bstp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1103 |
(3, butlast lm @ (last lm - xa) # 0 # rsa # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1104 |
0\<up>(a_md - Suc (Suc (Suc rs_pos))) @ xa # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1105 |
apply(insert pr_cycle_part_middle_inv[of "butlast lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1106 |
"rs_pos - Suc 0" "(last lm - Suc xa)" rsxa |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1107 |
"rsa # 0\<up>(a_md - Suc (Suc (Suc rs_pos))) @ xa # suf_lm"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1108 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1109 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1110 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1111 |
from h have k2: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1112 |
"\<exists>stp. abc_steps_l (length a + 4, butlast lm @ (last lm - xa) # 0 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1113 |
# rsa # 0\<up>(a_md - Suc (Suc (Suc rs_pos))) @ xa # suf_lm) ap stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1114 |
(0, butlast lm @ (last lm - xa) # rsa # 0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1115 |
apply(insert switch_para_inv[of ap |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1116 |
"([Dec (a_md - Suc 0) (length a + 7)] [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1117 |
(a [+] [Inc (rs_pos - Suc 0), Dec rs_pos 3, Goto (Suc 0)]))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1118 |
n "length a + 4" f g aprog rs_pos a_md |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1119 |
"butlast lm @ [last lm - xa]" 0 rsa |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1120 |
"0\<up>(a_md - Suc (Suc (Suc rs_pos))) @ xa # suf_lm"]) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1121 |
apply(simp add: h ap_def) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1122 |
apply(subgoal_tac "length lm = Suc n \<and> Suc (Suc rs_pos) < a_md", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1123 |
simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1124 |
apply(insert h, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1125 |
apply(frule_tac lm = "(butlast lm @ [last lm - Suc xa])" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1126 |
and xs = rsxa in para_pattern, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1127 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1128 |
from k1 and k2 show "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1129 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1130 |
apply(rule_tac x = "stp + stpa" in exI, simp add: abc_steps_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1131 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1132 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1133 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1134 |
lemma ci_pr_ex1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1135 |
"\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1136 |
rec_ci g = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1137 |
rec_ci f = (ab, ac, bc)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1138 |
\<Longrightarrow> \<exists>ap bp. length ap = 6 + length ab \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1139 |
aprog = ap [+] bp \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1140 |
bp = ([Dec (a_md - Suc 0) (length a + 7)] [+] (a [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1141 |
[Inc (rs_pos - Suc 0), Dec rs_pos 3, Goto (Suc 0)])) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1142 |
[Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length a + 4)]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1143 |
apply(simp add: rec_ci.simps) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1144 |
apply(rule_tac x = "Recursive.mv_box n (max (Suc (Suc (Suc n))) |
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1145 |
(max bc ba)) [+] ab [+] Recursive.mv_box n (Suc n)" in exI, |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1146 |
simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1147 |
apply(auto simp add: abc_append_commute numeral_3_eq_3) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1148 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1149 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1150 |
lemma pr_cycle_part: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1151 |
"\<lbrakk>\<And>lm rs suf_lm. rec_calc_rel g lm rs \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1152 |
\<exists>stp. abc_steps_l (0, lm @ 0\<up>(ba - aa) @ suf_lm) a stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1153 |
(length a, lm @ rs # 0\<up>(ba - Suc aa) @ suf_lm); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1154 |
rec_ci (Pr n f g) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1155 |
rec_calc_rel (Pr n f g) lm rs; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1156 |
rec_ci g = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1157 |
rec_calc_rel (Pr n f g) (butlast lm @ [last lm - x]) rsx; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1158 |
rec_ci f = (ab, ac, bc); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1159 |
lm \<noteq> []; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1160 |
x \<le> last lm\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1161 |
\<exists>stp. abc_steps_l (6 + length ab, butlast lm @ (last lm - x) # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1162 |
rsx # 0\<up>(a_md - Suc (Suc rs_pos)) @ x # suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1163 |
(6 + length ab, butlast lm @ last lm # rs # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1164 |
0\<up>(a_md - Suc (Suc rs_pos)) @ 0 # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1165 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1166 |
assume g_ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1167 |
"\<And>lm rs suf_lm. rec_calc_rel g lm rs \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1168 |
\<exists>stp. abc_steps_l (0, lm @ 0\<up>(ba - aa) @ suf_lm) a stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1169 |
(length a, lm @ rs # 0\<up>(ba - Suc aa) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1170 |
and h: "rec_ci (Pr n f g) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1171 |
"rec_calc_rel (Pr n f g) lm rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1172 |
"rec_ci g = (a, aa, ba)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1173 |
"rec_calc_rel (Pr n f g) (butlast lm @ [last lm - x]) rsx" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1174 |
"lm \<noteq> []" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1175 |
"x \<le> last lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1176 |
"rec_ci f = (ab, ac, bc)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1177 |
from h show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1178 |
"\<exists>stp. abc_steps_l (6 + length ab, butlast lm @ (last lm - x) # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1179 |
rsx # 0\<up>(a_md - Suc (Suc rs_pos)) @ x # suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1180 |
(6 + length ab, butlast lm @ last lm # rs # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1181 |
0\<up>(a_md - Suc (Suc rs_pos)) @ 0 # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1182 |
proof(induct x arbitrary: rsx, simp_all) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1183 |
fix rsxa |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1184 |
assume "rec_calc_rel (Pr n f g) lm rsxa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1185 |
"rec_calc_rel (Pr n f g) lm rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1186 |
from h and this have "rs = rsxa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1187 |
apply(subgoal_tac "lm \<noteq> [] \<and> rs_pos = Suc n", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1188 |
apply(rule_tac rec_calc_inj, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1189 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1190 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1191 |
thus "\<exists>stp. abc_steps_l (6 + length ab, butlast lm @ last lm # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1192 |
rsxa # 0\<up>(a_md - Suc (Suc rs_pos)) @ 0 # suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1193 |
(6 + length ab, butlast lm @ last lm # rs # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1194 |
0\<up>(a_md - Suc (Suc rs_pos)) @ 0 # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1195 |
by(rule_tac x = 0 in exI, simp add: abc_steps_l.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1196 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1197 |
fix xa rsxa |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1198 |
assume ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1199 |
"\<And>rsx. rec_calc_rel (Pr n f g) (butlast lm @ [last lm - xa]) rsx |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1200 |
\<Longrightarrow> \<exists>stp. abc_steps_l (6 + length ab, butlast lm @ (last lm - xa) # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1201 |
rsx # 0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1202 |
(6 + length ab, butlast lm @ last lm # rs # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1203 |
0\<up>(a_md - Suc (Suc rs_pos)) @ 0 # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1204 |
and g: "rec_calc_rel (Pr n f g) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1205 |
(butlast lm @ [last lm - Suc xa]) rsxa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1206 |
"Suc xa \<le> last lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1207 |
"rec_ci (Pr n f g) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1208 |
"rec_calc_rel (Pr n f g) lm rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1209 |
"rec_ci g = (a, aa, ba)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1210 |
"rec_ci f = (ab, ac, bc)" "lm \<noteq> []" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1211 |
from g have k1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1212 |
"\<exists> rs. rec_calc_rel (Pr n f g) (butlast lm @ [last lm - xa]) rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1213 |
apply(rule_tac rs = rs in calc_pr_less_ex, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1214 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1215 |
from g and this show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1216 |
"\<exists>stp. abc_steps_l (6 + length ab, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1217 |
butlast lm @ (last lm - Suc xa) # rsxa # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1218 |
0\<up>(a_md - Suc (Suc rs_pos)) @ Suc xa # suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1219 |
(6 + length ab, butlast lm @ last lm # rs # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1220 |
0\<up>(a_md - Suc (Suc rs_pos)) @ 0 # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1221 |
proof(erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1222 |
fix rsa |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1223 |
assume k2: "rec_calc_rel (Pr n f g) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1224 |
(butlast lm @ [last lm - xa]) rsa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1225 |
from g and k2 have |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1226 |
"\<exists>stp. abc_steps_l (6 + length ab, butlast lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1227 |
(last lm - Suc xa) # rsxa # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1228 |
0\<up>(a_md - Suc (Suc rs_pos)) @ Suc xa # suf_lm) aprog stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1229 |
= (6 + length ab, butlast lm @ (last lm - xa) # rsa # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1230 |
0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1231 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1232 |
from g have k2_1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1233 |
"\<exists> ap bp. length ap = 6 + length ab \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1234 |
aprog = ap [+] bp \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1235 |
bp = ([Dec (a_md - Suc 0) (length a + 7)] [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1236 |
(a [+] [Inc (rs_pos - Suc 0), Dec rs_pos 3, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1237 |
Goto (Suc 0)])) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1238 |
[Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length a + 4)]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1239 |
apply(rule_tac ci_pr_ex1, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1240 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1241 |
from k2_1 and k2 and g show "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1242 |
proof(erule_tac exE, erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1243 |
fix ap bp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1244 |
assume |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1245 |
"length ap = 6 + length ab \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1246 |
aprog = ap [+] bp \<and> bp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1247 |
([Dec (a_md - Suc 0) (length a + 7)] [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1248 |
(a [+] [Inc (rs_pos - Suc 0), Dec rs_pos 3, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1249 |
Goto (Suc 0)])) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1250 |
[Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length a + 4)]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1251 |
from g and this and k2 and g_ind show "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1252 |
apply(insert abc_append_exc3[of |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1253 |
"butlast lm @ (last lm - Suc xa) # rsxa # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1254 |
0\<up>(a_md - Suc (Suc rs_pos)) @ Suc xa # suf_lm" bp 0 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1255 |
"butlast lm @ (last lm - xa) # rsa # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1256 |
0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm" "length ap" ap], |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1257 |
simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1258 |
apply(subgoal_tac |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1259 |
"\<exists>stp. abc_steps_l (0, butlast lm @ (last lm - Suc xa) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1260 |
# rsxa # 0\<up>(a_md - Suc (Suc rs_pos)) @ Suc xa # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1261 |
suf_lm) bp stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1262 |
(0, butlast lm @ (last lm - xa) # rsa # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1263 |
0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm)", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1264 |
simp, erule_tac conjE, erule conjE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1265 |
apply(erule pr_cycle_part_ind, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1266 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1267 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1268 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1269 |
from g and k2 and this show "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1270 |
apply(erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1271 |
apply(insert ind[of rsa], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1272 |
apply(erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1273 |
apply(rule_tac x = "stp + stpa" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1274 |
simp add: abc_steps_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1275 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1276 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1277 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1278 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1279 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1280 |
lemma ci_pr_length: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1281 |
"\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1282 |
rec_ci g = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1283 |
rec_ci f = (ab, ac, bc)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1284 |
\<Longrightarrow> length aprog = 13 + length ab + length a" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1285 |
apply(auto simp: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1286 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1287 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1288 |
fun mv_box_inv :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> bool" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1289 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1290 |
"mv_box_inv (as, lm) m n initlm = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1291 |
(let plus = initlm ! m + initlm ! n in |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1292 |
length initlm > max m n \<and> m \<noteq> n \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1293 |
(if as = 0 then \<exists> k l. lm = initlm[m := k, n := l] \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1294 |
k + l = plus \<and> k \<le> initlm ! m |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1295 |
else if as = 1 then \<exists> k l. lm = initlm[m := k, n := l] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1296 |
\<and> k + l + 1 = plus \<and> k < initlm ! m |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1297 |
else if as = 2 then \<exists> k l. lm = initlm[m := k, n := l] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1298 |
\<and> k + l = plus \<and> k \<le> initlm ! m |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1299 |
else if as = 3 then lm = initlm[m := 0, n := plus] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1300 |
else False))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1301 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1302 |
fun mv_box_stage1 :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1303 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1304 |
"mv_box_stage1 (as, lm) m = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1305 |
(if as = 3 then 0 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1306 |
else 1)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1307 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1308 |
fun mv_box_stage2 :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1309 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1310 |
"mv_box_stage2 (as, lm) m = (lm ! m)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1311 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1312 |
fun mv_box_stage3 :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1313 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1314 |
"mv_box_stage3 (as, lm) m = (if as = 1 then 3 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1315 |
else if as = 2 then 2 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1316 |
else if as = 0 then 1 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1317 |
else 0)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1318 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1319 |
fun mv_box_measure :: "((nat \<times> nat list) \<times> nat) \<Rightarrow> (nat \<times> nat \<times> nat)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1320 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1321 |
"mv_box_measure ((as, lm), m) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1322 |
(mv_box_stage1 (as, lm) m, mv_box_stage2 (as, lm) m, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1323 |
mv_box_stage3 (as, lm) m)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1324 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1325 |
definition lex_pair :: "((nat \<times> nat) \<times> nat \<times> nat) set" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1326 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1327 |
"lex_pair = less_than <*lex*> less_than" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1328 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1329 |
definition lex_triple :: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1330 |
"((nat \<times> (nat \<times> nat)) \<times> (nat \<times> (nat \<times> nat))) set" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1331 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1332 |
"lex_triple \<equiv> less_than <*lex*> lex_pair" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1333 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1334 |
definition mv_box_LE :: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1335 |
"(((nat \<times> nat list) \<times> nat) \<times> ((nat \<times> nat list) \<times> nat)) set" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1336 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1337 |
"mv_box_LE \<equiv> (inv_image lex_triple mv_box_measure)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1338 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1339 |
lemma wf_lex_triple: "wf lex_triple" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1340 |
by (auto intro:wf_lex_prod simp:lex_triple_def lex_pair_def) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1341 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1342 |
lemma wf_mv_box_le[intro]: "wf mv_box_LE" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1343 |
by(auto intro:wf_inv_image wf_lex_triple simp: mv_box_LE_def) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1344 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1345 |
declare mv_box_inv.simps[simp del] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1346 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1347 |
lemma mv_box_inv_init: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1348 |
"\<lbrakk>m < length initlm; n < length initlm; m \<noteq> n\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1349 |
mv_box_inv (0, initlm) m n initlm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1350 |
apply(simp add: abc_steps_l.simps mv_box_inv.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1351 |
apply(rule_tac x = "initlm ! m" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1352 |
rule_tac x = "initlm ! n" in exI, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1353 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1354 |
|
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1355 |
lemma [simp]: "abc_fetch 0 (Recursive.mv_box m n) = Some (Dec m 3)" |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1356 |
apply(simp add: mv_box.simps abc_fetch.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1357 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1358 |
|
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1359 |
lemma [simp]: "abc_fetch (Suc 0) (Recursive.mv_box m n) = |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1360 |
Some (Inc n)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1361 |
apply(simp add: mv_box.simps abc_fetch.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1362 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1363 |
|
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1364 |
lemma [simp]: "abc_fetch 2 (Recursive.mv_box m n) = Some (Goto 0)" |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1365 |
apply(simp add: mv_box.simps abc_fetch.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1366 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1367 |
|
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1368 |
lemma [simp]: "abc_fetch 3 (Recursive.mv_box m n) = None" |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1369 |
apply(simp add: mv_box.simps abc_fetch.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1370 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1371 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1372 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1373 |
"\<lbrakk>m \<noteq> n; m < length initlm; n < length initlm; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1374 |
k + l = initlm ! m + initlm ! n; k \<le> initlm ! m; 0 < k\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1375 |
\<Longrightarrow> \<exists>ka la. initlm[m := k, n := l, m := k - Suc 0] = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1376 |
initlm[m := ka, n := la] \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1377 |
Suc (ka + la) = initlm ! m + initlm ! n \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1378 |
ka < initlm ! m" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1379 |
apply(rule_tac x = "k - Suc 0" in exI, rule_tac x = l in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1380 |
simp, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1381 |
apply(subgoal_tac |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1382 |
"initlm[m := k, n := l, m := k - Suc 0] = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1383 |
initlm[n := l, m := k, m := k - Suc 0]") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1384 |
apply(simp add: list_update_overwrite ) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1385 |
apply(simp add: list_update_swap) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1386 |
apply(simp add: list_update_swap) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1387 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1388 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1389 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1390 |
"\<lbrakk>m \<noteq> n; m < length initlm; n < length initlm; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1391 |
Suc (k + l) = initlm ! m + initlm ! n; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1392 |
k < initlm ! m\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1393 |
\<Longrightarrow> \<exists>ka la. initlm[m := k, n := l, n := Suc l] = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1394 |
initlm[m := ka, n := la] \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1395 |
ka + la = initlm ! m + initlm ! n \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1396 |
ka \<le> initlm ! m" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1397 |
apply(rule_tac x = k in exI, rule_tac x = "Suc l" in exI, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1398 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1399 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1400 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1401 |
"\<lbrakk>length initlm > max m n; m \<noteq> n\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1402 |
\<forall>na. \<not> (\<lambda>(as, lm) m. as = 3) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1403 |
(abc_steps_l (0, initlm) (Recursive.mv_box m n) na) m \<and> |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1404 |
mv_box_inv (abc_steps_l (0, initlm) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1405 |
(Recursive.mv_box m n) na) m n initlm \<longrightarrow> |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1406 |
mv_box_inv (abc_steps_l (0, initlm) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1407 |
(Recursive.mv_box m n) (Suc na)) m n initlm \<and> |
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1408 |
((abc_steps_l (0, initlm) (Recursive.mv_box m n) (Suc na), m), |
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1409 |
abc_steps_l (0, initlm) (Recursive.mv_box m n) na, m) \<in> mv_box_LE" |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1410 |
apply(rule allI, rule impI, simp add: abc_steps_ind) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1411 |
apply(case_tac "(abc_steps_l (0, initlm) (Recursive.mv_box m n) na)", |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1412 |
simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1413 |
apply(auto split:if_splits simp add:abc_steps_l.simps mv_box_inv.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1414 |
apply(auto simp add: mv_box_LE_def lex_triple_def lex_pair_def |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1415 |
abc_step_l.simps abc_steps_l.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1416 |
mv_box_inv.simps abc_lm_v.simps abc_lm_s.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1417 |
split: if_splits ) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1418 |
apply(rule_tac x = k in exI, rule_tac x = "Suc l" in exI, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1419 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1420 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1421 |
lemma mv_box_inv_halt: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1422 |
"\<lbrakk>length initlm > max m n; m \<noteq> n\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1423 |
\<exists> stp. (\<lambda> (as, lm). as = 3 \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1424 |
mv_box_inv (as, lm) m n initlm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1425 |
(abc_steps_l (0::nat, initlm) (mv_box m n) stp)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1426 |
apply(insert halt_lemma2[of mv_box_LE |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1427 |
"\<lambda> ((as, lm), m). mv_box_inv (as, lm) m n initlm" |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1428 |
"\<lambda> stp. (abc_steps_l (0, initlm) (Recursive.mv_box m n) stp, m)" |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1429 |
"\<lambda> ((as, lm), m). as = (3::nat)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1430 |
]) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1431 |
apply(insert wf_mv_box_le) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1432 |
apply(simp add: mv_box_inv_init abc_steps_zero) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1433 |
apply(erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1434 |
apply(rule_tac x = na in exI) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1435 |
apply(case_tac "(abc_steps_l (0, initlm) (Recursive.mv_box m n) na)", |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1436 |
simp, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1437 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1438 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1439 |
lemma mv_box_halt_cond: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1440 |
"\<lbrakk>m \<noteq> n; mv_box_inv (a, b) m n lm; a = 3\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1441 |
b = lm[n := lm ! m + lm ! n, m := 0]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1442 |
apply(simp add: mv_box_inv.simps, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1443 |
apply(simp add: list_update_swap) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1444 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1445 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1446 |
lemma mv_box_ex: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1447 |
"\<lbrakk>length lm > max m n; m \<noteq> n\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1448 |
\<exists> stp. abc_steps_l (0::nat, lm) (mv_box m n) stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1449 |
= (3, (lm[n := (lm ! m + lm ! n)])[m := 0::nat])" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1450 |
apply(drule mv_box_inv_halt, simp, erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1451 |
apply(rule_tac x = stp in exI) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1452 |
apply(case_tac "abc_steps_l (0, lm) (Recursive.mv_box m n) stp", |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1453 |
simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1454 |
apply(erule_tac mv_box_halt_cond, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1455 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1456 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1457 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1458 |
"\<lbrakk>a_md = Suc (max (Suc (Suc n)) (max bc ba)); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1459 |
length lm = rs_pos \<and> rs_pos = n \<and> n > 0\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1460 |
\<Longrightarrow> n - Suc 0 < length lm + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1461 |
(Suc (max (Suc (Suc n)) (max bc ba)) - rs_pos + length suf_lm) \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1462 |
Suc (Suc n) < length lm + (Suc (max (Suc (Suc n)) (max bc ba)) - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1463 |
rs_pos + length suf_lm) \<and> bc < length lm + (Suc (max (Suc (Suc n)) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1464 |
(max bc ba)) - rs_pos + length suf_lm) \<and> ba < length lm + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1465 |
(Suc (max (Suc (Suc n)) (max bc ba)) - rs_pos + length suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1466 |
apply(arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1467 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1468 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1469 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1470 |
"\<lbrakk>a_md = Suc (max (Suc (Suc n)) (max bc ba)); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1471 |
length lm = rs_pos \<and> rs_pos = n \<and> n > 0\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1472 |
\<Longrightarrow> n - Suc 0 < Suc (length suf_lm + max (Suc (Suc n)) (max bc ba)) \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1473 |
Suc n < length suf_lm + max (Suc (Suc n)) (max bc ba) \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1474 |
bc < Suc (length suf_lm + max (Suc (Suc n)) (max bc ba)) \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1475 |
ba < Suc (length suf_lm + max (Suc (Suc n)) (max bc ba))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1476 |
apply(arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1477 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1478 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1479 |
lemma [simp]: "n - Suc 0 \<noteq> max (Suc (Suc n)) (max bc ba)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1480 |
apply(arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1481 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1482 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1483 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1484 |
"a_md \<ge> Suc bc \<and> rs_pos > 0 \<and> bc \<ge> rs_pos \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1485 |
bc - (rs_pos - Suc 0) + a_md - Suc bc = Suc (a_md - rs_pos - Suc 0)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1486 |
apply(arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1487 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1488 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1489 |
lemma [simp]: "length lm = n \<and> rs_pos = n \<and> 0 < rs_pos \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1490 |
Suc rs_pos < a_md |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1491 |
\<Longrightarrow> n - Suc 0 < Suc (Suc (a_md + length suf_lm - Suc (Suc 0))) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1492 |
\<and> n < Suc (Suc (a_md + length suf_lm - Suc (Suc 0)))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1493 |
apply(arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1494 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1495 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1496 |
lemma [simp]: "length lm = n \<and> rs_pos = n \<and> 0 < rs_pos \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1497 |
Suc rs_pos < a_md \<Longrightarrow> n - Suc 0 \<noteq> n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1498 |
by arith |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1499 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1500 |
lemma ci_pr_ex2: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1501 |
"\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1502 |
rec_calc_rel (Pr n f g) lm rs; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1503 |
rec_ci g = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1504 |
rec_ci f = (ab, ac, bc)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1505 |
\<Longrightarrow> \<exists>ap bp. aprog = ap [+] bp \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1506 |
ap = mv_box n (max (Suc (Suc (Suc n))) (max bc ba))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1507 |
apply(simp add: rec_ci.simps) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1508 |
apply(rule_tac x = "(ab [+] (Recursive.mv_box n (Suc n) [+] |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1509 |
([Dec (max (n + 3) (max bc ba)) (length a + 7)] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1510 |
[+] (a [+] [Inc n, Dec (Suc n) 3, Goto (Suc 0)])) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1511 |
[Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length a + 4)]))" in exI, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1512 |
apply(simp add: abc_append_commute numeral_3_eq_3) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1513 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1514 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1515 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1516 |
"max (Suc (Suc (Suc n))) (max bc ba) - n < |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1517 |
Suc (max (Suc (Suc (Suc n))) (max bc ba)) - n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1518 |
apply(arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1519 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1520 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1521 |
lemma [simp]: "length lm = n \<and> rs_pos = n \<and> 0 < n \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1522 |
lm[n - Suc 0 := 0::nat] = butlast lm @ [0]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1523 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1524 |
apply(insert list_update_append[of "butlast lm" "[last lm]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1525 |
"length lm - Suc 0" "0"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1526 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1527 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1528 |
lemma [simp]: "\<lbrakk>length lm = n; 0 < n\<rbrakk> \<Longrightarrow> lm ! (n - Suc 0) = last lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1529 |
apply(insert nth_append[of "butlast lm" "[last lm]" "n - Suc 0"], |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1530 |
simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1531 |
apply(insert butlast_append_last[of lm], auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1532 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1533 |
lemma exp_suc_iff: "a\<up>b @ [a] = a\<up>(b + Suc 0)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1534 |
apply(simp add: exp_ind del: replicate.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1535 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1536 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1537 |
lemma less_not_less[simp]: "n > 0 \<Longrightarrow> \<not> n < n - Suc 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1538 |
by auto |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1539 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1540 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1541 |
"Suc n < length suf_lm + max (Suc (Suc n)) (max bc ba) \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1542 |
bc < Suc (length suf_lm + max (Suc (Suc n)) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1543 |
(max bc ba)) \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1544 |
ba < Suc (length suf_lm + max (Suc (Suc n)) (max bc ba))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1545 |
by arith |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1546 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1547 |
lemma [simp]: "length lm = n \<and> rs_pos = n \<and> n > 0 \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1548 |
(lm @ 0\<up>(Suc (max (Suc (Suc n)) (max bc ba)) - n) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1549 |
[max (Suc (Suc n)) (max bc ba) := |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1550 |
(lm @ 0\<up>(Suc (max (Suc (Suc n)) (max bc ba)) - n) @ suf_lm) ! (n - Suc 0) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1551 |
(lm @ 0\<up>(Suc (max (Suc (Suc n)) (max bc ba)) - n) @ suf_lm) ! |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1552 |
max (Suc (Suc n)) (max bc ba), n - Suc 0 := 0::nat] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1553 |
= butlast lm @ 0 # 0\<up>(max (Suc (Suc n)) (max bc ba) - n) @ last lm # suf_lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1554 |
apply(simp add: nth_append nth_replicate list_update_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1555 |
apply(insert list_update_append[of "0\<up>((max (Suc (Suc n)) (max bc ba)) - n)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1556 |
"[0]" "max (Suc (Suc n)) (max bc ba) - n" "last lm"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1557 |
apply(simp add: exp_suc_iff Suc_diff_le del: list_update.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1558 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1559 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1560 |
lemma exp_eq: "(a = b) = (c\<up>a = c\<up>b)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1561 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1562 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1563 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1564 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1565 |
"\<lbrakk>length lm = n; 0 < n; Suc n < a_md\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1566 |
(butlast lm @ rsa # 0\<up>(a_md - Suc n) @ last lm # suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1567 |
[n := (butlast lm @ rsa # 0\<up>(a_md - Suc n) @ last lm # suf_lm) ! |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1568 |
(n - Suc 0) + (butlast lm @ rsa # (0::nat)\<up>(a_md - Suc n) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1569 |
last lm # suf_lm) ! n, n - Suc 0 := 0] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1570 |
= butlast lm @ 0 # rsa # 0\<up>(a_md - Suc (Suc n)) @ last lm # suf_lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1571 |
apply(simp add: nth_append list_update_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1572 |
apply(case_tac "a_md - Suc n", auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1573 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1574 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1575 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1576 |
"Suc (Suc rs_pos) \<le> a_md \<and> length lm = rs_pos \<and> 0 < rs_pos |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1577 |
\<Longrightarrow> a_md - Suc 0 < |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1578 |
Suc (Suc (Suc (a_md + length suf_lm - Suc (Suc (Suc 0)))))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1579 |
by arith |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1580 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1581 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1582 |
"Suc (Suc rs_pos) \<le> a_md \<and> length lm = rs_pos \<and> 0 < rs_pos \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1583 |
\<not> a_md - Suc 0 < rs_pos - Suc 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1584 |
by arith |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1585 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1586 |
lemma [simp]: "Suc (Suc rs_pos) \<le> a_md \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1587 |
\<not> a_md - Suc 0 < rs_pos - Suc 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1588 |
by arith |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1589 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1590 |
lemma [simp]: "\<lbrakk>Suc (Suc rs_pos) \<le> a_md\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1591 |
\<not> a_md - rs_pos < Suc (Suc (a_md - Suc (Suc rs_pos)))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1592 |
by arith |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1593 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1594 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1595 |
"Suc (Suc rs_pos) \<le> a_md \<and> length lm = rs_pos \<and> 0 < rs_pos |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1596 |
\<Longrightarrow> (abc_lm_v (butlast lm @ last lm # rs # 0\<up>(a_md - Suc (Suc rs_pos)) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1597 |
0 # suf_lm) (a_md - Suc 0) = 0 \<longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1598 |
abc_lm_s (butlast lm @ last lm # rs # 0\<up>(a_md - Suc (Suc rs_pos)) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1599 |
0 # suf_lm) (a_md - Suc 0) 0 = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1600 |
lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm) \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1601 |
abc_lm_v (butlast lm @ last lm # rs # 0\<up>(a_md - Suc (Suc rs_pos)) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1602 |
0 # suf_lm) (a_md - Suc 0) = 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1603 |
apply(simp add: abc_lm_v.simps nth_append abc_lm_s.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1604 |
apply(insert nth_append[of "last lm # rs # 0\<up>(a_md - Suc (Suc rs_pos))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1605 |
"0 # suf_lm" "(a_md - rs_pos)"], auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1606 |
apply(simp only: exp_suc_iff) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1607 |
apply(subgoal_tac "a_md - Suc 0 < a_md + length suf_lm", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1608 |
apply(case_tac "lm = []", auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1609 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1610 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1611 |
lemma pr_prog_ex[simp]: "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1612 |
rec_ci g = (a, aa, ba); rec_ci f = (ab, ac, bc)\<rbrakk> |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1613 |
\<Longrightarrow> \<exists>cp. aprog = Recursive.mv_box n (max (n + 3) |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1614 |
(max bc ba)) [+] cp" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1615 |
apply(simp add: rec_ci.simps) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1616 |
apply(rule_tac x = "(ab [+] (Recursive.mv_box n (Suc n) [+] |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1617 |
([Dec (max (n + 3) (max bc ba)) (length a + 7)] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1618 |
[+] (a [+] [Inc n, Dec (Suc n) 3, Goto (Suc 0)])) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1619 |
@ [Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length a + 4)]))" in exI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1620 |
apply(auto simp: abc_append_commute) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1621 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1622 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1623 |
lemma [simp]: "mv_box m n \<noteq> []" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1624 |
by (simp add: mv_box.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1625 |
(* |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1626 |
lemma [simp]: "\<lbrakk>rs_pos = n; 0 < rs_pos ; Suc rs_pos < a_md\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1627 |
n - Suc 0 < a_md + length suf_lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1628 |
by arith |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1629 |
*) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1630 |
lemma [intro]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1631 |
"\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1632 |
rec_ci f = (ab, ac, bc)\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1633 |
\<exists>ap. (\<exists>cp. aprog = ap [+] ab [+] cp) \<and> length ap = 3" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1634 |
apply(case_tac "rec_ci g", simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1635 |
apply(rule_tac x = "mv_box n |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1636 |
(max (n + 3) (max bc c))" in exI, simp) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1637 |
apply(rule_tac x = "Recursive.mv_box n (Suc n) [+] |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1638 |
([Dec (max (n + 3) (max bc c)) (length a + 7)] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1639 |
[+] a [+] [Inc n, Dec (Suc n) 3, Goto (Suc 0)]) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1640 |
@ [Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length a + 4)]" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1641 |
auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1642 |
apply(simp add: abc_append_commute) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1643 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1644 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1645 |
lemma [intro]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1646 |
"\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1647 |
rec_ci g = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1648 |
rec_ci f = (ab, ac, bc)\<rbrakk> \<Longrightarrow> |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1649 |
\<exists>ap. (\<exists>cp. aprog = ap [+] Recursive.mv_box n (Suc n) [+] cp) |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1650 |
\<and> length ap = 3 + length ab" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1651 |
apply(simp add: rec_ci.simps) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1652 |
apply(rule_tac x = "Recursive.mv_box n (max (n + 3) |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1653 |
(max bc ba)) [+] ab" in exI, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1654 |
apply(rule_tac x = "([Dec (max (n + 3) (max bc ba)) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1655 |
(length a + 7)] [+] a [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1656 |
[Inc n, Dec (Suc n) 3, Goto (Suc 0)]) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1657 |
[Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length a + 4)]" in exI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1658 |
apply(auto simp: abc_append_commute) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1659 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1660 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1661 |
lemma [intro]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1662 |
"\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1663 |
rec_ci g = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1664 |
rec_ci f = (ab, ac, bc)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1665 |
\<Longrightarrow> \<exists>ap. (\<exists>cp. aprog = ap [+] ([Dec (a_md - Suc 0) (length a + 7)] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1666 |
[+] (a [+] [Inc (rs_pos - Suc 0), Dec rs_pos 3, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1667 |
Goto (Suc 0)])) @ [Dec (Suc (Suc n)) 0, Inc (Suc n), |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1668 |
Goto (length a + 4)] [+] cp) \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1669 |
length ap = 6 + length ab" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1670 |
apply(simp add: rec_ci.simps) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1671 |
apply(rule_tac x = "Recursive.mv_box n |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1672 |
(max (n + 3) (max bc ba)) [+] ab [+] |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1673 |
Recursive.mv_box n (Suc n)" in exI, simp) |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1674 |
apply(rule_tac x = "[]" in exI, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1675 |
apply(simp add: abc_append_commute) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1676 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1677 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1678 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1679 |
"n < Suc (max (n + 3) (max bc ba) + length suf_lm) \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1680 |
Suc (Suc n) < max (n + 3) (max bc ba) + length suf_lm \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1681 |
bc < Suc (max (n + 3) (max bc ba) + length suf_lm) \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1682 |
ba < Suc (max (n + 3) (max bc ba) + length suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1683 |
by arith |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1684 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1685 |
lemma [simp]: "n \<noteq> max (n + (3::nat)) (max bc ba)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1686 |
by arith |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1687 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1688 |
lemma [simp]:"length lm = Suc n \<Longrightarrow> lm[n := (0::nat)] = butlast lm @ [0]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1689 |
apply(subgoal_tac "\<exists> xs x. lm = xs @ [x]", auto simp: list_update_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1690 |
apply(rule_tac x = "butlast lm" in exI, rule_tac x = "last lm" in exI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1691 |
apply(case_tac lm, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1692 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1693 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1694 |
lemma [simp]: "length lm = Suc n \<Longrightarrow> lm ! n =last lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1695 |
apply(subgoal_tac "lm \<noteq> []") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1696 |
apply(simp add: last_conv_nth, case_tac lm, simp_all) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1697 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1698 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1699 |
lemma [simp]: "length lm = Suc n \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1700 |
(lm @ (0::nat)\<up>(max (n + 3) (max bc ba) - n) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1701 |
[max (n + 3) (max bc ba) := (lm @ 0\<up>(max (n + 3) (max bc ba) - n) @ suf_lm) ! n + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1702 |
(lm @ 0\<up>(max (n + 3) (max bc ba) - n) @ suf_lm) ! max (n + 3) (max bc ba), n := 0] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1703 |
= butlast lm @ 0 # 0\<up>(max (n + 3) (max bc ba) - Suc n) @ last lm # suf_lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1704 |
apply(auto simp: list_update_append nth_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1705 |
apply(subgoal_tac "(0\<up>(max (n + 3) (max bc ba) - n)) = 0\<up>(max (n + 3) (max bc ba) - Suc n) @ [0::nat]") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1706 |
apply(simp add: list_update_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1707 |
apply(simp add: exp_suc_iff) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1708 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1709 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1710 |
lemma [simp]: "Suc (Suc n) < a_md \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1711 |
n < Suc (Suc (a_md + length suf_lm - 2)) \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1712 |
n < Suc (a_md + length suf_lm - 2)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1713 |
by(arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1714 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1715 |
lemma [simp]: "\<lbrakk>length lm = Suc n; Suc (Suc n) < a_md\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1716 |
\<Longrightarrow>(butlast lm @ (rsa::nat) # 0\<up>(a_md - Suc (Suc n)) @ last lm # suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1717 |
[Suc n := (butlast lm @ rsa # 0\<up>(a_md - Suc (Suc n)) @ last lm # suf_lm) ! n + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1718 |
(butlast lm @ rsa # 0\<up>(a_md - Suc (Suc n)) @ last lm # suf_lm) ! Suc n, n := 0] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1719 |
= butlast lm @ 0 # rsa # 0\<up>(a_md - Suc (Suc (Suc n))) @ last lm # suf_lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1720 |
apply(auto simp: list_update_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1721 |
apply(subgoal_tac "(0\<up>(a_md - Suc (Suc n))) = (0::nat) # (0\<up>(a_md - Suc (Suc (Suc n))))", simp add: nth_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1722 |
apply(simp add: replicate_Suc[THEN sym]) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1723 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1724 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1725 |
lemma pr_case: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1726 |
assumes nf_ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1727 |
"\<And> lm rs suf_lm. rec_calc_rel f lm rs \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1728 |
\<exists>stp. abc_steps_l (0, lm @ 0\<up>(bc - ac) @ suf_lm) ab stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1729 |
(length ab, lm @ rs # 0\<up>(bc - Suc ac) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1730 |
and ng_ind: "\<And> lm rs suf_lm. rec_calc_rel g lm rs \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1731 |
\<exists>stp. abc_steps_l (0, lm @ 0\<up>(ba - aa) @ suf_lm) a stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1732 |
(length a, lm @ rs # 0\<up>(ba - Suc aa) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1733 |
and h: "rec_ci (Pr n f g) = (aprog, rs_pos, a_md)" "rec_calc_rel (Pr n f g) lm rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1734 |
"rec_ci g = (a, aa, ba)" "rec_ci f = (ab, ac, bc)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1735 |
shows "\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = (length aprog, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1736 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1737 |
from h have k1: "\<exists> stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1738 |
= (3, butlast lm @ 0 # 0\<up>(a_md - rs_pos - 1) @ last lm # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1739 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1740 |
have "\<exists>bp cp. aprog = bp [+] cp \<and> bp = mv_box n |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1741 |
(max (n + 3) (max bc ba))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1742 |
apply(insert h, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1743 |
apply(erule pr_prog_ex, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1744 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1745 |
thus "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1746 |
apply(erule_tac exE, erule_tac exE, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1747 |
apply(subgoal_tac |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1748 |
"\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1749 |
([] [+] Recursive.mv_box n |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1750 |
(max (n + 3) (max bc ba)) [+] cp) stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1751 |
(0 + 3, butlast lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1752 |
last lm # suf_lm)", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1753 |
apply(rule_tac abc_append_exc1, simp_all) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1754 |
apply(insert mv_box_ex[of "n" "(max (n + 3) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1755 |
(max bc ba))" "lm @ 0\<up>(a_md - rs_pos) @ suf_lm"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1756 |
apply(subgoal_tac "a_md = Suc (max (n + 3) (max bc ba))", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1757 |
simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1758 |
apply(subgoal_tac "length lm = Suc n \<and> rs_pos = Suc n", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1759 |
apply(insert h) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1760 |
apply(simp add: para_pattern ci_pr_para_eq) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1761 |
apply(rule ci_pr_md_def, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1762 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1763 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1764 |
from h have k2: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1765 |
"\<exists> stp. abc_steps_l (3, butlast lm @ 0 # 0\<up>(a_md - rs_pos - 1) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1766 |
last lm # suf_lm) aprog stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1767 |
= (length aprog, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1768 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1769 |
from h have k2_1: "\<exists> rs. rec_calc_rel f (butlast lm) rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1770 |
apply(erule_tac calc_pr_zero_ex) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1771 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1772 |
thus "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1773 |
proof(erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1774 |
fix rsa |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1775 |
assume k2_2: "rec_calc_rel f (butlast lm) rsa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1776 |
from h and k2_2 have k2_2_1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1777 |
"\<exists> stp. abc_steps_l (3, butlast lm @ 0 # 0\<up>(a_md - rs_pos - 1) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1778 |
@ last lm # suf_lm) aprog stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1779 |
= (3 + length ab, butlast lm @ rsa # 0\<up>(a_md - rs_pos - 1) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1780 |
last lm # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1781 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1782 |
from h have j1: " |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1783 |
\<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> length ap = 3 \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1784 |
bp = ab" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1785 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1786 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1787 |
from h have j2: "ac = rs_pos - 1" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1788 |
apply(drule_tac ci_pr_f_paras, simp, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1789 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1790 |
from h and j2 have j3: "a_md \<ge> Suc bc \<and> rs_pos > 0 \<and> bc \<ge> rs_pos" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1791 |
apply(rule_tac conjI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1792 |
apply(erule_tac ab = ab and ac = ac in ci_pr_md_ge_f, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1793 |
apply(rule_tac context_conjI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1794 |
apply(simp_all add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1795 |
apply(drule_tac ci_ad_ge_paras, drule_tac ci_ad_ge_paras) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1796 |
apply(arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1797 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1798 |
from j1 and j2 show "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1799 |
apply(auto simp del: abc_append_commute) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1800 |
apply(rule_tac abc_append_exc1, simp_all) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1801 |
apply(insert nf_ind[of "butlast lm" "rsa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1802 |
"0\<up>(a_md - bc - Suc 0) @ last lm # suf_lm"], |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1803 |
simp add: k2_2 j2, erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1804 |
apply(simp add: exponent_add_iff j3) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1805 |
apply(rule_tac x = "stp" in exI, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1806 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1807 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1808 |
from h have k2_2_2: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1809 |
"\<exists> stp. abc_steps_l (3 + length ab, butlast lm @ rsa # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1810 |
0\<up>(a_md - rs_pos - 1) @ last lm # suf_lm) aprog stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1811 |
= (6 + length ab, butlast lm @ 0 # rsa # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1812 |
0\<up>(a_md - rs_pos - 2) @ last lm # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1813 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1814 |
from h have "\<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1815 |
length ap = 3 + length ab \<and> bp = Recursive.mv_box n (Suc n)" |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1816 |
by auto |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1817 |
thus "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1818 |
proof(erule_tac exE, erule_tac exE, erule_tac exE, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1819 |
erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1820 |
fix ap cp bp apa |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1821 |
assume "aprog = ap [+] bp [+] cp \<and> length ap = 3 + |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1822 |
length ab \<and> bp = Recursive.mv_box n (Suc n)" |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1823 |
thus "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1824 |
apply(simp del: abc_append_commute) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1825 |
apply(subgoal_tac |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1826 |
"\<exists>stp. abc_steps_l (3 + length ab, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1827 |
butlast lm @ rsa # 0\<up>(a_md - Suc rs_pos) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1828 |
last lm # suf_lm) (ap [+] |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
1829 |
Recursive.mv_box n (Suc n) [+] cp) stp = |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1830 |
((3 + length ab) + 3, butlast lm @ 0 # rsa # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1831 |
0\<up>(a_md - Suc (Suc rs_pos)) @ last lm # suf_lm)", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1832 |
apply(rule_tac abc_append_exc1, simp_all) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1833 |
apply(insert mv_box_ex[of n "Suc n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1834 |
"butlast lm @ rsa # 0\<up>(a_md - Suc rs_pos) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1835 |
last lm # suf_lm"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1836 |
apply(subgoal_tac "length lm = Suc n \<and> rs_pos = Suc n \<and> a_md > Suc (Suc n)", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1837 |
apply(insert h, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1838 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1839 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1840 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1841 |
from h have k2_3: "lm \<noteq> []" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1842 |
apply(rule_tac calc_pr_para_not_null, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1843 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1844 |
from h and k2_2 and k2_3 have k2_2_3: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1845 |
"\<exists> stp. abc_steps_l (6 + length ab, butlast lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1846 |
(last lm - last lm) # rsa # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1847 |
0\<up>(a_md - (Suc (Suc rs_pos))) @ last lm # suf_lm) aprog stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1848 |
= (6 + length ab, butlast lm @ last lm # rs # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1849 |
0\<up>(a_md - Suc (Suc (rs_pos))) @ 0 # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1850 |
apply(rule_tac x = "last lm" and g = g in pr_cycle_part, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1851 |
apply(rule_tac ng_ind, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1852 |
apply(rule_tac rec_calc_rel_def0, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1853 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1854 |
from h have k2_2_4: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1855 |
"\<exists> stp. abc_steps_l (6 + length ab, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1856 |
butlast lm @ last lm # rs # 0\<up>(a_md - rs_pos - 2) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1857 |
0 # suf_lm) aprog stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1858 |
= (13 + length ab + length a, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1859 |
lm @ rs # 0\<up>(a_md - rs_pos - 1) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1860 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1861 |
from h have |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1862 |
"\<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1863 |
length ap = 6 + length ab \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1864 |
bp = ([Dec (a_md - Suc 0) (length a + 7)] [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1865 |
(a [+] [Inc (rs_pos - Suc 0), |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1866 |
Dec rs_pos 3, Goto (Suc 0)])) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1867 |
[Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length a + 4)]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1868 |
by auto |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1869 |
thus "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1870 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1871 |
apply(subgoal_tac |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1872 |
"\<exists>stp. abc_steps_l (6 + length ab, butlast lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1873 |
last lm # rs # 0\<up>(a_md - Suc (Suc rs_pos)) @ 0 # suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1874 |
(ap [+] ([Dec (a_md - Suc 0) (length a + 7)] [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1875 |
(a [+] [Inc (rs_pos - Suc 0), Dec rs_pos 3, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1876 |
Goto (Suc 0)])) @ [Dec (Suc (Suc n)) 0, Inc (Suc n), |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1877 |
Goto (length a + 4)] [+] cp) stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1878 |
(6 + length ab + (length a + 7) , |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1879 |
lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1880 |
apply(subgoal_tac "13 + (length ab + length a) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1881 |
13 + length ab + length a", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1882 |
apply(arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1883 |
apply(rule abc_append_exc1, simp_all) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1884 |
apply(rule_tac x = "Suc 0" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1885 |
simp add: abc_steps_l.simps abc_fetch.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1886 |
nth_append abc_append_nth abc_step_l.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1887 |
apply(subgoal_tac "a_md > Suc (Suc rs_pos) \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1888 |
length lm = rs_pos \<and> rs_pos > 0", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1889 |
apply(insert h, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1890 |
apply(subgoal_tac "rs_pos = Suc n", simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1891 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1892 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1893 |
from h have k2_2_5: "length aprog = 13 + length ab + length a" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1894 |
apply(rule_tac ci_pr_length, simp_all) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1895 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1896 |
from k2_2_1 and k2_2_2 and k2_2_3 and k2_2_4 and k2_2_5 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1897 |
show "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1898 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1899 |
apply(rule_tac x = "stp + stpa + stpb + stpc" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1900 |
simp add: abc_steps_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1901 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1902 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1903 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1904 |
from k1 and k2 show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1905 |
"\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1906 |
= (length aprog, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1907 |
apply(erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1908 |
apply(erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1909 |
apply(rule_tac x = "stp + stpa" in exI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1910 |
apply(simp add: abc_steps_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1911 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1912 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1913 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1914 |
lemma eq_switch: "x = y \<Longrightarrow> y = x" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1915 |
by simp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1916 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1917 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1918 |
"\<lbrakk>rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1919 |
rec_ci (Mn n f) = (aprog, rs_pos, a_md)\<rbrakk> \<Longrightarrow> \<exists>bp. aprog = a @ bp" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1920 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1921 |
apply(rule_tac x = "[Dec (Suc n) (length a + 5), |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1922 |
Dec (Suc n) (length a + 3), Goto (Suc (length a)), |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1923 |
Inc n, Goto 0]" in exI, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1924 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1925 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1926 |
lemma ci_mn_para_eq[simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1927 |
"rec_ci (Mn n f) = (aprog, rs_pos, a_md) \<Longrightarrow> rs_pos = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1928 |
apply(case_tac "rec_ci f", simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1929 |
done |
166
99a180fd4194
removed some dead code
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
163
diff
changeset
|
1930 |
|
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1931 |
lemma [simp]: "rec_ci f = (a, aa, ba) \<Longrightarrow> aa < ba" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1932 |
apply(simp add: ci_ad_ge_paras) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1933 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1934 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1935 |
lemma [simp]: "\<lbrakk>rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1936 |
rec_ci (Mn n f) = (aprog, rs_pos, a_md)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1937 |
\<Longrightarrow> ba \<le> a_md" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1938 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1939 |
by arith |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1940 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1941 |
lemma mn_calc_f: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1942 |
assumes ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1943 |
"\<And>aprog a_md rs_pos rs suf_lm lm. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1944 |
\<lbrakk>rec_ci f = (aprog, rs_pos, a_md); rec_calc_rel f lm rs\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1945 |
\<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1946 |
= (length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1947 |
and h: "rec_ci f = (a, aa, ba)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1948 |
"rec_ci (Mn n f) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1949 |
"rec_calc_rel f (lm @ [x]) rsx" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1950 |
"aa = Suc n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1951 |
shows "\<exists>stp. abc_steps_l (0, lm @ x # 0\<up>(a_md - Suc rs_pos) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1952 |
aprog stp = (length a, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1953 |
lm @ x # rsx # 0\<up>(a_md - Suc (Suc rs_pos)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1954 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1955 |
from h have k1: "\<exists> ap bp. aprog = ap @ bp \<and> ap = a" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1956 |
by simp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1957 |
from h have k2: "rs_pos = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1958 |
apply(erule_tac ci_mn_para_eq) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1959 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1960 |
from h and k1 and k2 show "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1961 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1962 |
proof(erule_tac exE, erule_tac exE, simp, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1963 |
rule_tac abc_add_exc1, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1964 |
fix bp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1965 |
show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1966 |
"\<exists>astp. abc_steps_l (0, lm @ x # 0\<up>(a_md - Suc n) @ suf_lm) a astp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1967 |
= (length a, lm @ x # rsx # 0\<up>(a_md - Suc (Suc n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1968 |
apply(insert ind[of a "Suc n" ba "lm @ [x]" rsx |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1969 |
"0\<up>(a_md - ba) @ suf_lm"], simp add: exponent_add_iff h k2) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1970 |
apply(subgoal_tac "ba > aa \<and> a_md \<ge> ba \<and> aa = Suc n", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1971 |
insert h, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1972 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1973 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1974 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1975 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1976 |
fun mn_ind_inv :: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1977 |
"nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> nat list \<Rightarrow> bool" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1978 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1979 |
"mn_ind_inv (as, lm') ss x rsx suf_lm lm = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1980 |
(if as = ss then lm' = lm @ x # rsx # suf_lm |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1981 |
else if as = ss + 1 then |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1982 |
\<exists>y. (lm' = lm @ x # y # suf_lm) \<and> y \<le> rsx |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1983 |
else if as = ss + 2 then |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1984 |
\<exists>y. (lm' = lm @ x # y # suf_lm) \<and> y \<le> rsx |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1985 |
else if as = ss + 3 then lm' = lm @ x # 0 # suf_lm |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1986 |
else if as = ss + 4 then lm' = lm @ Suc x # 0 # suf_lm |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1987 |
else if as = 0 then lm' = lm @ Suc x # 0 # suf_lm |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1988 |
else False |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1989 |
)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1990 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1991 |
fun mn_stage1 :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1992 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1993 |
"mn_stage1 (as, lm) ss n = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1994 |
(if as = 0 then 0 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1995 |
else if as = ss + 4 then 1 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1996 |
else if as = ss + 3 then 2 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1997 |
else if as = ss + 2 \<or> as = ss + 1 then 3 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1998 |
else if as = ss then 4 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1999 |
else 0 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2000 |
)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2001 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2002 |
fun mn_stage2 :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2003 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2004 |
"mn_stage2 (as, lm) ss n = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2005 |
(if as = ss + 1 \<or> as = ss + 2 then (lm ! (Suc n)) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2006 |
else 0)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2007 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2008 |
fun mn_stage3 :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2009 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2010 |
"mn_stage3 (as, lm) ss n = (if as = ss + 2 then 1 else 0)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2011 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2012 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2013 |
fun mn_measure :: "((nat \<times> nat list) \<times> nat \<times> nat) \<Rightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2014 |
(nat \<times> nat \<times> nat)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2015 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2016 |
"mn_measure ((as, lm), ss, n) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2017 |
(mn_stage1 (as, lm) ss n, mn_stage2 (as, lm) ss n, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2018 |
mn_stage3 (as, lm) ss n)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2019 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2020 |
definition mn_LE :: "(((nat \<times> nat list) \<times> nat \<times> nat) \<times> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2021 |
((nat \<times> nat list) \<times> nat \<times> nat)) set" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2022 |
where "mn_LE \<equiv> (inv_image lex_triple mn_measure)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2023 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2024 |
lemma wf_mn_le[intro]: "wf mn_LE" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2025 |
by(auto intro:wf_inv_image wf_lex_triple simp: mn_LE_def) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2026 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2027 |
declare mn_ind_inv.simps[simp del] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2028 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2029 |
lemma mn_inv_init: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2030 |
"mn_ind_inv (abc_steps_l (length a, lm @ x # rsx # suf_lm) aprog 0) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2031 |
(length a) x rsx suf_lm lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2032 |
apply(simp add: mn_ind_inv.simps abc_steps_zero) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2033 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2034 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2035 |
lemma mn_halt_init: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2036 |
"rec_ci f = (a, aa, ba) \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2037 |
\<not> (\<lambda>(as, lm') (ss, n). as = 0) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2038 |
(abc_steps_l (length a, lm @ x # rsx # suf_lm) aprog 0) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2039 |
(length a, n)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2040 |
apply(simp add: abc_steps_zero) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2041 |
apply(erule_tac rec_ci_not_null) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2042 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2043 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2044 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2045 |
"\<lbrakk>rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2046 |
rec_ci (Mn n f) = (aprog, rs_pos, a_md)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2047 |
\<Longrightarrow> abc_fetch (length a) aprog = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2048 |
Some (Dec (Suc n) (length a + 5))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2049 |
apply(simp add: rec_ci.simps abc_fetch.simps, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2050 |
erule_tac conjE, erule_tac conjE, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2051 |
apply(drule_tac eq_switch, drule_tac eq_switch, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2052 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2053 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2054 |
lemma [simp]: "\<lbrakk>rec_ci f = (a, aa, ba); rec_ci (Mn n f) = (aprog, rs_pos, a_md)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2055 |
\<Longrightarrow> abc_fetch (Suc (length a)) aprog = Some (Dec (Suc n) (length a + 3))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2056 |
apply(simp add: rec_ci.simps abc_fetch.simps, erule_tac conjE, erule_tac conjE, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2057 |
apply(drule_tac eq_switch, drule_tac eq_switch, simp add: nth_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2058 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2059 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2060 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2061 |
"\<lbrakk>rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2062 |
rec_ci (Mn n f) = (aprog, rs_pos, a_md)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2063 |
\<Longrightarrow> abc_fetch (Suc (Suc (length a))) aprog = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2064 |
Some (Goto (length a + 1))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2065 |
apply(simp add: rec_ci.simps abc_fetch.simps, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2066 |
erule_tac conjE, erule_tac conjE, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2067 |
apply(drule_tac eq_switch, drule_tac eq_switch, simp add: nth_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2068 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2069 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2070 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2071 |
"\<lbrakk>rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2072 |
rec_ci (Mn n f) = (aprog, rs_pos, a_md)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2073 |
\<Longrightarrow> abc_fetch (length a + 3) aprog = Some (Inc n)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2074 |
apply(simp add: rec_ci.simps abc_fetch.simps, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2075 |
erule_tac conjE, erule_tac conjE, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2076 |
apply(drule_tac eq_switch, drule_tac eq_switch, simp add: nth_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2077 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2078 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2079 |
lemma [simp]: "\<lbrakk>rec_ci f = (a, aa, ba); rec_ci (Mn n f) = (aprog, rs_pos, a_md)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2080 |
\<Longrightarrow> abc_fetch (length a + 4) aprog = Some (Goto 0)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2081 |
apply(simp add: rec_ci.simps abc_fetch.simps, erule_tac conjE, erule_tac conjE, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2082 |
apply(drule_tac eq_switch, drule_tac eq_switch, simp add: nth_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2083 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2084 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2085 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2086 |
"0 < rsx |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2087 |
\<Longrightarrow> \<exists>y. (lm @ x # rsx # suf_lm)[Suc (length lm) := rsx - Suc 0] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2088 |
= lm @ x # y # suf_lm \<and> y \<le> rsx" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2089 |
apply(case_tac rsx, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2090 |
apply(rule_tac x = nat in exI, simp add: list_update_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2091 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2092 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2093 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2094 |
"\<lbrakk>y \<le> rsx; 0 < y\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2095 |
\<Longrightarrow> \<exists>ya. (lm @ x # y # suf_lm)[Suc (length lm) := y - Suc 0] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2096 |
= lm @ x # ya # suf_lm \<and> ya \<le> rsx" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2097 |
apply(case_tac y, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2098 |
apply(rule_tac x = nat in exI, simp add: list_update_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2099 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2100 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2101 |
lemma mn_halt_lemma: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2102 |
"\<lbrakk>rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2103 |
rec_ci (Mn n f) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2104 |
0 < rsx; length lm = n\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2105 |
\<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2106 |
\<forall>na. \<not> (\<lambda>(as, lm') (ss, n). as = 0) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2107 |
(abc_steps_l (length a, lm @ x # rsx # suf_lm) aprog na) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2108 |
(length a, n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2109 |
\<and> mn_ind_inv (abc_steps_l (length a, lm @ x # rsx # suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2110 |
aprog na) (length a) x rsx suf_lm lm |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2111 |
\<longrightarrow> mn_ind_inv (abc_steps_l (length a, lm @ x # rsx # suf_lm) aprog |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2112 |
(Suc na)) (length a) x rsx suf_lm lm |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2113 |
\<and> ((abc_steps_l (length a, lm @ x # rsx # suf_lm) aprog (Suc na), |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2114 |
length a, n), |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2115 |
abc_steps_l (length a, lm @ x # rsx # suf_lm) aprog na, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2116 |
length a, n) \<in> mn_LE" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2117 |
apply(rule allI, rule impI, simp add: abc_steps_ind) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2118 |
apply(case_tac "(abc_steps_l (length a, lm @ x # rsx # suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2119 |
aprog na)", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2120 |
apply(auto split:if_splits simp add:abc_steps_l.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2121 |
mn_ind_inv.simps abc_steps_zero) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2122 |
apply(auto simp add: mn_LE_def lex_triple_def lex_pair_def |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2123 |
abc_step_l.simps abc_steps_l.simps mn_ind_inv.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2124 |
abc_lm_v.simps abc_lm_s.simps nth_append |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2125 |
split: if_splits) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2126 |
apply(drule_tac rec_ci_not_null, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2127 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2128 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2129 |
lemma mn_halt: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2130 |
"\<lbrakk>rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2131 |
rec_ci (Mn n f) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2132 |
0 < rsx; length lm = n\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2133 |
\<Longrightarrow> \<exists> stp. (\<lambda> (as, lm'). (as = 0 \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2134 |
mn_ind_inv (as, lm') (length a) x rsx suf_lm lm)) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2135 |
(abc_steps_l (length a, lm @ x # rsx # suf_lm) aprog stp)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2136 |
apply(insert wf_mn_le) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2137 |
apply(insert halt_lemma2[of mn_LE |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2138 |
"\<lambda> ((as, lm'), ss, n). mn_ind_inv (as, lm') ss x rsx suf_lm lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2139 |
"\<lambda> stp. (abc_steps_l (length a, lm @ x # rsx # suf_lm) aprog stp, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2140 |
length a, n)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2141 |
"\<lambda> ((as, lm'), ss, n). as = 0"], |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2142 |
simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2143 |
apply(simp add: mn_halt_init mn_inv_init) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2144 |
apply(drule_tac x = x and suf_lm = suf_lm in mn_halt_lemma, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2145 |
apply(rule_tac x = n in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2146 |
case_tac "(abc_steps_l (length a, lm @ x # rsx # suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2147 |
aprog n)", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2148 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2149 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2150 |
lemma [simp]: "Suc rs_pos < a_md \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2151 |
Suc (a_md - Suc (Suc rs_pos)) = a_md - Suc rs_pos" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2152 |
by arith |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2153 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2154 |
lemma mn_ind_step: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2155 |
assumes ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2156 |
"\<And>aprog a_md rs_pos rs suf_lm lm. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2157 |
\<lbrakk>rec_ci f = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2158 |
rec_calc_rel f lm rs\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2159 |
\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2160 |
= (length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2161 |
and h: "rec_ci f = (a, aa, ba)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2162 |
"rec_ci (Mn n f) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2163 |
"rec_calc_rel f (lm @ [x]) rsx" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2164 |
"rsx > 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2165 |
"Suc rs_pos < a_md" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2166 |
"aa = Suc rs_pos" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2167 |
shows "\<exists>stp. abc_steps_l (0, lm @ x # 0\<up>(a_md - Suc rs_pos) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2168 |
aprog stp = (0, lm @ Suc x # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2169 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2170 |
have k1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2171 |
"\<exists> stp. abc_steps_l (0, lm @ x # 0\<up>(a_md - Suc (rs_pos)) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2172 |
aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2173 |
(length a, lm @ x # rsx # 0\<up>(a_md - Suc (Suc rs_pos)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2174 |
apply(insert h) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2175 |
apply(auto intro: mn_calc_f ind) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2176 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2177 |
from h have k2: "length lm = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2178 |
apply(subgoal_tac "rs_pos = n") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2179 |
apply(drule_tac para_pattern, simp, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2180 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2181 |
from h have k3: "a_md > (Suc rs_pos)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2182 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2183 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2184 |
from k2 and h and k3 have k4: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2185 |
"\<exists> stp. abc_steps_l (length a, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2186 |
lm @ x # rsx # 0\<up>(a_md - Suc (Suc rs_pos)) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2187 |
(0, lm @ Suc x # 0\<up>(a_md - rs_pos - 1) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2188 |
apply(frule_tac x = x and |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2189 |
suf_lm = "0\<up>(a_md - Suc (Suc rs_pos)) @ suf_lm" in mn_halt, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2190 |
apply(rule_tac x = "stp" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2191 |
simp add: mn_ind_inv.simps rec_ci_not_null) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2192 |
apply(simp only: replicate.simps[THEN sym], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2193 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2194 |
from k1 and k4 show "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2195 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2196 |
apply(rule_tac x = "stp + stpa" in exI, simp add: abc_steps_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2197 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2198 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2199 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2200 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2201 |
"\<lbrakk>rec_ci f = (a, aa, ba); rec_ci (Mn n f) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2202 |
rec_calc_rel (Mn n f) lm rs\<rbrakk> \<Longrightarrow> aa = Suc rs_pos" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2203 |
apply(rule_tac calc_mn_reverse, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2204 |
apply(insert para_pattern [of f a aa ba "lm @ [rs]" 0], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2205 |
apply(subgoal_tac "rs_pos = length lm", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2206 |
apply(drule_tac ci_mn_para_eq, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2207 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2208 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2209 |
lemma [simp]: "\<lbrakk>rec_ci (Mn n f) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2210 |
rec_calc_rel (Mn n f) lm rs\<rbrakk> \<Longrightarrow> Suc rs_pos < a_md" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2211 |
apply(case_tac "rec_ci f") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2212 |
apply(subgoal_tac "c > b \<and> b = Suc rs_pos \<and> a_md \<ge> c") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2213 |
apply(arith, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2214 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2215 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2216 |
lemma mn_ind_steps: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2217 |
assumes ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2218 |
"\<And>aprog a_md rs_pos rs suf_lm lm. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2219 |
\<lbrakk>rec_ci f = (aprog, rs_pos, a_md); rec_calc_rel f lm rs\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2220 |
\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2221 |
(length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2222 |
and h: "rec_ci f = (a, aa, ba)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2223 |
"rec_ci (Mn n f) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2224 |
"rec_calc_rel (Mn n f) lm rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2225 |
"rec_calc_rel f (lm @ [rs]) 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2226 |
"\<forall>x<rs. (\<exists> v. rec_calc_rel f (lm @ [x]) v \<and> 0 < v)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2227 |
"n = length lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2228 |
"x \<le> rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2229 |
shows "\<exists>stp. abc_steps_l (0, lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2230 |
aprog stp = (0, lm @ x # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2231 |
apply(insert h, induct x, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2232 |
rule_tac x = 0 in exI, simp add: abc_steps_zero, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2233 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2234 |
fix x |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2235 |
assume k1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2236 |
"\<exists>stp. abc_steps_l (0, lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2237 |
aprog stp = (0, lm @ x # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2238 |
and k2: "rec_ci (Mn (length lm) f) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2239 |
"rec_calc_rel (Mn (length lm) f) lm rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2240 |
"rec_calc_rel f (lm @ [rs]) 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2241 |
"\<forall>x<rs.(\<exists> v. rec_calc_rel f (lm @ [x]) v \<and> v > 0)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2242 |
"n = length lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2243 |
"Suc x \<le> rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2244 |
"rec_ci f = (a, aa, ba)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2245 |
hence k2: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2246 |
"\<exists>stp. abc_steps_l (0, lm @ x # 0\<up>(a_md - rs_pos - 1) @ suf_lm) aprog |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2247 |
stp = (0, lm @ Suc x # 0\<up>(a_md - rs_pos - 1) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2248 |
apply(erule_tac x = x in allE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2249 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2250 |
apply(rule_tac x = x in mn_ind_step) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2251 |
apply(rule_tac ind, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2252 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2253 |
from k1 and k2 show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2254 |
"\<exists>stp. abc_steps_l (0, lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2255 |
aprog stp = (0, lm @ Suc x # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2256 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2257 |
apply(rule_tac x = "stp + stpa" in exI, simp only: abc_steps_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2258 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2259 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2260 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2261 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2262 |
"\<lbrakk>rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2263 |
rec_ci (Mn n f) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2264 |
rec_calc_rel (Mn n f) lm rs; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2265 |
length lm = n\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2266 |
\<Longrightarrow> abc_lm_v (lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm) (Suc n) = 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2267 |
apply(auto simp: abc_lm_v.simps nth_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2268 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2269 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2270 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2271 |
"\<lbrakk>rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2272 |
rec_ci (Mn n f) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2273 |
rec_calc_rel (Mn n f) lm rs; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2274 |
length lm = n\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2275 |
\<Longrightarrow> abc_lm_s (lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm) (Suc n) 0 = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2276 |
lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2277 |
apply(auto simp: abc_lm_s.simps list_update_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2278 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2279 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2280 |
lemma mn_length: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2281 |
"\<lbrakk>rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2282 |
rec_ci (Mn n f) = (aprog, rs_pos, a_md)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2283 |
\<Longrightarrow> length aprog = length a + 5" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2284 |
apply(simp add: rec_ci.simps, erule_tac conjE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2285 |
apply(drule_tac eq_switch, drule_tac eq_switch, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2286 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2287 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2288 |
lemma mn_final_step: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2289 |
assumes ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2290 |
"\<And>aprog a_md rs_pos rs suf_lm lm. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2291 |
\<lbrakk>rec_ci f = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2292 |
rec_calc_rel f lm rs\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2293 |
\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2294 |
(length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2295 |
and h: "rec_ci f = (a, aa, ba)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2296 |
"rec_ci (Mn n f) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2297 |
"rec_calc_rel (Mn n f) lm rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2298 |
"rec_calc_rel f (lm @ [rs]) 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2299 |
shows "\<exists>stp. abc_steps_l (0, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2300 |
aprog stp = (length aprog, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2301 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2302 |
from h and ind have k1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2303 |
"\<exists>stp. abc_steps_l (0, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2304 |
aprog stp = (length a, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2305 |
apply(insert mn_calc_f[of f a aa ba n aprog |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2306 |
rs_pos a_md lm rs 0 suf_lm], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2307 |
apply(subgoal_tac "aa = Suc n", simp add: exponent_cons_iff) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2308 |
apply(subgoal_tac "rs_pos = n", simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2309 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2310 |
from h have k2: "length lm = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2311 |
apply(subgoal_tac "rs_pos = n") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2312 |
apply(drule_tac f = "Mn n f" in para_pattern, simp, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2313 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2314 |
from h and k2 have k3: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2315 |
"\<exists>stp. abc_steps_l (length a, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2316 |
aprog stp = (length a + 5, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2317 |
apply(rule_tac x = "Suc 0" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2318 |
simp add: abc_step_l.simps abc_steps_l.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2319 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2320 |
from h have k4: "length aprog = length a + 5" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2321 |
apply(simp add: mn_length) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2322 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2323 |
from k1 and k3 and k4 show "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2324 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2325 |
apply(rule_tac x = "stp + stpa" in exI, simp add: abc_steps_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2326 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2327 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2328 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2329 |
lemma mn_case: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2330 |
assumes ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2331 |
"\<And>aprog a_md rs_pos rs suf_lm lm. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2332 |
\<lbrakk>rec_ci f = (aprog, rs_pos, a_md); rec_calc_rel f lm rs\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2333 |
\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2334 |
(length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2335 |
and h: "rec_ci (Mn n f) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2336 |
"rec_calc_rel (Mn n f) lm rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2337 |
shows "\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2338 |
= (length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2339 |
apply(case_tac "rec_ci f", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2340 |
apply(insert h, rule_tac calc_mn_reverse, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2341 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2342 |
fix a b c v |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2343 |
assume h: "rec_ci f = (a, b, c)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2344 |
"rec_ci (Mn n f) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2345 |
"rec_calc_rel (Mn n f) lm rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2346 |
"rec_calc_rel f (lm @ [rs]) 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2347 |
"\<forall>x<rs. \<exists>v. rec_calc_rel f (lm @ [x]) v \<and> 0 < v" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2348 |
"n = length lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2349 |
hence k1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2350 |
"\<exists>stp. abc_steps_l (0, lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ suf_lm) aprog |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2351 |
stp = (0, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2352 |
apply(auto intro: mn_ind_steps ind) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2353 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2354 |
from h have k2: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2355 |
"\<exists>stp. abc_steps_l (0, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm) aprog |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2356 |
stp = (length aprog, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2357 |
apply(auto intro: mn_final_step ind) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2358 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2359 |
from k1 and k2 show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2360 |
"\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2361 |
(length aprog, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2362 |
apply(auto, insert h) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2363 |
apply(subgoal_tac "Suc rs_pos < a_md") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2364 |
apply(rule_tac x = "stp + stpa" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2365 |
simp only: abc_steps_add exponent_cons_iff, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2366 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2367 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2368 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2369 |
lemma z_rs: "rec_calc_rel z lm rs \<Longrightarrow> rs = 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2370 |
apply(rule_tac calc_z_reverse, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2371 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2372 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2373 |
lemma z_case: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2374 |
"\<lbrakk>rec_ci z = (aprog, rs_pos, a_md); rec_calc_rel z lm rs\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2375 |
\<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2376 |
(length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2377 |
apply(simp add: rec_ci.simps rec_ci_z_def, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2378 |
apply(rule_tac x = "Suc 0" in exI, simp add: abc_steps_l.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2379 |
abc_fetch.simps abc_step_l.simps z_rs) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2380 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2381 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2382 |
fun addition_inv :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2383 |
nat list \<Rightarrow> bool" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2384 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2385 |
"addition_inv (as, lm') m n p lm = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2386 |
(let sn = lm ! n in |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2387 |
let sm = lm ! m in |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2388 |
lm ! p = 0 \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2389 |
(if as = 0 then \<exists> x. x \<le> lm ! m \<and> lm' = lm[m := x, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2390 |
n := (sn + sm - x), p := (sm - x)] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2391 |
else if as = 1 then \<exists> x. x < lm ! m \<and> lm' = lm[m := x, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2392 |
n := (sn + sm - x - 1), p := (sm - x - 1)] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2393 |
else if as = 2 then \<exists> x. x < lm ! m \<and> lm' = lm[m := x, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2394 |
n := (sn + sm - x), p := (sm - x - 1)] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2395 |
else if as = 3 then \<exists> x. x < lm ! m \<and> lm' = lm[m := x, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2396 |
n := (sn + sm - x), p := (sm - x)] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2397 |
else if as = 4 then \<exists> x. x \<le> lm ! m \<and> lm' = lm[m := x, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2398 |
n := (sn + sm), p := (sm - x)] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2399 |
else if as = 5 then \<exists> x. x < lm ! m \<and> lm' = lm[m := x, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2400 |
n := (sn + sm), p := (sm - x - 1)] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2401 |
else if as = 6 then \<exists> x. x < lm ! m \<and> lm' = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2402 |
lm[m := Suc x, n := (sn + sm), p := (sm - x - 1)] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2403 |
else if as = 7 then lm' = lm[m := sm, n := (sn + sm)] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2404 |
else False))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2405 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2406 |
fun addition_stage1 :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2407 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2408 |
"addition_stage1 (as, lm) m p = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2409 |
(if as = 0 \<or> as = 1 \<or> as = 2 \<or> as = 3 then 2 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2410 |
else if as = 4 \<or> as = 5 \<or> as = 6 then 1 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2411 |
else 0)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2412 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2413 |
fun addition_stage2 :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2414 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2415 |
"addition_stage2 (as, lm) m p = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2416 |
(if 0 \<le> as \<and> as \<le> 3 then lm ! m |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2417 |
else if 4 \<le> as \<and> as \<le> 6 then lm ! p |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2418 |
else 0)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2419 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2420 |
fun addition_stage3 :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2421 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2422 |
"addition_stage3 (as, lm) m p = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2423 |
(if as = 1 then 4 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2424 |
else if as = 2 then 3 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2425 |
else if as = 3 then 2 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2426 |
else if as = 0 then 1 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2427 |
else if as = 5 then 2 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2428 |
else if as = 6 then 1 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2429 |
else if as = 4 then 0 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2430 |
else 0)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2431 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2432 |
fun addition_measure :: "((nat \<times> nat list) \<times> nat \<times> nat) \<Rightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2433 |
(nat \<times> nat \<times> nat)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2434 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2435 |
"addition_measure ((as, lm), m, p) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2436 |
(addition_stage1 (as, lm) m p, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2437 |
addition_stage2 (as, lm) m p, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2438 |
addition_stage3 (as, lm) m p)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2439 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2440 |
definition addition_LE :: "(((nat \<times> nat list) \<times> nat \<times> nat) \<times> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2441 |
((nat \<times> nat list) \<times> nat \<times> nat)) set" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2442 |
where "addition_LE \<equiv> (inv_image lex_triple addition_measure)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2443 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2444 |
lemma [simp]: "wf addition_LE" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2445 |
by(simp add: wf_inv_image wf_lex_triple addition_LE_def) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2446 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2447 |
declare addition_inv.simps[simp del] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2448 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2449 |
lemma addition_inv_init: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2450 |
"\<lbrakk>m \<noteq> n; max m n < p; length lm > p; lm ! p = 0\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2451 |
addition_inv (0, lm) m n p lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2452 |
apply(simp add: addition_inv.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2453 |
apply(rule_tac x = "lm ! m" in exI, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2454 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2455 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2456 |
lemma [simp]: "abc_fetch 0 (addition m n p) = Some (Dec m 4)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2457 |
by(simp add: abc_fetch.simps addition.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2458 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2459 |
lemma [simp]: "abc_fetch (Suc 0) (addition m n p) = Some (Inc n)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2460 |
by(simp add: abc_fetch.simps addition.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2461 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2462 |
lemma [simp]: "abc_fetch 2 (addition m n p) = Some (Inc p)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2463 |
by(simp add: abc_fetch.simps addition.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2464 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2465 |
lemma [simp]: "abc_fetch 3 (addition m n p) = Some (Goto 0)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2466 |
by(simp add: abc_fetch.simps addition.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2467 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2468 |
lemma [simp]: "abc_fetch 4 (addition m n p) = Some (Dec p 7)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2469 |
by(simp add: abc_fetch.simps addition.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2470 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2471 |
lemma [simp]: "abc_fetch 5 (addition m n p) = Some (Inc m)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2472 |
by(simp add: abc_fetch.simps addition.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2473 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2474 |
lemma [simp]: "abc_fetch 6 (addition m n p) = Some (Goto 4)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2475 |
by(simp add: abc_fetch.simps addition.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2476 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2477 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2478 |
"\<lbrakk>m \<noteq> n; p < length lm; lm ! p = 0; m < p; n < p; x \<le> lm ! m; 0 < x\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2479 |
\<Longrightarrow> \<exists>xa<lm ! m. lm[m := x, n := lm ! n + lm ! m - x, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2480 |
p := lm ! m - x, m := x - Suc 0] = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2481 |
lm[m := xa, n := lm ! n + lm ! m - Suc xa, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2482 |
p := lm ! m - Suc xa]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2483 |
apply(case_tac x, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2484 |
apply(rule_tac x = nat in exI, simp add: list_update_swap |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2485 |
list_update_overwrite) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2486 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2487 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2488 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2489 |
"\<lbrakk>m \<noteq> n; p < length lm; lm ! p = 0; m < p; n < p; x < lm ! m\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2490 |
\<Longrightarrow> \<exists>xa<lm ! m. lm[m := x, n := lm ! n + lm ! m - Suc x, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2491 |
p := lm ! m - Suc x, n := lm ! n + lm ! m - x] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2492 |
= lm[m := xa, n := lm ! n + lm ! m - xa, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2493 |
p := lm ! m - Suc xa]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2494 |
apply(rule_tac x = x in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2495 |
simp add: list_update_swap list_update_overwrite) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2496 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2497 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2498 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2499 |
"\<lbrakk>m \<noteq> n; p < length lm; lm ! p = 0; m < p; n < p; x < lm ! m\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2500 |
\<Longrightarrow> \<exists>xa<lm ! m. lm[m := x, n := lm ! n + lm ! m - x, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2501 |
p := lm ! m - Suc x, p := lm ! m - x] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2502 |
= lm[m := xa, n := lm ! n + lm ! m - xa, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2503 |
p := lm ! m - xa]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2504 |
apply(rule_tac x = x in exI, simp add: list_update_overwrite) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2505 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2506 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2507 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2508 |
"\<lbrakk>m \<noteq> n; p < length lm; lm ! p = (0::nat); m < p; n < p; x < lm ! m\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2509 |
\<Longrightarrow> \<exists>xa\<le>lm ! m. lm[m := x, n := lm ! n + lm ! m - x, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2510 |
p := lm ! m - x] = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2511 |
lm[m := xa, n := lm ! n + lm ! m - xa, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2512 |
p := lm ! m - xa]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2513 |
apply(rule_tac x = x in exI, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2514 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2515 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2516 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2517 |
"\<lbrakk>m \<noteq> n; p < length lm; lm ! p = 0; m < p; n < p; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2518 |
x \<le> lm ! m; lm ! m \<noteq> x\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2519 |
\<Longrightarrow> \<exists>xa<lm ! m. lm[m := x, n := lm ! n + lm ! m, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2520 |
p := lm ! m - x, p := lm ! m - Suc x] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2521 |
= lm[m := xa, n := lm ! n + lm ! m, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2522 |
p := lm ! m - Suc xa]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2523 |
apply(rule_tac x = x in exI, simp add: list_update_overwrite) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2524 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2525 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2526 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2527 |
"\<lbrakk>m \<noteq> n; p < length lm; lm ! p = 0; m < p; n < p; x < lm ! m\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2528 |
\<Longrightarrow> \<exists>xa<lm ! m. lm[m := x, n := lm ! n + lm ! m, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2529 |
p := lm ! m - Suc x, m := Suc x] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2530 |
= lm[m := Suc xa, n := lm ! n + lm ! m, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2531 |
p := lm ! m - Suc xa]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2532 |
apply(rule_tac x = x in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2533 |
simp add: list_update_swap list_update_overwrite) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2534 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2535 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2536 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2537 |
"\<lbrakk>m \<noteq> n; p < length lm; lm ! p = 0; m < p; n < p; x < lm ! m\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2538 |
\<Longrightarrow> \<exists>xa\<le>lm ! m. lm[m := Suc x, n := lm ! n + lm ! m, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2539 |
p := lm ! m - Suc x] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2540 |
= lm[m := xa, n := lm ! n + lm ! m, p := lm ! m - xa]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2541 |
apply(rule_tac x = "Suc x" in exI, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2542 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2543 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2544 |
lemma addition_halt_lemma: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2545 |
"\<lbrakk>m \<noteq> n; max m n < p; length lm > p; lm ! p = 0\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2546 |
\<forall>na. \<not> (\<lambda>(as, lm') (m, p). as = 7) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2547 |
(abc_steps_l (0, lm) (addition m n p) na) (m, p) \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2548 |
addition_inv (abc_steps_l (0, lm) (addition m n p) na) m n p lm |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2549 |
\<longrightarrow> addition_inv (abc_steps_l (0, lm) (addition m n p) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2550 |
(Suc na)) m n p lm |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2551 |
\<and> ((abc_steps_l (0, lm) (addition m n p) (Suc na), m, p), |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2552 |
abc_steps_l (0, lm) (addition m n p) na, m, p) \<in> addition_LE" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2553 |
apply(rule allI, rule impI, simp add: abc_steps_ind) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2554 |
apply(case_tac "(abc_steps_l (0, lm) (addition m n p) na)", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2555 |
apply(auto split:if_splits simp add: addition_inv.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2556 |
abc_steps_zero) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2557 |
apply(simp_all add: abc_steps_l.simps abc_steps_zero) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2558 |
apply(auto simp add: addition_LE_def lex_triple_def lex_pair_def |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2559 |
abc_step_l.simps addition_inv.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2560 |
abc_lm_v.simps abc_lm_s.simps nth_append |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2561 |
split: if_splits) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2562 |
apply(rule_tac x = x in exI, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2563 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2564 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2565 |
lemma addition_ex: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2566 |
"\<lbrakk>m \<noteq> n; max m n < p; length lm > p; lm ! p = 0\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2567 |
\<exists> stp. (\<lambda> (as, lm'). as = 7 \<and> addition_inv (as, lm') m n p lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2568 |
(abc_steps_l (0, lm) (addition m n p) stp)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2569 |
apply(insert halt_lemma2[of addition_LE |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2570 |
"\<lambda> ((as, lm'), m, p). addition_inv (as, lm') m n p lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2571 |
"\<lambda> stp. (abc_steps_l (0, lm) (addition m n p) stp, m, p)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2572 |
"\<lambda> ((as, lm'), m, p). as = 7"], |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2573 |
simp add: abc_steps_zero addition_inv_init) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2574 |
apply(drule_tac addition_halt_lemma, simp, simp, simp, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2575 |
simp, erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2576 |
apply(rule_tac x = na in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2577 |
case_tac "(abc_steps_l (0, lm) (addition m n p) na)", auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2578 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2579 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2580 |
lemma [simp]: "length (addition m n p) = 7" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2581 |
by (simp add: addition.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2582 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2583 |
lemma [elim]: "addition 0 (Suc 0) 2 = [] \<Longrightarrow> RR" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2584 |
by(simp add: addition.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2585 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2586 |
lemma [simp]: "(0\<up>2)[0 := n] = [n, 0::nat]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2587 |
apply(subgoal_tac "2 = Suc 1", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2588 |
simp only: replicate.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2589 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2590 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2591 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2592 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2593 |
"\<exists>stp. abc_steps_l (0, n # 0\<up>2 @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2594 |
(addition 0 (Suc 0) 2 [+] [Inc (Suc 0)]) stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2595 |
(8, n # Suc n # 0 # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2596 |
apply(rule_tac bm = "n # n # 0 # suf_lm" in abc_append_exc2, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2597 |
apply(insert addition_ex[of 0 "Suc 0" 2 "n # 0\<up>2 @ suf_lm"], |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2598 |
simp add: nth_append numeral_2_eq_2, erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2599 |
apply(rule_tac x = stp in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2600 |
case_tac "(abc_steps_l (0, n # 0\<up>2 @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2601 |
(addition 0 (Suc 0) 2) stp)", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2602 |
simp add: addition_inv.simps nth_append list_update_append numeral_2_eq_2) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2603 |
apply(simp add: nth_append numeral_2_eq_2, erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2604 |
apply(rule_tac x = "Suc 0" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2605 |
simp add: abc_steps_l.simps abc_fetch.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2606 |
abc_steps_zero abc_step_l.simps abc_lm_s.simps abc_lm_v.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2607 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2608 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2609 |
lemma s_case: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2610 |
"\<lbrakk>rec_ci s = (aprog, rs_pos, a_md); rec_calc_rel s lm rs\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2611 |
\<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2612 |
(length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2613 |
apply(simp add: rec_ci.simps rec_ci_s_def, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2614 |
apply(rule_tac calc_s_reverse, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2615 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2616 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2617 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2618 |
"\<lbrakk>n < length lm; lm ! n = rs\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2619 |
\<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0 # 0 #suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2620 |
(addition n (length lm) (Suc (length lm))) stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2621 |
= (7, lm @ rs # 0 # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2622 |
apply(insert addition_ex[of n "length lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2623 |
"Suc (length lm)" "lm @ 0 # 0 # suf_lm"]) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2624 |
apply(simp add: nth_append, erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2625 |
apply(rule_tac x = stp in exI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2626 |
apply(case_tac "abc_steps_l (0, lm @ 0 # 0 # suf_lm) (addition n (length lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2627 |
(Suc (length lm))) stp", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2628 |
apply(simp add: addition_inv.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2629 |
apply(insert nth_append[of lm "0 # 0 # suf_lm" "n"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2630 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2631 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2632 |
lemma [simp]: "0\<up>2 = [0, 0::nat]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2633 |
apply(auto simp:numeral_2_eq_2) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2634 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2635 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2636 |
lemma id_case: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2637 |
"\<lbrakk>rec_ci (id m n) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2638 |
rec_calc_rel (id m n) lm rs\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2639 |
\<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2640 |
(length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2641 |
apply(simp add: rec_ci.simps rec_ci_id.simps, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2642 |
apply(rule_tac calc_id_reverse, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2643 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2644 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2645 |
lemma list_tl_induct: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2646 |
"\<lbrakk>P []; \<And>a list. P list \<Longrightarrow> P (list @ [a::'a])\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2647 |
P ((list::'a list))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2648 |
apply(case_tac "length list", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2649 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2650 |
fix nat |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2651 |
assume ind: "\<And>a list. P list \<Longrightarrow> P (list @ [a])" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2652 |
and h: "length list = Suc nat" "P []" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2653 |
from h show "P list" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2654 |
proof(induct nat arbitrary: list, case_tac lista, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2655 |
fix lista a listaa |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2656 |
from h show "P [a]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2657 |
by(insert ind[of "[]"], simp add: h) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2658 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2659 |
fix nat list |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2660 |
assume nind: "\<And>list. \<lbrakk>length list = Suc nat; P []\<rbrakk> \<Longrightarrow> P list" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2661 |
and g: "length (list:: 'a list) = Suc (Suc nat)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2662 |
from g show "P (list::'a list)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2663 |
apply(insert nind[of "butlast list"], simp add: h) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2664 |
apply(insert ind[of "butlast list" "last list"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2665 |
apply(subgoal_tac "butlast list @ [last list] = list", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2666 |
apply(case_tac "list::'a list", simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2667 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2668 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2669 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2670 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2671 |
lemma nth_eq_butlast_nth: "\<lbrakk>length ys > Suc k\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2672 |
ys ! k = butlast ys ! k" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2673 |
apply(subgoal_tac "\<exists> xs y. ys = xs @ [y]", auto simp: nth_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2674 |
apply(rule_tac x = "butlast ys" in exI, rule_tac x = "last ys" in exI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2675 |
apply(case_tac "ys = []", simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2676 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2677 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2678 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2679 |
"\<lbrakk>\<forall>k<Suc (length list). rec_calc_rel ((list @ [a]) ! k) lm (ys ! k); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2680 |
length ys = Suc (length list)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2681 |
\<Longrightarrow> \<forall>k<length list. rec_calc_rel (list ! k) lm (butlast ys ! k)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2682 |
apply(rule allI, rule impI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2683 |
apply(erule_tac x = k in allE, simp add: nth_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2684 |
apply(subgoal_tac "ys ! k = butlast ys ! k", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2685 |
apply(rule_tac nth_eq_butlast_nth, arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2686 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2687 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2688 |
lemma cn_merge_gs_tl_app: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2689 |
"cn_merge_gs (gs @ [g]) pstr = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2690 |
cn_merge_gs gs pstr [+] cn_merge_gs [g] (pstr + length gs)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2691 |
apply(induct gs arbitrary: pstr, simp add: cn_merge_gs.simps, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2692 |
apply(case_tac a, simp add: abc_append_commute) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2693 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2694 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2695 |
lemma cn_merge_gs_length: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2696 |
"length (cn_merge_gs (map rec_ci list) pstr) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2697 |
(\<Sum>(ap, pos, n)\<leftarrow>map rec_ci list. length ap) + 3 * length list " |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2698 |
apply(induct list arbitrary: pstr, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2699 |
apply(case_tac "rec_ci a", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2700 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2701 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2702 |
lemma [simp]: "Suc n \<le> pstr \<Longrightarrow> pstr + x - n > 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2703 |
by arith |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2704 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2705 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2706 |
"\<lbrakk>Suc (pstr + length list) \<le> a_md; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2707 |
length ys = Suc (length list); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2708 |
length lm = n; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2709 |
Suc n \<le> pstr\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2710 |
\<Longrightarrow> (ys ! length list # 0\<up>(pstr - Suc n) @ butlast ys @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2711 |
0\<up>(a_md - (pstr + length list)) @ suf_lm) ! |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2712 |
(pstr + length list - n) = (0 :: nat)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2713 |
apply(insert nth_append[of "ys ! length list # 0\<up>(pstr - Suc n) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2714 |
butlast ys" "0\<up>(a_md - (pstr + length list)) @ suf_lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2715 |
"(pstr + length list - n)"], simp add: nth_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2716 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2717 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2718 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2719 |
"\<lbrakk>Suc (pstr + length list) \<le> a_md; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2720 |
length ys = Suc (length list); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2721 |
length lm = n; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2722 |
Suc n \<le> pstr\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2723 |
\<Longrightarrow> (lm @ last ys # 0\<up>(pstr - Suc n) @ butlast ys @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2724 |
0\<up>(a_md - (pstr + length list)) @ suf_lm)[pstr + length list := |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2725 |
last ys, n := 0] = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2726 |
lm @ (0::nat)\<up>(pstr - n) @ ys @ 0\<up>(a_md - Suc (pstr + length list)) @ suf_lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2727 |
apply(insert list_update_length[of |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2728 |
"lm @ last ys # 0\<up>(pstr - Suc n) @ butlast ys" 0 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2729 |
"0\<up>(a_md - Suc (pstr + length list)) @ suf_lm" "last ys"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2730 |
apply(simp add: exponent_cons_iff) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2731 |
apply(insert list_update_length[of "lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2732 |
"last ys" "0\<up>(pstr - Suc n) @ butlast ys @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2733 |
last ys # 0\<up>(a_md - Suc (pstr + length list)) @ suf_lm" 0], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2734 |
apply(simp add: exponent_cons_iff) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2735 |
apply(case_tac "ys = []", simp_all add: append_butlast_last_id) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2736 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2737 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2738 |
lemma cn_merge_gs_ex: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2739 |
"\<lbrakk>\<And>x aprog a_md rs_pos rs suf_lm lm. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2740 |
\<lbrakk>x \<in> set gs; rec_ci x = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2741 |
rec_calc_rel x lm rs\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2742 |
\<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2743 |
= (length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2744 |
pstr + length gs\<le> a_md; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2745 |
\<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2746 |
length ys = length gs; length lm = n; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2747 |
pstr \<ge> Max (set (Suc n # map (\<lambda>(aprog, p, n). n) (map rec_ci gs)))\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2748 |
\<Longrightarrow> \<exists> stp. abc_steps_l (0, lm @ 0\<up>(a_md - n) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2749 |
(cn_merge_gs (map rec_ci gs) pstr) stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2750 |
= (listsum (map ((\<lambda>(ap, pos, n). length ap) \<circ> rec_ci) gs) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2751 |
3 * length gs, lm @ 0\<up>(pstr - n) @ ys @ 0\<up>(a_md - (pstr + length gs)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2752 |
apply(induct gs arbitrary: ys rule: list_tl_induct) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2753 |
apply(simp add: exponent_add_iff, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2754 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2755 |
fix a list ys |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2756 |
assume ind: "\<And>x aprog a_md rs_pos rs suf_lm lm. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2757 |
\<lbrakk>x = a \<or> x \<in> set list; rec_ci x = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2758 |
rec_calc_rel x lm rs\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2759 |
\<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2760 |
(length aprog, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2761 |
and ind2: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2762 |
"\<And>ys. \<lbrakk>\<And>x aprog a_md rs_pos rs suf_lm lm. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2763 |
\<lbrakk>x \<in> set list; rec_ci x = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2764 |
rec_calc_rel x lm rs\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2765 |
\<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2766 |
= (length aprog, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2767 |
\<forall>k<length list. rec_calc_rel (list ! k) lm (ys ! k); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2768 |
length ys = length list\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2769 |
\<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - n) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2770 |
(cn_merge_gs (map rec_ci list) pstr) stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2771 |
(listsum (map ((\<lambda>(ap, pos, n). length ap) \<circ> rec_ci) list) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2772 |
3 * length list, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2773 |
lm @ 0\<up>(pstr - n) @ ys @ 0\<up>(a_md - (pstr + length list)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2774 |
and h: "Suc (pstr + length list) \<le> a_md" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2775 |
"\<forall>k<Suc (length list). |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2776 |
rec_calc_rel ((list @ [a]) ! k) lm (ys ! k)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2777 |
"length ys = Suc (length list)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2778 |
"length lm = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2779 |
"Suc n \<le> pstr \<and> (\<lambda>(aprog, p, n). n) (rec_ci a) \<le> pstr \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2780 |
(\<forall>a\<in>set list. (\<lambda>(aprog, p, n). n) (rec_ci a) \<le> pstr)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2781 |
from h have k1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2782 |
"\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - n) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2783 |
(cn_merge_gs (map rec_ci list) pstr) stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2784 |
(listsum (map ((\<lambda>(ap, pos, n). length ap) \<circ> rec_ci) list) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2785 |
3 * length list, lm @ 0\<up>(pstr - n) @ butlast ys @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2786 |
0\<up>(a_md - (pstr + length list)) @ suf_lm) " |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2787 |
apply(rule_tac ind2) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2788 |
apply(rule_tac ind, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2789 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2790 |
from k1 and h show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2791 |
"\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - n) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2792 |
(cn_merge_gs (map rec_ci list @ [rec_ci a]) pstr) stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2793 |
(listsum (map ((\<lambda>(ap, pos, n). length ap) \<circ> rec_ci) list) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2794 |
(\<lambda>(ap, pos, n). length ap) (rec_ci a) + (3 + 3 * length list), |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2795 |
lm @ 0\<up>(pstr - n) @ ys @ 0\<up>(a_md - Suc (pstr + length list)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2796 |
apply(simp add: cn_merge_gs_tl_app) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2797 |
apply(rule_tac as = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2798 |
"(\<Sum>(ap, pos, n)\<leftarrow>map rec_ci list. length ap) + 3 * length list" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2799 |
and bm = "lm @ 0\<up>(pstr - n) @ butlast ys @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2800 |
0\<up>(a_md - (pstr + length list)) @ suf_lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2801 |
and bs = "(\<lambda>(ap, pos, n). length ap) (rec_ci a) + 3" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2802 |
and bm' = "lm @ 0\<up>(pstr - n) @ ys @ 0\<up>(a_md - Suc (pstr + length list)) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2803 |
suf_lm" in abc_append_exc2, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2804 |
apply(simp add: cn_merge_gs_length) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2805 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2806 |
from h show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2807 |
"\<exists>bstp. abc_steps_l (0, lm @ 0\<up>(pstr - n) @ butlast ys @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2808 |
0\<up>(a_md - (pstr + length list)) @ suf_lm) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
2809 |
((\<lambda>(gprog, gpara, gn). gprog [+] Recursive.mv_box gpara |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2810 |
(pstr + length list)) (rec_ci a)) bstp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2811 |
((\<lambda>(ap, pos, n). length ap) (rec_ci a) + 3, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2812 |
lm @ 0\<up>(pstr - n) @ ys @ 0\<up>(a_md - Suc (pstr + length list)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2813 |
apply(case_tac "rec_ci a", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2814 |
apply(rule_tac as = "length aa" and |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2815 |
bm = "lm @ (ys ! (length list)) # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2816 |
0\<up>(pstr - Suc n) @ butlast ys @ 0\<up>(a_md - (pstr + length list)) @ suf_lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2817 |
and bs = "3" and bm' = "lm @ 0\<up>(pstr - n) @ ys @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2818 |
0\<up>(a_md - Suc (pstr + length list)) @ suf_lm" in abc_append_exc2) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2819 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2820 |
fix aa b c |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2821 |
assume g: "rec_ci a = (aa, b, c)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2822 |
from h and g have k2: "b = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2823 |
apply(erule_tac x = "length list" in allE, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2824 |
apply(subgoal_tac "length lm = b", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2825 |
apply(rule para_pattern, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2826 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2827 |
from h and g and this show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2828 |
"\<exists>astp. abc_steps_l (0, lm @ 0\<up>(pstr - n) @ butlast ys @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2829 |
0\<up>(a_md - (pstr + length list)) @ suf_lm) aa astp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2830 |
(length aa, lm @ ys ! length list # 0\<up>(pstr - Suc n) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2831 |
butlast ys @ 0\<up>(a_md - (pstr + length list)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2832 |
apply(subgoal_tac "c \<ge> Suc n") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2833 |
apply(insert ind[of a aa b c lm "ys ! length list" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2834 |
"0\<up>(pstr - c) @ butlast ys @ 0\<up>(a_md - (pstr + length list)) @ suf_lm"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2835 |
apply(erule_tac x = "length list" in allE, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2836 |
simp add: exponent_add_iff) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2837 |
apply(rule_tac Suc_leI, rule_tac ci_ad_ge_paras, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2838 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2839 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2840 |
fix aa b c |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2841 |
show "length aa = length aa" by simp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2842 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2843 |
fix aa b c |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2844 |
assume "rec_ci a = (aa, b, c)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2845 |
from h and this show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2846 |
"\<exists>bstp. abc_steps_l (0, lm @ ys ! length list # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2847 |
0\<up>(pstr - Suc n) @ butlast ys @ 0\<up>(a_md - (pstr + length list)) @ suf_lm) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
2848 |
(Recursive.mv_box b (pstr + length list)) bstp = |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2849 |
(3, lm @ 0\<up>(pstr - n) @ ys @ 0\<up>(a_md - Suc (pstr + length list)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2850 |
apply(insert mv_box_ex [of b "pstr + length list" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2851 |
"lm @ ys ! length list # 0\<up>(pstr - Suc n) @ butlast ys @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2852 |
0\<up>(a_md - (pstr + length list)) @ suf_lm"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2853 |
apply(subgoal_tac "b = n") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2854 |
apply(simp add: nth_append split: if_splits) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2855 |
apply(erule_tac x = "length list" in allE, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2856 |
apply(drule para_pattern, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2857 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2858 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2859 |
fix aa b c |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
2860 |
show "3 = length (Recursive.mv_box b (pstr + length list))" |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2861 |
by simp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2862 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2863 |
fix aa b aaa ba |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2864 |
show "length aa + 3 = length aa + 3" by simp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2865 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2866 |
fix aa b c |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2867 |
show "mv_box b (pstr + length list) \<noteq> []" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2868 |
by(simp add: mv_box.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2869 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2870 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2871 |
show "(\<lambda>(ap, pos, n). length ap) (rec_ci a) + 3 = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2872 |
length ((\<lambda>(gprog, gpara, gn). gprog [+] |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
2873 |
Recursive.mv_box gpara (pstr + length list)) (rec_ci a))" |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2874 |
by(case_tac "rec_ci a", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2875 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2876 |
show "listsum (map ((\<lambda>(ap, pos, n). length ap) \<circ> rec_ci) list) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2877 |
(\<lambda>(ap, pos, n). length ap) (rec_ci a) + (3 + 3 * length list)= |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2878 |
(\<Sum>(ap, pos, n)\<leftarrow>map rec_ci list. length ap) + 3 * length list + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2879 |
((\<lambda>(ap, pos, n). length ap) (rec_ci a) + 3)" by simp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2880 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2881 |
show "(\<lambda>(gprog, gpara, gn). gprog [+] |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
2882 |
Recursive.mv_box gpara (pstr + length list)) (rec_ci a) \<noteq> []" |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2883 |
by(case_tac "rec_ci a", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2884 |
simp add: abc_append.simps abc_shift.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2885 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2886 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2887 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2888 |
lemma [simp]: "length (mv_boxes aa ba n) = 3*n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2889 |
by(induct n, auto simp: mv_boxes.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2890 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2891 |
lemma exp_suc: "a\<up>Suc b = a\<up>b @ [a]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2892 |
by(simp add: exp_ind del: replicate.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2893 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2894 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2895 |
"\<lbrakk>Suc n \<le> ba - aa; length lm2 = Suc n; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2896 |
length lm3 = ba - Suc (aa + n)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2897 |
\<Longrightarrow> (last lm2 # lm3 @ butlast lm2 @ 0 # lm4) ! (ba - aa) = (0::nat)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2898 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2899 |
assume h: "Suc n \<le> ba - aa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2900 |
and g: "length lm2 = Suc n" "length lm3 = ba - Suc (aa + n)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2901 |
from h and g have k: "ba - aa = Suc (length lm3 + n)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2902 |
by arith |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2903 |
from k show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2904 |
"(last lm2 # lm3 @ butlast lm2 @ 0 # lm4) ! (ba - aa) = 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2905 |
apply(simp, insert g) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2906 |
apply(simp add: nth_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2907 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2908 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2909 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2910 |
lemma [simp]: "length lm1 = aa \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2911 |
(lm1 @ 0\<up>n @ last lm2 # lm3 @ butlast lm2 @ 0 # lm4) ! (aa + n) = last lm2" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2912 |
apply(simp add: nth_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2913 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2914 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2915 |
lemma [simp]: "\<lbrakk>Suc n \<le> ba - aa; aa < ba\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2916 |
(ba < Suc (aa + (ba - Suc (aa + n) + n))) = False" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2917 |
apply arith |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2918 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2919 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2920 |
lemma [simp]: "\<lbrakk>Suc n \<le> ba - aa; aa < ba; length lm1 = aa; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2921 |
length lm2 = Suc n; length lm3 = ba - Suc (aa + n)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2922 |
\<Longrightarrow> (lm1 @ 0\<up>n @ last lm2 # lm3 @ butlast lm2 @ 0 # lm4) ! (ba + n) = 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2923 |
using nth_append[of "lm1 @ (0\<Colon>'a)\<up>n @ last lm2 # lm3 @ butlast lm2" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2924 |
"(0\<Colon>'a) # lm4" "ba + n"] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2925 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2926 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2927 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2928 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2929 |
"\<lbrakk>Suc n \<le> ba - aa; aa < ba; length lm1 = aa; length lm2 = Suc n; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2930 |
length lm3 = ba - Suc (aa + n)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2931 |
\<Longrightarrow> (lm1 @ 0\<up>n @ last lm2 # lm3 @ butlast lm2 @ (0::nat) # lm4) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2932 |
[ba + n := last lm2, aa + n := 0] = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2933 |
lm1 @ 0 # 0\<up>n @ lm3 @ lm2 @ lm4" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2934 |
using list_update_append[of "lm1 @ 0\<up>n @ last lm2 # lm3 @ butlast lm2" "0 # lm4" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2935 |
"ba + n" "last lm2"] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2936 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2937 |
apply(simp add: list_update_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2938 |
apply(simp only: exponent_cons_iff exp_suc, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2939 |
apply(case_tac lm2, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2940 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2941 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2942 |
lemma mv_boxes_ex: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2943 |
"\<lbrakk>n \<le> ba - aa; ba > aa; length lm1 = aa; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2944 |
length (lm2::nat list) = n; length lm3 = ba - aa - n\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2945 |
\<Longrightarrow> \<exists> stp. abc_steps_l (0, lm1 @ lm2 @ lm3 @ 0\<up>n @ lm4) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2946 |
(mv_boxes aa ba n) stp = (3 * n, lm1 @ 0\<up>n @ lm3 @ lm2 @ lm4)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2947 |
apply(induct n arbitrary: lm2 lm3 lm4, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2948 |
apply(rule_tac x = 0 in exI, simp add: abc_steps_zero, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2949 |
simp add: mv_boxes.simps del: exp_suc_iff) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2950 |
apply(rule_tac as = "3 *n" and bm = "lm1 @ 0\<up>n @ last lm2 # lm3 @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2951 |
butlast lm2 @ 0 # lm4" in abc_append_exc2, simp_all) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2952 |
apply(simp only: exponent_cons_iff, simp only: exp_suc, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2953 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2954 |
fix n lm2 lm3 lm4 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2955 |
assume ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2956 |
"\<And>lm2 lm3 lm4. \<lbrakk>length lm2 = n; length lm3 = ba - (aa + n)\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2957 |
\<exists>stp. abc_steps_l (0, lm1 @ lm2 @ lm3 @ 0\<up>n @ lm4) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2958 |
(mv_boxes aa ba n) stp = (3 * n, lm1 @ 0\<up>n @ lm3 @ lm2 @ lm4)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2959 |
and h: "Suc n \<le> ba - aa" "aa < ba" "length (lm1::nat list) = aa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2960 |
"length (lm2::nat list) = Suc n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2961 |
"length (lm3::nat list) = ba - Suc (aa + n)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2962 |
from h show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2963 |
"\<exists>astp. abc_steps_l (0, lm1 @ lm2 @ lm3 @ 0\<up>n @ 0 # lm4) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2964 |
(mv_boxes aa ba n) astp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2965 |
(3 * n, lm1 @ 0\<up>n @ last lm2 # lm3 @ butlast lm2 @ 0 # lm4)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2966 |
apply(insert ind[of "butlast lm2" "last lm2 # lm3" "0 # lm4"], |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2967 |
simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2968 |
apply(subgoal_tac "lm1 @ butlast lm2 @ last lm2 # lm3 @ 0\<up>n @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2969 |
0 # lm4 = lm1 @ lm2 @ lm3 @ 0\<up>n @ 0 # lm4", simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2970 |
apply(case_tac "lm2 = []", simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2971 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2972 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2973 |
fix n lm2 lm3 lm4 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2974 |
assume h: "Suc n \<le> ba - aa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2975 |
"aa < ba" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2976 |
"length (lm1::nat list) = aa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2977 |
"length (lm2::nat list) = Suc n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2978 |
"length (lm3::nat list) = ba - Suc (aa + n)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2979 |
thus " \<exists>bstp. abc_steps_l (0, lm1 @ 0\<up>n @ last lm2 # lm3 @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2980 |
butlast lm2 @ 0 # lm4) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
2981 |
(Recursive.mv_box (aa + n) (ba + n)) bstp |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2982 |
= (3, lm1 @ 0 # 0\<up>n @ lm3 @ lm2 @ lm4)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2983 |
apply(insert mv_box_ex[of "aa + n" "ba + n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2984 |
"lm1 @ 0\<up>n @ last lm2 # lm3 @ butlast lm2 @ 0 # lm4"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2985 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2986 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2987 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2988 |
lemma [simp]: "\<lbrakk>Suc n \<le> aa - ba; ba < aa; length lm1 = ba; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2989 |
length lm2 = aa - Suc (ba + n); length lm3 = Suc n\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2990 |
\<Longrightarrow> (lm1 @ butlast lm3 @ 0 # lm2 @ 0\<up>n @ last lm3 # lm4) ! (aa + n) = last lm3" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2991 |
using nth_append[of "lm1 @ butlast lm3 @ 0 # lm2 @ 0\<up>n" "last lm3 # lm4" "aa + n"] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2992 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2993 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2994 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2995 |
lemma [simp]: "\<lbrakk>Suc n \<le> aa - ba; ba < aa; length lm1 = ba; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2996 |
length lm2 = aa - Suc (ba + n); length lm3 = Suc n\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2997 |
\<Longrightarrow> (lm1 @ butlast lm3 @ 0 # lm2 @ 0\<up>n @ last lm3 # lm4) ! (ba + n) = 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2998 |
apply(simp add: nth_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2999 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3000 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3001 |
lemma [simp]: "\<lbrakk>Suc n \<le> aa - ba; ba < aa; length lm1 = ba; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3002 |
length lm2 = aa - Suc (ba + n); length lm3 = Suc n\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3003 |
\<Longrightarrow> (lm1 @ butlast lm3 @ 0 # lm2 @ 0\<up>n @ last lm3 # lm4)[ba + n := last lm3, aa + n := 0] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3004 |
= lm1 @ lm3 @ lm2 @ 0 # 0\<up>n @ lm4" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3005 |
using list_update_append[of "lm1 @ butlast lm3" "(0\<Colon>'a) # lm2 @ (0\<Colon>'a)\<up>n @ last lm3 # lm4"] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3006 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3007 |
using list_update_append[of "lm1 @ butlast lm3 @ last lm3 # lm2 @ (0\<Colon>'a)\<up>n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3008 |
"last lm3 # lm4" "aa + n" "0"] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3009 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3010 |
apply(simp only: replicate_Suc[THEN sym] exp_suc, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3011 |
apply(case_tac lm3, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3012 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3013 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3014 |
lemma mv_boxes_ex2: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3015 |
"\<lbrakk>n \<le> aa - ba; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3016 |
ba < aa; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3017 |
length (lm1::nat list) = ba; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3018 |
length (lm2::nat list) = aa - ba - n; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3019 |
length (lm3::nat list) = n\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3020 |
\<Longrightarrow> \<exists> stp. abc_steps_l (0, lm1 @ 0\<up>n @ lm2 @ lm3 @ lm4) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3021 |
(mv_boxes aa ba n) stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3022 |
(3 * n, lm1 @ lm3 @ lm2 @ 0\<up>n @ lm4)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3023 |
apply(induct n arbitrary: lm2 lm3 lm4, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3024 |
apply(rule_tac x = 0 in exI, simp add: abc_steps_zero, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3025 |
simp add: mv_boxes.simps del: exp_suc_iff) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3026 |
apply(rule_tac as = "3 *n" and bm = "lm1 @ butlast lm3 @ 0 # lm2 @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3027 |
0\<up>n @ last lm3 # lm4" in abc_append_exc2, simp_all) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3028 |
apply(simp only: exponent_cons_iff, simp only: exp_suc, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3029 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3030 |
fix n lm2 lm3 lm4 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3031 |
assume ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3032 |
"\<And>lm2 lm3 lm4. \<lbrakk>length lm2 = aa - (ba + n); length lm3 = n\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3033 |
\<exists>stp. abc_steps_l (0, lm1 @ 0\<up>n @ lm2 @ lm3 @ lm4) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3034 |
(mv_boxes aa ba n) stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3035 |
(3 * n, lm1 @ lm3 @ lm2 @ 0\<up>n @ lm4)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3036 |
and h: "Suc n \<le> aa - ba" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3037 |
"ba < aa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3038 |
"length (lm1::nat list) = ba" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3039 |
"length (lm2::nat list) = aa - Suc (ba + n)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3040 |
"length (lm3::nat list) = Suc n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3041 |
from h show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3042 |
"\<exists>astp. abc_steps_l (0, lm1 @ 0\<up>n @ 0 # lm2 @ lm3 @ lm4) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3043 |
(mv_boxes aa ba n) astp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3044 |
(3 * n, lm1 @ butlast lm3 @ 0 # lm2 @ 0\<up>n @ last lm3 # lm4)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3045 |
apply(insert ind[of "0 # lm2" "butlast lm3" "last lm3 # lm4"], |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3046 |
simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3047 |
apply(subgoal_tac |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3048 |
"lm1 @ 0\<up>n @ 0 # lm2 @ butlast lm3 @ last lm3 # lm4 = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3049 |
lm1 @ 0\<up>n @ 0 # lm2 @ lm3 @ lm4", simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3050 |
apply(case_tac "lm3 = []", simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3051 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3052 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3053 |
fix n lm2 lm3 lm4 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3054 |
assume h: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3055 |
"Suc n \<le> aa - ba" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3056 |
"ba < aa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3057 |
"length lm1 = ba" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3058 |
"length (lm2::nat list) = aa - Suc (ba + n)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3059 |
"length (lm3::nat list) = Suc n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3060 |
thus |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3061 |
"\<exists>bstp. abc_steps_l (0, lm1 @ butlast lm3 @ 0 # lm2 @ 0\<up>n @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3062 |
last lm3 # lm4) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
3063 |
(Recursive.mv_box (aa + n) (ba + n)) bstp = |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3064 |
(3, lm1 @ lm3 @ lm2 @ 0 # 0\<up>n @ lm4)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3065 |
apply(insert mv_box_ex[of "aa + n" "ba + n" "lm1 @ butlast lm3 @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3066 |
0 # lm2 @ 0\<up>n @ last lm3 # lm4"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3067 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3068 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3069 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3070 |
lemma cn_merge_gs_len: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3071 |
"length (cn_merge_gs (map rec_ci gs) pstr) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3072 |
(\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 3 * length gs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3073 |
apply(induct gs arbitrary: pstr, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3074 |
apply(case_tac "rec_ci a", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3075 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3076 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3077 |
lemma [simp]: "n < pstr \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3078 |
Suc (pstr + length ys - n) = Suc (pstr + length ys) - n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3079 |
by arith |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3080 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3081 |
lemma save_paras': |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3082 |
"\<lbrakk>length lm = n; pstr > n; a_md > pstr + length ys + n\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3083 |
\<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(pstr - n) @ ys @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3084 |
0\<up>(a_md - pstr - length ys) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3085 |
(mv_boxes 0 (pstr + Suc (length ys)) n) stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3086 |
= (3 * n, 0\<up>pstr @ ys @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3087 |
apply(insert mv_boxes_ex[of n "pstr + Suc (length ys)" 0 "[]" "lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3088 |
"0\<up>(pstr - n) @ ys @ [0]" "0\<up>(a_md - pstr - length ys - n - Suc 0) @ suf_lm"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3089 |
apply(erule_tac exE, rule_tac x = stp in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3090 |
simp add: exponent_add_iff) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3091 |
apply(simp only: exponent_cons_iff, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3092 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3093 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3094 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3095 |
"(max ba (Max (insert ba (((\<lambda>(aprog, p, n). n) o rec_ci) ` set gs)))) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3096 |
= (Max (insert ba (((\<lambda>(aprog, p, n). n) o rec_ci) ` set gs)))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3097 |
apply(rule min_max.sup_absorb2, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3098 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3099 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3100 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3101 |
"((\<lambda>(aprog, p, n). n) ` rec_ci ` set gs) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3102 |
(((\<lambda>(aprog, p, n). n) o rec_ci) ` set gs)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3103 |
apply(induct gs) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3104 |
apply(simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3105 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3106 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3107 |
lemma ci_cn_md_def: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3108 |
"\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3109 |
rec_ci f = (a, aa, ba)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3110 |
\<Longrightarrow> a_md = max (Suc n) (Max (insert ba (((\<lambda>(aprog, p, n). n) o |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3111 |
rec_ci) ` set gs))) + Suc (length gs) + n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3112 |
apply(simp add: rec_ci.simps, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3113 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3114 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3115 |
lemma save_paras_prog_ex: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3116 |
"\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3117 |
rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3118 |
pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3119 |
(map rec_ci (f # gs))))\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3120 |
\<Longrightarrow> \<exists>ap bp cp. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3121 |
aprog = ap [+] bp [+] cp \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3122 |
length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3123 |
3 * length gs \<and> bp = mv_boxes 0 (pstr + Suc (length gs)) n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3124 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3125 |
apply(rule_tac x = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3126 |
"cn_merge_gs (map rec_ci gs) (max (Suc n) (Max (insert ba |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3127 |
(((\<lambda>(aprog, p, n). n) o rec_ci) ` set gs))))" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3128 |
simp add: cn_merge_gs_len) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3129 |
apply(rule_tac x = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3130 |
"mv_boxes (max (Suc n) (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
3131 |
0 (length gs) [+] a [+]Recursive.mv_box aa (max (Suc n) |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3132 |
(Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+] |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
3133 |
empty_boxes (length gs) [+] Recursive.mv_box (max (Suc n) |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3134 |
(Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) n [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3135 |
mv_boxes (Suc (max (Suc n) (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3136 |
` set gs))) + length gs)) 0 n" in exI, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3137 |
apply(simp add: abc_append_commute) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3138 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3139 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3140 |
lemma save_paras: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3141 |
"\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3142 |
rs_pos = n; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3143 |
\<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3144 |
length ys = length gs; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3145 |
length lm = n; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3146 |
rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3147 |
pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3148 |
(map rec_ci (f # gs))))\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3149 |
\<Longrightarrow> \<exists>stp. abc_steps_l ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3150 |
3 * length gs, lm @ 0\<up>(pstr - n) @ ys @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3151 |
0\<up>(a_md - pstr - length ys) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3152 |
((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3153 |
3 * length gs + 3 * n, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3154 |
0\<up>pstr @ ys @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3155 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3156 |
assume h: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3157 |
"rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3158 |
"rs_pos = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3159 |
"\<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3160 |
"length ys = length gs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3161 |
"length lm = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3162 |
"rec_ci f = (a, aa, ba)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3163 |
and g: "pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3164 |
(map rec_ci (f # gs))))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3165 |
from h and g have k1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3166 |
"\<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3167 |
length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3168 |
3 *length gs \<and> bp = mv_boxes 0 (pstr + Suc (length ys)) n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3169 |
apply(drule_tac save_paras_prog_ex, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3170 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3171 |
from h have k2: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3172 |
"\<exists> stp. abc_steps_l (0, lm @ 0\<up>(pstr - n) @ ys @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3173 |
0\<up>(a_md - pstr - length ys) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3174 |
(mv_boxes 0 (pstr + Suc (length ys)) n) stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3175 |
(3 * n, 0\<up>pstr @ ys @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3176 |
apply(rule_tac save_paras', simp, simp_all add: g) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3177 |
apply(drule_tac a = a and aa = aa and ba = ba in |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3178 |
ci_cn_md_def, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3179 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3180 |
from k1 show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3181 |
"\<exists>stp. abc_steps_l ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3182 |
3 * length gs, lm @ 0\<up>(pstr - n) @ ys @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3183 |
0\<up>(a_md - pstr - length ys) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3184 |
((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3185 |
3 * length gs + 3 * n, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3186 |
0\<up> pstr @ ys @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3187 |
proof(erule_tac exE, erule_tac exE, erule_tac exE, erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3188 |
fix ap bp apa cp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3189 |
assume "aprog = ap [+] bp [+] cp \<and> length ap = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3190 |
(\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 3 * length gs |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3191 |
\<and> bp = mv_boxes 0 (pstr + Suc (length ys)) n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3192 |
from this and k2 show "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3193 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3194 |
apply(rule_tac abc_append_exc1, simp, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3195 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3196 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3197 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3198 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3199 |
lemma ci_cn_para_eq: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3200 |
"rec_ci (Cn n f gs) = (aprog, rs_pos, a_md) \<Longrightarrow> rs_pos = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3201 |
apply(simp add: rec_ci.simps, case_tac "rec_ci f", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3202 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3203 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3204 |
lemma calc_gs_prog_ex: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3205 |
"\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3206 |
rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3207 |
Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3208 |
(map rec_ci (f # gs)))) = pstr\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3209 |
\<Longrightarrow> \<exists>ap bp. aprog = ap [+] bp \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3210 |
ap = cn_merge_gs (map rec_ci gs) pstr" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3211 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3212 |
apply(rule_tac x = "mv_boxes 0 (Suc (max (Suc n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3213 |
(Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + length gs)) n [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3214 |
mv_boxes (max (Suc n) (Max (insert ba |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3215 |
(((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) 0 (length gs) [+] |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
3216 |
a [+] Recursive.mv_box aa (max (Suc n) |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3217 |
(Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+] |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
3218 |
empty_boxes (length gs) [+] Recursive.mv_box (max (Suc n) |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3219 |
(Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) n [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3220 |
mv_boxes (Suc (max (Suc n) (Max |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3221 |
(insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + length gs)) 0 n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3222 |
in exI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3223 |
apply(auto simp: abc_append_commute) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3224 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3225 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3226 |
lemma cn_calc_gs: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3227 |
assumes ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3228 |
"\<And>x aprog a_md rs_pos rs suf_lm lm. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3229 |
\<lbrakk>x \<in> set gs; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3230 |
rec_ci x = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3231 |
rec_calc_rel x lm rs\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3232 |
\<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3233 |
(length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3234 |
and h: "rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3235 |
"\<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3236 |
"length ys = length gs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3237 |
"length lm = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3238 |
"rec_ci f = (a, aa, ba)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3239 |
"Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3240 |
(map rec_ci (f # gs)))) = pstr" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3241 |
shows |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3242 |
"\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3243 |
((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 3 * length gs, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3244 |
lm @ 0\<up>(pstr - n) @ ys @ 0\<up>(a_md -pstr - length ys) @ suf_lm) " |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3245 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3246 |
from h have k1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3247 |
"\<exists> ap bp. aprog = ap [+] bp \<and> ap = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3248 |
cn_merge_gs (map rec_ci gs) pstr" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3249 |
by(erule_tac calc_gs_prog_ex, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3250 |
from h have j1: "rs_pos = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3251 |
by(simp add: ci_cn_para_eq) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3252 |
from h have j2: "a_md \<ge> pstr" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3253 |
by(drule_tac a = a and aa = aa and ba = ba in |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3254 |
ci_cn_md_def, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3255 |
from h have j3: "pstr > n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3256 |
by(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3257 |
from j1 and j2 and j3 and h have k2: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3258 |
"\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3259 |
(cn_merge_gs (map rec_ci gs) pstr) stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3260 |
= ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 3 * length gs, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3261 |
lm @ 0\<up>(pstr - n) @ ys @ 0\<up>(a_md - pstr - length ys) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3262 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3263 |
apply(rule_tac cn_merge_gs_ex, rule_tac ind, simp, simp, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3264 |
apply(drule_tac a = a and aa = aa and ba = ba in |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3265 |
ci_cn_md_def, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3266 |
apply(rule min_max.le_supI2, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3267 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3268 |
from k1 show "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3269 |
proof(erule_tac exE, erule_tac exE, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3270 |
fix ap bp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3271 |
from k2 show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3272 |
"\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3273 |
(cn_merge_gs (map rec_ci gs) pstr [+] bp) stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3274 |
(listsum (map ((\<lambda>(ap, pos, n). length ap) \<circ> rec_ci) gs) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3275 |
3 * length gs, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3276 |
lm @ 0\<up>(pstr - n) @ ys @ 0\<up>(a_md - (pstr + length ys)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3277 |
apply(insert abc_append_exc1[of |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3278 |
"lm @ 0\<up>(a_md - rs_pos) @ suf_lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3279 |
"(cn_merge_gs (map rec_ci gs) pstr)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3280 |
"length (cn_merge_gs (map rec_ci gs) pstr)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3281 |
"lm @ 0\<up>(pstr - n) @ ys @ 0\<up>(a_md - pstr - length ys) @ suf_lm" 0 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3282 |
"[]" bp], simp add: cn_merge_gs_len) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3283 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3284 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3285 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3286 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3287 |
lemma reset_new_paras': |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3288 |
"\<lbrakk>length lm = n; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3289 |
pstr > 0; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3290 |
a_md \<ge> pstr + length ys + n; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3291 |
pstr > length ys\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3292 |
\<exists>stp. abc_steps_l (0, 0\<up>pstr @ ys @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3293 |
suf_lm) (mv_boxes pstr 0 (length ys)) stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3294 |
(3 * length ys, ys @ 0\<up>pstr @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3295 |
apply(insert mv_boxes_ex2[of "length ys" "pstr" 0 "[]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3296 |
"0\<up>(pstr - length ys)" "ys" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3297 |
"0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm"], |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3298 |
simp add: exponent_add_iff) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3299 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3300 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3301 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3302 |
"\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3303 |
rec_calc_rel f ys rs; rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3304 |
pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3305 |
(map rec_ci (f # gs))))\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3306 |
\<Longrightarrow> length ys < pstr" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3307 |
apply(subgoal_tac "length ys = aa", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3308 |
apply(subgoal_tac "aa < ba \<and> ba \<le> pstr", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3309 |
rule basic_trans_rules(22), auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3310 |
apply(rule min_max.le_supI2) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3311 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3312 |
apply(erule_tac para_pattern, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3313 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3314 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3315 |
lemma reset_new_paras_prog_ex: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3316 |
"\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3317 |
rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3318 |
Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3319 |
(map rec_ci (f # gs)))) = pstr\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3320 |
\<Longrightarrow> \<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3321 |
length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3322 |
3 *length gs + 3 * n \<and> bp = mv_boxes pstr 0 (length gs)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3323 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3324 |
apply(rule_tac x = "cn_merge_gs (map rec_ci gs) (max (Suc n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3325 |
(Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3326 |
mv_boxes 0 (Suc (max (Suc n) (Max (insert ba |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3327 |
(((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + length gs)) n" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3328 |
simp add: cn_merge_gs_len) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3329 |
apply(rule_tac x = "a [+] |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
3330 |
Recursive.mv_box aa (max (Suc n) (Max (insert ba |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3331 |
(((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+] |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
3332 |
empty_boxes (length gs) [+] Recursive.mv_box |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3333 |
(max (Suc n) (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) n |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3334 |
[+] mv_boxes (Suc (max (Suc n) (Max (insert ba |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3335 |
(((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + length gs)) 0 n" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3336 |
auto simp: abc_append_commute) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3337 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3338 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3339 |
lemma reset_new_paras: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3340 |
"\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3341 |
rs_pos = n; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3342 |
\<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3343 |
length ys = length gs; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3344 |
length lm = n; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3345 |
length ys = aa; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3346 |
rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3347 |
pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3348 |
(map rec_ci (f # gs))))\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3349 |
\<Longrightarrow> \<exists>stp. abc_steps_l ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3350 |
3 * length gs + 3 * n, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3351 |
0\<up>pstr @ ys @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3352 |
((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 6 * length gs + 3 * n, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3353 |
ys @ 0\<up>pstr @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3354 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3355 |
assume h: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3356 |
"rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3357 |
"rs_pos = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3358 |
"length ys = aa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3359 |
"\<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3360 |
"length ys = length gs" "length lm = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3361 |
"rec_ci f = (a, aa, ba)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3362 |
and g: "pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3363 |
(map rec_ci (f # gs))))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3364 |
from h and g have k1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3365 |
"\<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> length ap = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3366 |
(\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3367 |
3 *length gs + 3 * n \<and> bp = mv_boxes pstr 0 (length ys)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3368 |
by(drule_tac reset_new_paras_prog_ex, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3369 |
from h have k2: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3370 |
"\<exists> stp. abc_steps_l (0, 0\<up>pstr @ ys @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3371 |
suf_lm) (mv_boxes pstr 0 (length ys)) stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3372 |
(3 * (length ys), |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3373 |
ys @ 0\<up>pstr @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3374 |
apply(rule_tac reset_new_paras', simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3375 |
apply(simp add: g) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3376 |
apply(drule_tac a = a and aa = aa and ba = ba in ci_cn_md_def, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3377 |
simp, simp add: g, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3378 |
apply(subgoal_tac "length gs = aa \<and> aa < ba \<and> ba \<le> pstr", arith, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3379 |
simp add: para_pattern) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3380 |
apply(insert g, auto intro: min_max.le_supI2) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3381 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3382 |
from k1 show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3383 |
"\<exists>stp. abc_steps_l ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 3 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3384 |
* length gs + 3 * n, 0\<up>pstr @ ys @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3385 |
suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3386 |
((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 6 * length gs + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3387 |
3 * n, ys @ 0\<up>pstr @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3388 |
proof(erule_tac exE, erule_tac exE, erule_tac exE, erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3389 |
fix ap bp apa cp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3390 |
assume "aprog = ap [+] bp [+] cp \<and> length ap = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3391 |
(\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 3 * length gs + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3392 |
3 * n \<and> bp = mv_boxes pstr 0 (length ys)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3393 |
from this and k2 show "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3394 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3395 |
apply(drule_tac as = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3396 |
"(\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 3 * length gs + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3397 |
3 * n" and ap = ap and cp = cp in abc_append_exc1, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3398 |
apply(rule_tac x = stp in exI, simp add: h) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3399 |
using h |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3400 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3401 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3402 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3403 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3404 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3405 |
lemma calc_f_prog_ex: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3406 |
"\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3407 |
rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3408 |
Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3409 |
(map rec_ci (f # gs)))) = pstr\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3410 |
\<Longrightarrow> \<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3411 |
length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3412 |
6 *length gs + 3 * n \<and> bp = a" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3413 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3414 |
apply(rule_tac x = "cn_merge_gs (map rec_ci gs) (max (Suc n) (Max (insert ba |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3415 |
(((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3416 |
mv_boxes 0 (Suc (max (Suc n) (Max (insert ba |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3417 |
(((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + length gs)) n [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3418 |
mv_boxes (max (Suc n) (Max (insert ba |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3419 |
(((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) 0 (length gs)" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3420 |
simp add: cn_merge_gs_len) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
3421 |
apply(rule_tac x = "Recursive.mv_box aa (max (Suc n) (Max (insert ba |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3422 |
(((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+] |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
3423 |
empty_boxes (length gs) [+] Recursive.mv_box (max (Suc n) ( |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3424 |
Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) n [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3425 |
mv_boxes (Suc (max (Suc n) (Max (insert ba |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3426 |
(((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + length gs)) 0 n" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3427 |
auto simp: abc_append_commute) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3428 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3429 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3430 |
lemma calc_cn_f: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3431 |
assumes ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3432 |
"\<And>x aprog a_md rs_pos rs suf_lm lm. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3433 |
\<lbrakk>x \<in> set (f # gs); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3434 |
rec_ci x = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3435 |
rec_calc_rel x lm rs\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3436 |
\<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3437 |
(length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3438 |
and h: "rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3439 |
"rec_calc_rel (Cn n f gs) lm rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3440 |
"length ys = length gs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3441 |
"rec_calc_rel f ys rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3442 |
"length lm = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3443 |
"rec_ci f = (a, aa, ba)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3444 |
and p: "pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3445 |
(map rec_ci (f # gs))))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3446 |
shows "\<exists>stp. abc_steps_l |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3447 |
((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 6 * length gs + 3 * n, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3448 |
ys @ 0\<up>pstr @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3449 |
((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 6 * length gs + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3450 |
3 * n + length a, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3451 |
ys @ rs # 0\<up>pstr @ lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3452 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3453 |
from h have k1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3454 |
"\<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3455 |
length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3456 |
6 *length gs + 3 * n \<and> bp = a" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3457 |
by(drule_tac calc_f_prog_ex, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3458 |
from h and k1 show "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3459 |
proof (erule_tac exE, erule_tac exE, erule_tac exE, erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3460 |
fix ap bp apa cp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3461 |
assume |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3462 |
"aprog = ap [+] bp [+] cp \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3463 |
length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3464 |
6 * length gs + 3 * n \<and> bp = a" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3465 |
from h and this show "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3466 |
apply(simp, rule_tac abc_append_exc1, simp_all) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3467 |
apply(insert ind[of f "a" aa ba ys rs |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3468 |
"0\<up>(pstr - ba + length gs) @ 0 # lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3469 |
0\<up>(a_md - Suc (pstr + length gs + n)) @ suf_lm"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3470 |
apply(subgoal_tac "ba > aa \<and> aa = length gs\<and> pstr \<ge> ba", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3471 |
apply(simp add: exponent_add_iff) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3472 |
apply(case_tac pstr, simp add: p) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3473 |
apply(simp only: exp_suc, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3474 |
apply(rule conjI, rule ci_ad_ge_paras, simp, rule conjI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3475 |
apply(subgoal_tac "length ys = aa", simp, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3476 |
rule para_pattern, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3477 |
apply(insert p, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3478 |
apply(auto intro: min_max.le_supI2) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3479 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3480 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3481 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3482 |
(* |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3483 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3484 |
"\<lbrakk>pstr + length ys + n \<le> a_md; ys \<noteq> []\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3485 |
pstr < a_md + length suf_lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3486 |
apply(case_tac "length ys", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3487 |
apply(arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3488 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3489 |
*) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3490 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3491 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3492 |
"pstr > length ys |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3493 |
\<Longrightarrow> (ys @ rs # 0\<up>pstr @ lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3494 |
0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm) ! pstr = (0::nat)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3495 |
apply(simp add: nth_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3496 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3497 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3498 |
(* |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3499 |
lemma [simp]: "\<lbrakk>length ys < pstr; pstr - length ys = Suc x\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3500 |
\<Longrightarrow> pstr - Suc (length ys) = x" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3501 |
by arith |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3502 |
*) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3503 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3504 |
lemma [simp]: "pstr > length ys \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3505 |
(ys @ rs # 0\<up>pstr @ lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3506 |
[pstr := rs, length ys := 0] = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3507 |
ys @ 0\<up>(pstr - length ys) @ (rs::nat) # 0\<up>length ys @ lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3508 |
apply(auto simp: list_update_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3509 |
apply(case_tac "pstr - length ys",simp_all) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3510 |
using list_update_length[of |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3511 |
"0\<up>(pstr - Suc (length ys))" "0" "0\<up>length ys @ lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3512 |
0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm" rs] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3513 |
apply(simp only: exponent_cons_iff exponent_add_iff, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3514 |
apply(subgoal_tac "pstr - Suc (length ys) = nat", simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3515 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3516 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3517 |
lemma save_rs': |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3518 |
"\<lbrakk>pstr > length ys\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3519 |
\<Longrightarrow> \<exists>stp. abc_steps_l (0, ys @ rs # 0\<up>pstr @ lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3520 |
0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
3521 |
(Recursive.mv_box (length ys) pstr) stp = |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3522 |
(3, ys @ 0\<up>(pstr - (length ys)) @ rs # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3523 |
0\<up>length ys @ lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3524 |
apply(insert mv_box_ex[of "length ys" pstr |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3525 |
"ys @ rs # 0\<up>pstr @ lm @ 0\<up>(a_md - Suc(pstr + length ys + n)) @ suf_lm"], |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3526 |
simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3527 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3528 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3529 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3530 |
lemma save_rs_prog_ex: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3531 |
"\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3532 |
rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3533 |
Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3534 |
(map rec_ci (f # gs)))) = pstr\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3535 |
\<Longrightarrow> \<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3536 |
length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3537 |
6 *length gs + 3 * n + length a |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3538 |
\<and> bp = mv_box aa pstr" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3539 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3540 |
apply(rule_tac x = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3541 |
"cn_merge_gs (map rec_ci gs) (max (Suc n) (Max (insert ba |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3542 |
(((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3543 |
[+] mv_boxes 0 (Suc (max (Suc n) (Max (insert ba |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3544 |
(((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + length gs)) n [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3545 |
mv_boxes (max (Suc n) (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3546 |
0 (length gs) [+] a" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3547 |
in exI, simp add: cn_merge_gs_len) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3548 |
apply(rule_tac x = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3549 |
"empty_boxes (length gs) [+] |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
3550 |
Recursive.mv_box (max (Suc n) (Max (insert ba |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3551 |
(((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) n [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3552 |
mv_boxes (Suc (max (Suc n) (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3553 |
+ length gs)) 0 n" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3554 |
auto simp: abc_append_commute) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3555 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3556 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3557 |
lemma save_rs: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3558 |
assumes h: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3559 |
"rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3560 |
"rec_calc_rel (Cn n f gs) lm rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3561 |
"\<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3562 |
"length ys = length gs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3563 |
"rec_calc_rel f ys rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3564 |
"rec_ci f = (a, aa, ba)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3565 |
"length lm = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3566 |
and pdef: "pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3567 |
(map rec_ci (f # gs))))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3568 |
shows "\<exists>stp. abc_steps_l |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3569 |
((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 6 * length gs |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3570 |
+ 3 * n + length a, ys @ rs # 0\<up>pstr @ lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3571 |
0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3572 |
((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 6 * length gs |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3573 |
+ 3 * n + length a + 3, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3574 |
ys @ 0\<up>(pstr - length ys) @ rs # 0\<up>length ys @ lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3575 |
0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3576 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3577 |
from h and pdef have k1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3578 |
"\<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3579 |
length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3580 |
6 *length gs + 3 * n + length a \<and> bp = mv_box (length ys) pstr " |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3581 |
apply(subgoal_tac "length ys = aa") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3582 |
apply(drule_tac a = a and aa = aa and ba = ba in save_rs_prog_ex, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3583 |
simp, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3584 |
by(rule_tac para_pattern, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3585 |
from k1 show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3586 |
"\<exists>stp. abc_steps_l |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3587 |
((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 6 * length gs + 3 * n |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3588 |
+ length a, ys @ rs # 0\<up>pstr @ lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3589 |
@ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3590 |
((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 6 * length gs + 3 * n |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3591 |
+ length a + 3, ys @ 0\<up>(pstr - length ys) @ rs # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3592 |
0\<up>length ys @ lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3593 |
proof (erule_tac exE, erule_tac exE, erule_tac exE, erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3594 |
fix ap bp apa cp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3595 |
assume "aprog = ap [+] bp [+] cp \<and> length ap = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3596 |
(\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 6 * length gs + |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
3597 |
3 * n + length a \<and> bp = Recursive.mv_box (length ys) pstr" |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3598 |
thus"?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3599 |
apply(simp, rule_tac abc_append_exc1, simp_all) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3600 |
apply(rule_tac save_rs', insert h) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3601 |
apply(subgoal_tac "length gs = aa \<and> pstr \<ge> ba \<and> ba > aa", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3602 |
arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3603 |
apply(simp add: para_pattern, insert pdef, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3604 |
apply(rule_tac min_max.le_supI2, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3605 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3606 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3607 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3608 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3609 |
lemma [simp]: "length (empty_boxes n) = 2*n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3610 |
apply(induct n, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3611 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3612 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3613 |
lemma mv_box_step_ex: "length lm = n \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3614 |
\<exists>stp. abc_steps_l (0, lm @ Suc x # suf_lm) [Dec n 2, Goto 0] stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3615 |
= (0, lm @ x # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3616 |
apply(rule_tac x = "Suc (Suc 0)" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3617 |
simp add: abc_steps_l.simps abc_step_l.simps abc_fetch.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3618 |
abc_lm_v.simps abc_lm_s.simps nth_append list_update_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3619 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3620 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3621 |
lemma mv_box_ex': |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3622 |
"\<lbrakk>length lm = n\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3623 |
\<exists> stp. abc_steps_l (0, lm @ x # suf_lm) [Dec n 2, Goto 0] stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3624 |
(Suc (Suc 0), lm @ 0 # suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3625 |
apply(induct x) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3626 |
apply(rule_tac x = "Suc 0" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3627 |
simp add: abc_steps_l.simps abc_fetch.simps abc_step_l.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3628 |
abc_lm_v.simps nth_append abc_lm_s.simps, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3629 |
apply(drule_tac x = x and suf_lm = suf_lm in mv_box_step_ex, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3630 |
erule_tac exE, erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3631 |
apply(rule_tac x = "stpa + stp" in exI, simp add: abc_steps_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3632 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3633 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3634 |
lemma [simp]: "drop n lm = a # list \<Longrightarrow> list = drop (Suc n) lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3635 |
apply(induct n arbitrary: lm a list, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3636 |
apply(case_tac "lm", simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3637 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3638 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3639 |
lemma empty_boxes_ex: "\<lbrakk>length lm \<ge> n\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3640 |
\<Longrightarrow> \<exists>stp. abc_steps_l (0, lm) (empty_boxes n) stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3641 |
(2*n, 0\<up>n @ drop n lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3642 |
apply(induct n, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3643 |
apply(rule_tac abc_append_exc2, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3644 |
apply(case_tac "drop n lm", simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3645 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3646 |
fix n stp a list |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3647 |
assume h: "Suc n \<le> length lm" "drop n lm = a # list" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3648 |
thus "\<exists>bstp. abc_steps_l (0, 0\<up>n @ a # list) [Dec n 2, Goto 0] bstp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3649 |
(Suc (Suc 0), 0 # 0\<up>n @ drop (Suc n) lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3650 |
apply(insert mv_box_ex'[of "0\<up>n" n a list], simp, erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3651 |
apply(rule_tac x = stp in exI, simp, simp only: exponent_cons_iff) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3652 |
apply(simp add:exp_ind del: replicate.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3653 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3654 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3655 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3656 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3657 |
lemma mv_box_paras_prog_ex: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3658 |
"\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3659 |
rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3660 |
Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3661 |
(map rec_ci (f # gs)))) = pstr\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3662 |
\<Longrightarrow> \<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3663 |
length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3664 |
6 *length gs + 3 * n + length a + 3 \<and> bp = empty_boxes (length gs)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3665 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3666 |
apply(rule_tac x = "cn_merge_gs (map rec_ci gs) (max (Suc n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3667 |
(Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3668 |
mv_boxes 0 (Suc (max (Suc n) (Max |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3669 |
(insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + length gs)) n |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3670 |
[+] mv_boxes (max (Suc n) (Max (insert ba |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3671 |
(((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) 0 (length gs) [+] |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
3672 |
a [+] Recursive.mv_box aa (max (Suc n) |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3673 |
(Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3674 |
in exI, simp add: cn_merge_gs_len) |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
3675 |
apply(rule_tac x = " Recursive.mv_box (max (Suc n) (Max (insert ba |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3676 |
(((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) n [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3677 |
mv_boxes (Suc (max (Suc n) (Max (insert ba |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3678 |
(((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + length gs)) 0 n" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3679 |
auto simp: abc_append_commute) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3680 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3681 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3682 |
lemma mv_box_paras: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3683 |
assumes h: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3684 |
"rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3685 |
"rec_calc_rel (Cn n f gs) lm rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3686 |
"\<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3687 |
"length ys = length gs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3688 |
"rec_calc_rel f ys rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3689 |
"rec_ci f = (a, aa, ba)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3690 |
and pdef: "pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3691 |
(map rec_ci (f # gs))))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3692 |
and starts: "ss = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3693 |
6 * length gs + 3 * n + length a + 3" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3694 |
shows "\<exists>stp. abc_steps_l |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3695 |
(ss, ys @ 0\<up>(pstr - length ys) @ rs # 0\<up>length ys |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3696 |
@ lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3697 |
(ss + 2 * length gs, 0\<up>pstr @ rs # 0\<up>length ys @ lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3698 |
0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3699 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3700 |
from h and pdef and starts have k1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3701 |
"\<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3702 |
length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3703 |
6 *length gs + 3 * n + length a + 3 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3704 |
\<and> bp = empty_boxes (length ys)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3705 |
by(drule_tac mv_box_paras_prog_ex, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3706 |
from h have j1: "aa < ba" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3707 |
by(simp add: ci_ad_ge_paras) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3708 |
from h have j2: "length gs = aa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3709 |
by(drule_tac f = f in para_pattern, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3710 |
from h and pdef have j3: "ba \<le> pstr" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3711 |
apply simp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3712 |
apply(rule_tac min_max.le_supI2, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3713 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3714 |
from k1 show "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3715 |
proof (erule_tac exE, erule_tac exE, erule_tac exE, erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3716 |
fix ap bp apa cp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3717 |
assume "aprog = ap [+] bp [+] cp \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3718 |
length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3719 |
6 * length gs + 3 * n + length a + 3 \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3720 |
bp = empty_boxes (length ys)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3721 |
thus"?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3722 |
apply(simp, rule_tac abc_append_exc1, simp_all add: starts h) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3723 |
apply(insert empty_boxes_ex[of |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3724 |
"length gs" "ys @ 0\<up>(pstr - (length gs)) @ rs # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3725 |
0\<up>length gs @ lm @ 0\<up>(a_md - Suc (pstr + length gs + n)) @ suf_lm"], |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3726 |
simp add: h) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3727 |
apply(erule_tac exE, rule_tac x = stp in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3728 |
simp add: replicate.simps[THEN sym] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3729 |
replicate_add[THEN sym] del: replicate.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3730 |
apply(subgoal_tac "pstr >(length gs)", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3731 |
apply(subgoal_tac "ba > aa \<and> length gs = aa \<and> pstr \<ge> ba", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3732 |
apply(simp add: j1 j2 j3) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3733 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3734 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3735 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3736 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3737 |
lemma restore_rs_prog_ex: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3738 |
"\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3739 |
rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3740 |
Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3741 |
(map rec_ci (f # gs)))) = pstr; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3742 |
ss = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3743 |
8 * length gs + 3 * n + length a + 3\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3744 |
\<Longrightarrow> \<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> length ap = ss \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3745 |
bp = mv_box pstr n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3746 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3747 |
apply(rule_tac x = "cn_merge_gs (map rec_ci gs) (max (Suc n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3748 |
(Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3749 |
mv_boxes 0 (Suc (max (Suc n) (Max (insert ba (((\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3750 |
\<circ> rec_ci) ` set gs))) + length gs)) n [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3751 |
mv_boxes (max (Suc n) (Max (insert ba |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3752 |
(((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) 0 (length gs) [+] |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
3753 |
a [+] Recursive.mv_box aa (max (Suc n) |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3754 |
(Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3755 |
empty_boxes (length gs)" in exI, simp add: cn_merge_gs_len) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3756 |
apply(rule_tac x = "mv_boxes (Suc (max (Suc n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3757 |
(Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3758 |
+ length gs)) 0 n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3759 |
in exI, auto simp: abc_append_commute) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3760 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3761 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3762 |
lemma exp_add: "a\<up>(b+c) = a\<up>b @ a\<up>c" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3763 |
apply(simp add:replicate_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3764 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3765 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3766 |
lemma [simp]: "n < pstr \<Longrightarrow> (0\<up>pstr)[n := rs] @ [0::nat] = 0\<up>n @ rs # 0\<up>(pstr - n)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3767 |
using list_update_length[of "0\<up>n" "0::nat" "0\<up>(pstr - Suc n)" rs] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3768 |
apply(simp add: replicate_Suc[THEN sym] exp_add[THEN sym] exp_suc[THEN sym]) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3769 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3770 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3771 |
lemma restore_rs: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3772 |
assumes h: "rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3773 |
"rec_calc_rel (Cn n f gs) lm rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3774 |
"\<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3775 |
"length ys = length gs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3776 |
"rec_calc_rel f ys rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3777 |
"rec_ci f = (a, aa, ba)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3778 |
and pdef: "pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3779 |
(map rec_ci (f # gs))))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3780 |
and starts: "ss = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3781 |
8 * length gs + 3 * n + length a + 3" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3782 |
shows "\<exists>stp. abc_steps_l |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3783 |
(ss, 0\<up>pstr @ rs # 0\<up>length ys @ lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3784 |
0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3785 |
(ss + 3, 0\<up>n @ rs # 0\<up>(pstr - n) @ 0\<up>length ys @ lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3786 |
0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3787 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3788 |
from h and pdef and starts have k1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3789 |
"\<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> length ap = ss \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3790 |
bp = mv_box pstr n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3791 |
by(drule_tac restore_rs_prog_ex, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3792 |
from k1 show "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3793 |
proof (erule_tac exE, erule_tac exE, erule_tac exE, erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3794 |
fix ap bp apa cp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3795 |
assume "aprog = ap [+] bp [+] cp \<and> length ap = ss \<and> |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
3796 |
bp = Recursive.mv_box pstr n" |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3797 |
thus"?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3798 |
apply(simp, rule_tac abc_append_exc1, simp_all add: starts h) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3799 |
apply(insert mv_box_ex[of pstr n "0\<up>pstr @ rs # 0\<up>length gs @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3800 |
lm @ 0\<up>(a_md - Suc (pstr + length gs + n)) @ suf_lm"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3801 |
apply(subgoal_tac "pstr > n", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3802 |
apply(erule_tac exE, rule_tac x = stp in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3803 |
simp add: nth_append list_update_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3804 |
apply(simp add: pdef) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3805 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3806 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3807 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3808 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3809 |
lemma [simp]:"xs \<noteq> [] \<Longrightarrow> length xs \<ge> Suc 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3810 |
by(case_tac xs, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3811 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3812 |
lemma [simp]: "n < max (Suc n) (max ba (Max (((\<lambda>(aprog, p, n). n) o |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3813 |
rec_ci) ` set gs)))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3814 |
by(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3815 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3816 |
lemma restore_paras_prog_ex: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3817 |
"\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3818 |
rec_ci f = (a, aa, ba); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3819 |
Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3820 |
(map rec_ci (f # gs)))) = pstr; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3821 |
ss = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3822 |
8 * length gs + 3 * n + length a + 6\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3823 |
\<Longrightarrow> \<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> length ap = ss \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3824 |
bp = mv_boxes (pstr + Suc (length gs)) (0::nat) n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3825 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3826 |
apply(rule_tac x = "cn_merge_gs (map rec_ci gs) (max (Suc n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3827 |
(Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3828 |
[+] mv_boxes 0 (Suc (max (Suc n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3829 |
(Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3830 |
+ length gs)) n [+] mv_boxes (max (Suc n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3831 |
(Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) 0 (length gs) [+] |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
3832 |
a [+] Recursive.mv_box aa (max (Suc n) |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3833 |
(Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3834 |
empty_boxes (length gs) [+] |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
3835 |
Recursive.mv_box (max (Suc n) (Max (insert ba |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3836 |
(((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) n" in exI, simp add: cn_merge_gs_len) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3837 |
apply(rule_tac x = "[]" in exI, auto simp: abc_append_commute) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3838 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3839 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3840 |
lemma restore_paras: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3841 |
assumes h: "rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3842 |
"rec_calc_rel (Cn n f gs) lm rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3843 |
"\<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3844 |
"length ys = length gs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3845 |
"rec_calc_rel f ys rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3846 |
"rec_ci f = (a, aa, ba)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3847 |
and pdef: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3848 |
"pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3849 |
(map rec_ci (f # gs))))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3850 |
and starts: "ss = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3851 |
8 * length gs + 3 * n + length a + 6" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3852 |
shows "\<exists>stp. abc_steps_l (ss, 0\<up>n @ rs # 0\<up>(pstr - n+ length ys) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3853 |
lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3854 |
aprog stp = (ss + 3 * n, lm @ rs # 0\<up>(a_md - Suc n) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3855 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3856 |
from h and pdef and starts have k1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3857 |
"\<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> length ap = ss \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3858 |
bp = mv_boxes (pstr + Suc (length gs)) (0::nat) n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3859 |
by(drule_tac restore_paras_prog_ex, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3860 |
from k1 show "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3861 |
proof (erule_tac exE, erule_tac exE, erule_tac exE, erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3862 |
fix ap bp apa cp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3863 |
assume "aprog = ap [+] bp [+] cp \<and> length ap = ss \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3864 |
bp = mv_boxes (pstr + Suc (length gs)) 0 n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3865 |
thus"?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3866 |
apply(simp, rule_tac abc_append_exc1, simp_all add: starts h) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3867 |
apply(insert mv_boxes_ex2[of n "pstr + Suc (length gs)" 0 "[]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3868 |
"rs # 0\<up>(pstr - n + length gs)" "lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3869 |
"0\<up>(a_md - Suc (pstr + length gs + n)) @ suf_lm"], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3870 |
apply(subgoal_tac "pstr > n \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3871 |
a_md > pstr + length gs + n \<and> length lm = n" , simp add: exponent_add_iff h) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3872 |
using h pdef |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3873 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3874 |
apply(frule_tac a = a and |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3875 |
aa = aa and ba = ba in ci_cn_md_def, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3876 |
apply(subgoal_tac "length lm = rs_pos", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3877 |
simp add: ci_cn_para_eq, erule_tac para_pattern, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3878 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3879 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3880 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3881 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3882 |
lemma ci_cn_length: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3883 |
"\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3884 |
rec_calc_rel (Cn n f gs) lm rs; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3885 |
rec_ci f = (a, aa, ba)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3886 |
\<Longrightarrow> length aprog = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3887 |
8 * length gs + 6 * n + length a + 6" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3888 |
apply(simp add: rec_ci.simps, auto simp: cn_merge_gs_len) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3889 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3890 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3891 |
lemma cn_case: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3892 |
assumes ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3893 |
"\<And>x aprog a_md rs_pos rs suf_lm lm. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3894 |
\<lbrakk>x \<in> set (f # gs); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3895 |
rec_ci x = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3896 |
rec_calc_rel x lm rs\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3897 |
\<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3898 |
(length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3899 |
and h: "rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3900 |
"rec_calc_rel (Cn n f gs) lm rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3901 |
shows "\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3902 |
= (length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3903 |
apply(insert h, case_tac "rec_ci f", rule_tac calc_cn_reverse, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3904 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3905 |
fix a b c ys |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3906 |
let ?pstr = "Max (set (Suc n # c # (map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3907 |
(map rec_ci (f # gs)))))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3908 |
let ?gs_len = "listsum (map (\<lambda> (ap, pos, n). length ap) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3909 |
(map rec_ci (gs)))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3910 |
assume g: "rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3911 |
"rec_calc_rel (Cn n f gs) lm rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3912 |
"\<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3913 |
"length ys = length gs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3914 |
"rec_calc_rel f ys rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3915 |
"n = length lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3916 |
"rec_ci f = (a, b, c)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3917 |
hence k1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3918 |
"\<exists> stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3919 |
(?gs_len + 3 * length gs, lm @ 0\<up>(?pstr - n) @ ys @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3920 |
0\<up>(a_md - ?pstr - length ys) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3921 |
apply(rule_tac a = a and aa = b and ba = c in cn_calc_gs) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3922 |
apply(rule_tac ind, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3923 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3924 |
from g have k2: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3925 |
"\<exists> stp. abc_steps_l (?gs_len + 3 * length gs, lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3926 |
0\<up>(?pstr - n) @ ys @ 0\<up>(a_md - ?pstr - length ys) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3927 |
(?gs_len + 3 * length gs + 3 * n, 0\<up>?pstr @ ys @ 0 # lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3928 |
0\<up>(a_md - Suc (?pstr + length ys + n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3929 |
apply(erule_tac ba = c in save_paras, auto intro: ci_cn_para_eq) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3930 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3931 |
from g have k3: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3932 |
"\<exists> stp. abc_steps_l (?gs_len + 3 * length gs + 3 * n, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3933 |
0\<up>?pstr @ ys @ 0 # lm @ 0\<up>(a_md - Suc (?pstr + length ys + n)) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3934 |
(?gs_len + 6 * length gs + 3 * n, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3935 |
ys @ 0\<up>?pstr @ 0 # lm @ 0\<up>(a_md - Suc (?pstr + length ys + n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3936 |
apply(erule_tac ba = c in reset_new_paras, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3937 |
auto intro: ci_cn_para_eq) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3938 |
using para_pattern[of f a b c ys rs] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3939 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3940 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3941 |
from g have k4: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3942 |
"\<exists>stp. abc_steps_l (?gs_len + 6 * length gs + 3 * n, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3943 |
ys @ 0\<up>?pstr @ 0 # lm @ 0\<up>(a_md - Suc (?pstr + length ys + n)) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3944 |
(?gs_len + 6 * length gs + 3 * n + length a, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3945 |
ys @ rs # 0\<up>?pstr @ lm @ 0\<up>(a_md - Suc (?pstr + length ys + n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3946 |
apply(rule_tac ba = c in calc_cn_f, rule_tac ind, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3947 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3948 |
from g h have k5: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3949 |
"\<exists> stp. abc_steps_l (?gs_len + 6 * length gs + 3 * n + length a, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3950 |
ys @ rs # 0\<up>?pstr @ lm @ 0\<up>(a_md - Suc (?pstr + length ys + n)) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3951 |
aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3952 |
(?gs_len + 6 * length gs + 3 * n + length a + 3, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3953 |
ys @ 0\<up>(?pstr - length ys) @ rs # 0\<up>length ys @ lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3954 |
0\<up>(a_md - Suc (?pstr + length ys + n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3955 |
apply(rule_tac save_rs, auto simp: h) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3956 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3957 |
from g have k6: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3958 |
"\<exists> stp. abc_steps_l (?gs_len + 6 * length gs + 3 * n + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3959 |
length a + 3, ys @ 0\<up>(?pstr - length ys) @ rs # 0\<up>length ys @ lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3960 |
0\<up>(a_md - Suc (?pstr + length ys + n)) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3961 |
aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3962 |
(?gs_len + 8 * length gs + 3 *n + length a + 3, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3963 |
0\<up>?pstr @ rs # 0\<up>length ys @ lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3964 |
0\<up>(a_md -Suc (?pstr + length ys + n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3965 |
apply(drule_tac suf_lm = suf_lm in mv_box_paras, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3966 |
apply(rule_tac x = stp in exI, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3967 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3968 |
from g have k7: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3969 |
"\<exists> stp. abc_steps_l (?gs_len + 8 * length gs + 3 *n + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3970 |
length a + 3, 0\<up>?pstr @ rs # 0\<up>length ys @ lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3971 |
0\<up>(a_md -Suc (?pstr + length ys + n)) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3972 |
(?gs_len + 8 * length gs + 3 * n + length a + 6, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3973 |
0\<up>n @ rs # 0\<up>(?pstr - n) @ 0\<up>length ys @ lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3974 |
0\<up>(a_md -Suc (?pstr + length ys + n)) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3975 |
apply(drule_tac suf_lm = suf_lm in restore_rs, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3976 |
apply(rule_tac x = stp in exI, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3977 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3978 |
from g have k8: "\<exists> stp. abc_steps_l (?gs_len + 8 * length gs + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3979 |
3 * n + length a + 6, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3980 |
0\<up>n @ rs # 0\<up>(?pstr - n) @ 0\<up>length ys @ lm @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3981 |
0\<up>(a_md -Suc (?pstr + length ys + n)) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3982 |
(?gs_len + 8 * length gs + 6 * n + length a + 6, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3983 |
lm @ rs # 0\<up>(a_md - Suc n) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3984 |
apply(drule_tac suf_lm = suf_lm in restore_paras, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3985 |
apply(simp add: exponent_add_iff) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3986 |
apply(rule_tac x = stp in exI, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3987 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3988 |
from g have j1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3989 |
"length aprog = ?gs_len + 8 * length gs + 6 * n + length a + 6" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3990 |
by(drule_tac a = a and aa = b and ba = c in ci_cn_length, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3991 |
simp, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3992 |
from g have j2: "rs_pos = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3993 |
by(simp add: ci_cn_para_eq) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3994 |
from k1 and k2 and k3 and k4 and k5 and k6 and k7 and k8 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3995 |
and j1 and j2 show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3996 |
"\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3997 |
(length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3998 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3999 |
apply(rule_tac x = "stp + stpa + stpb + stpc + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4000 |
stpd + stpe + stpf + stpg" in exI, simp add: abc_steps_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4001 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4002 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4003 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4004 |
text {* |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4005 |
Correctness of the complier (terminate case), which says if the execution of |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4006 |
a recursive function @{text "recf"} terminates and gives result, then |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4007 |
the Abacus program compiled from @{text "recf"} termintes and gives the same result. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4008 |
Additionally, to facilitate induction proof, we append @{text "anything"} to the |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4009 |
end of Abacus memory. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4010 |
*} |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4011 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4012 |
lemma recursive_compile_correct: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4013 |
"\<lbrakk>rec_ci recf = (ap, arity, fp); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4014 |
rec_calc_rel recf args r\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4015 |
\<Longrightarrow> (\<exists> stp. (abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) ap stp) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4016 |
(length ap, args@[r]@0\<up>(fp - arity - 1) @ anything))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4017 |
apply(induct arbitrary: ap fp arity r anything args |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4018 |
rule: rec_ci.induct) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4019 |
prefer 5 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4020 |
proof(case_tac "rec_ci g", case_tac "rec_ci f", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4021 |
fix n f g ap fp arity r anything args a b c aa ba ca |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4022 |
assume f_ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4023 |
"\<And>ap fp arity r anything args. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4024 |
\<lbrakk>aa = ap \<and> ba = arity \<and> ca = fp; rec_calc_rel f args r\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4025 |
\<exists>stp. abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) ap stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4026 |
(length ap, args @ r # 0\<up>(fp - Suc arity) @ anything)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4027 |
and g_ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4028 |
"\<And>x xa y xb ya ap fp arity r anything args. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4029 |
\<lbrakk>x = (aa, ba, ca); xa = aa \<and> y = (ba, ca); xb = ba \<and> ya = ca; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4030 |
a = ap \<and> b = arity \<and> c = fp; rec_calc_rel g args r\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4031 |
\<Longrightarrow> \<exists>stp. abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) ap stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4032 |
(length ap, args @ r # 0\<up>(fp - Suc arity) @ anything)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4033 |
and h: "rec_ci (Pr n f g) = (ap, arity, fp)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4034 |
"rec_calc_rel (Pr n f g) args r" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4035 |
"rec_ci g = (a, b, c)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4036 |
"rec_ci f = (aa, ba, ca)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4037 |
from h have nf_ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4038 |
"\<And> args r anything. rec_calc_rel f args r \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4039 |
\<exists>stp. abc_steps_l (0, args @ 0\<up>(ca - ba) @ anything) aa stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4040 |
(length aa, args @ r # 0\<up>(ca - Suc ba) @ anything)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4041 |
and ng_ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4042 |
"\<And> args r anything. rec_calc_rel g args r \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4043 |
\<exists>stp. abc_steps_l (0, args @ 0\<up>(c - b) @ anything) a stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4044 |
(length a, args @ r # 0\<up>(c - Suc b) @ anything)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4045 |
apply(insert f_ind[of aa ba ca], simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4046 |
apply(insert g_ind[of "(aa, ba, ca)" aa "(ba, ca)" ba ca a b c], |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4047 |
simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4048 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4049 |
from nf_ind and ng_ind and h show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4050 |
"\<exists>stp. abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) ap stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4051 |
(length ap, args @ r # 0\<up>(fp - Suc arity) @ anything)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4052 |
apply(auto intro: nf_ind ng_ind pr_case) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4053 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4054 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4055 |
fix ap fp arity r anything args |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4056 |
assume h: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4057 |
"rec_ci z = (ap, arity, fp)" "rec_calc_rel z args r" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4058 |
thus "\<exists>stp. abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) ap stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4059 |
(length ap, args @ [r] @ 0\<up>(fp - arity - 1) @ anything)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4060 |
by (rule_tac z_case) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4061 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4062 |
fix ap fp arity r anything args |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4063 |
assume h: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4064 |
"rec_ci s = (ap, arity, fp)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4065 |
"rec_calc_rel s args r" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4066 |
thus |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4067 |
"\<exists>stp. abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) ap stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4068 |
(length ap, args @ [r] @ 0\<up>(fp - arity - 1) @ anything)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4069 |
by(erule_tac s_case, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4070 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4071 |
fix m n ap fp arity r anything args |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4072 |
assume h: "rec_ci (id m n) = (ap, arity, fp)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4073 |
"rec_calc_rel (id m n) args r" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4074 |
thus "\<exists>stp. abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) ap stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4075 |
= (length ap, args @ [r] @ 0\<up>(fp - arity - 1) @ anything)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4076 |
by(erule_tac id_case) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4077 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4078 |
fix n f gs ap fp arity r anything args |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4079 |
assume ind: "\<And>x ap fp arity r anything args. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4080 |
\<lbrakk>x \<in> set (f # gs); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4081 |
rec_ci x = (ap, arity, fp); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4082 |
rec_calc_rel x args r\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4083 |
\<Longrightarrow> \<exists>stp. abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) ap stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4084 |
(length ap, args @ [r] @ 0\<up>(fp - arity - 1) @ anything)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4085 |
and h: "rec_ci (Cn n f gs) = (ap, arity, fp)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4086 |
"rec_calc_rel (Cn n f gs) args r" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4087 |
from h show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4088 |
"\<exists>stp. abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4089 |
ap stp = (length ap, args @ [r] @ 0\<up>(fp - arity - 1) @ anything)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4090 |
apply(rule_tac cn_case, rule_tac ind, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4091 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4092 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4093 |
fix n f ap fp arity r anything args |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4094 |
assume ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4095 |
"\<And>ap fp arity r anything args. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4096 |
\<lbrakk>rec_ci f = (ap, arity, fp); rec_calc_rel f args r\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4097 |
\<exists>stp. abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) ap stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4098 |
(length ap, args @ [r] @ 0\<up>(fp - arity - 1) @ anything)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4099 |
and h: "rec_ci (Mn n f) = (ap, arity, fp)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4100 |
"rec_calc_rel (Mn n f) args r" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4101 |
from h show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4102 |
"\<exists>stp. abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) ap stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4103 |
(length ap, args @ [r] @ 0\<up>(fp - arity - 1) @ anything)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4104 |
apply(rule_tac mn_case, rule_tac ind, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4105 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4106 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4107 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4108 |
lemma abc_append_uhalt1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4109 |
"\<lbrakk>\<forall> stp. (\<lambda> (ss, e). ss < length bp) (abc_steps_l (0, lm) bp stp); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4110 |
p = ap [+] bp [+] cp\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4111 |
\<Longrightarrow> \<forall> stp. (\<lambda> (ss, e). ss < length p) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4112 |
(abc_steps_l (length ap, lm) p stp)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4113 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4114 |
apply(erule_tac x = stp in allE, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4115 |
apply(frule_tac ap = ap and cp = cp in abc_append_state_in_exc, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4116 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4117 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4118 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4119 |
lemma abc_append_unhalt2: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4120 |
"\<lbrakk>abc_steps_l (0, am) ap stp = (length ap, lm); bp \<noteq> []; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4121 |
\<forall> stp. (\<lambda> (ss, e). ss < length bp) (abc_steps_l (0, lm) bp stp); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4122 |
p = ap [+] bp [+] cp\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4123 |
\<Longrightarrow> \<forall> stp. (\<lambda> (ss, e). ss < length p) (abc_steps_l (0, am) p stp)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4124 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4125 |
assume h: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4126 |
"abc_steps_l (0, am) ap stp = (length ap, lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4127 |
"bp \<noteq> []" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4128 |
"\<forall> stp. (\<lambda> (ss, e). ss < length bp) (abc_steps_l (0, lm) bp stp)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4129 |
"p = ap [+] bp [+] cp" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4130 |
have "\<exists> stp. (abc_steps_l (0, am) p stp) = (length ap, lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4131 |
using h |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4132 |
apply(simp add: abc_append.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4133 |
apply(rule_tac abc_add_exc1, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4134 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4135 |
from this obtain stpa where g1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4136 |
"(abc_steps_l (0, am) p stpa) = (length ap, lm)" .. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4137 |
moreover have g2: "\<forall> stp. (\<lambda> (ss, e). ss < length p) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4138 |
(abc_steps_l (length ap, lm) p stp)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4139 |
using h |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4140 |
apply(erule_tac abc_append_uhalt1, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4141 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4142 |
moreover from g1 and g2 have |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4143 |
"\<forall> stp. (\<lambda> (ss, e). ss < length p) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4144 |
(abc_steps_l (0, am) p (stpa + stp))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4145 |
apply(simp add: abc_steps_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4146 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4147 |
thus "\<forall> stp. (\<lambda> (ss, e). ss < length p) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4148 |
(abc_steps_l (0, am) p stp)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4149 |
apply(rule_tac allI, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4150 |
apply(case_tac "stp \<ge> stpa") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4151 |
apply(erule_tac x = "stp - stpa" in allE, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4152 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4153 |
fix stp a b |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4154 |
assume g3: "abc_steps_l (0, am) p stp = (a, b)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4155 |
"\<not> stpa \<le> stp" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4156 |
thus "a < length p" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4157 |
using g1 h |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4158 |
apply(case_tac "a < length p", simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4159 |
apply(subgoal_tac "\<exists> d. stpa = stp + d") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4160 |
using abc_state_keep[of p a b "stpa - stp"] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4161 |
apply(erule_tac exE, simp add: abc_steps_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4162 |
apply(rule_tac x = "stpa - stp" in exI, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4163 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4164 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4165 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4166 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4167 |
text {* |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4168 |
Correctness of the complier (non-terminating case for Mn). There are many cases when a |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4169 |
recursive function does not terminate. For the purpose of Uiversal Turing Machine, we only |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4170 |
need to prove the case for @{text "Mn"} and @{text "Cn"}. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4171 |
This lemma is for @{text "Mn"}. For @{text "Mn n f"}, this lemma describes what |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4172 |
happens when @{text "f"} always terminates but always does not return zero, so that |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4173 |
@{text "Mn"} has to loop forever. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4174 |
*} |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4175 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4176 |
lemma Mn_unhalt: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4177 |
assumes mn_rf: "rf = Mn n f" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4178 |
and compiled_mnrf: "rec_ci rf = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4179 |
and compiled_f: "rec_ci f = (aprog', rs_pos', a_md')" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4180 |
and args: "length lm = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4181 |
and unhalt_condition: "\<forall> y. (\<exists> rs. rec_calc_rel f (lm @ [y]) rs \<and> rs \<noteq> 0)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4182 |
shows "\<forall> stp. case abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4183 |
aprog stp of (ss, e) \<Rightarrow> ss < length aprog" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4184 |
using mn_rf compiled_mnrf compiled_f args unhalt_condition |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4185 |
proof(rule_tac allI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4186 |
fix stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4187 |
assume h: "rf = Mn n f" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4188 |
"rec_ci rf = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4189 |
"rec_ci f = (aprog', rs_pos', a_md')" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4190 |
"\<forall>y. \<exists>rs. rec_calc_rel f (lm @ [y]) rs \<and> rs \<noteq> 0" "length lm = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4191 |
have "\<exists>stpa \<ge> stp. abc_steps_l (0, lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ suf_lm) aprog stpa |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4192 |
= (0, lm @ stp # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4193 |
proof(induct stp, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4194 |
show "\<exists>stpa. abc_steps_l (0, lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4195 |
aprog stpa = (0, lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4196 |
apply(rule_tac x = 0 in exI, simp add: abc_steps_l.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4197 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4198 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4199 |
fix stp stpa |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4200 |
assume g1: "stp \<le> stpa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4201 |
and g2: "abc_steps_l (0, lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4202 |
aprog stpa |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4203 |
= (0, lm @ stp # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4204 |
have "\<exists>rs. rec_calc_rel f (lm @ [stp]) rs \<and> rs \<noteq> 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4205 |
using h |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4206 |
apply(erule_tac x = stp in allE, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4207 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4208 |
from this obtain rs where g3: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4209 |
"rec_calc_rel f (lm @ [stp]) rs \<and> rs \<noteq> 0" .. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4210 |
hence "\<exists> stpb. abc_steps_l (0, lm @ stp # 0\<up>(a_md - Suc rs_pos) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4211 |
suf_lm) aprog stpb |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4212 |
= (0, lm @ Suc stp # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4213 |
using h |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4214 |
apply(rule_tac mn_ind_step) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4215 |
apply(rule_tac recursive_compile_correct, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4216 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4217 |
show "rec_ci f = ((aprog', rs_pos', a_md'))" using h by simp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4218 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4219 |
show "rec_ci (Mn n f) = (aprog, rs_pos, a_md)" using h by simp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4220 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4221 |
show "rec_calc_rel f (lm @ [stp]) rs" using g3 by simp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4222 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4223 |
show "0 < rs" using g3 by simp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4224 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4225 |
show "Suc rs_pos < a_md" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4226 |
using g3 h |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4227 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4228 |
apply(frule_tac f = f in para_pattern, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4229 |
apply(simp add: rec_ci.simps, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4230 |
apply(subgoal_tac "Suc (length lm) < a_md'") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4231 |
apply(arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4232 |
apply(simp add: ci_ad_ge_paras) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4233 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4234 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4235 |
show "rs_pos' = Suc rs_pos" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4236 |
using g3 h |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4237 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4238 |
apply(frule_tac f = f in para_pattern, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4239 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4240 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4241 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4242 |
thus "\<exists>stpa\<ge>Suc stp. abc_steps_l (0, lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4243 |
suf_lm) aprog stpa |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4244 |
= (0, lm @ Suc stp # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4245 |
using g2 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4246 |
apply(erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4247 |
apply(case_tac "stpb = 0", simp add: abc_steps_l.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4248 |
apply(rule_tac x = "stpa + stpb" in exI, simp add: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4249 |
abc_steps_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4250 |
using g1 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4251 |
apply(arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4252 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4253 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4254 |
from this obtain stpa where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4255 |
"stp \<le> stpa \<and> abc_steps_l (0, lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ suf_lm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4256 |
aprog stpa = (0, lm @ stp # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" .. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4257 |
thus "case abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4258 |
of (ss, e) \<Rightarrow> ss < length aprog" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4259 |
apply(case_tac "abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4260 |
stp", simp, case_tac "a \<ge> length aprog", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4261 |
simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4262 |
apply(subgoal_tac "\<exists> d. stpa = stp + d", erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4263 |
apply(subgoal_tac "lm @ 0\<up>(a_md - rs_pos) @ suf_lm = lm @ 0 # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4264 |
0\<up>(a_md - Suc rs_pos) @ suf_lm", simp add: abc_steps_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4265 |
apply(frule_tac as = a and lm = b and stp = d in abc_state_keep, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4266 |
simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4267 |
using h |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4268 |
apply(simp add: rec_ci.simps, simp, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4269 |
simp only: replicate_Suc[THEN sym]) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4270 |
apply(case_tac rs_pos, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4271 |
apply(rule_tac x = "stpa - stp" in exI, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4272 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4273 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4274 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4275 |
lemma abc_append_cons_eq[intro!]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4276 |
"\<lbrakk>ap = bp; cp = dp\<rbrakk> \<Longrightarrow> ap [+] cp = bp [+] dp" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4277 |
by simp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4278 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4279 |
lemma cn_merge_gs_split: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4280 |
"\<lbrakk>i < length gs; rec_ci (gs!i) = (ga, gb, gc)\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4281 |
cn_merge_gs (map rec_ci gs) p = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4282 |
cn_merge_gs (map rec_ci (take i gs)) p [+] ga [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4283 |
mv_box gb (p + i) [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4284 |
cn_merge_gs (map rec_ci (drop (Suc i) gs)) (p + Suc i)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4285 |
apply(induct i arbitrary: gs p, case_tac gs, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4286 |
apply(case_tac gs, simp, case_tac "rec_ci a", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4287 |
simp add: abc_append_commute[THEN sym]) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4288 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4289 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4290 |
text {* |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4291 |
Correctness of the complier (non-terminating case for Mn). There are many cases when a |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4292 |
recursive function does not terminate. For the purpose of Uiversal Turing Machine, we only |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4293 |
need to prove the case for @{text "Mn"} and @{text "Cn"}. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4294 |
This lemma is for @{text "Cn"}. For @{text "Cn f g1 g2 \<dots>gi, gi+1, \<dots> gn"}, this lemma describes what |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4295 |
happens when every one of @{text "g1, g2, \<dots> gi"} terminates, but |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4296 |
@{text "gi+1"} does not terminate, so that whole function @{text "Cn f g1 g2 \<dots>gi, gi+1, \<dots> gn"} |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4297 |
does not terminate. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4298 |
*} |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4299 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4300 |
lemma cn_gi_uhalt: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4301 |
assumes cn_recf: "rf = Cn n f gs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4302 |
and compiled_cn_recf: "rec_ci rf = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4303 |
and args_length: "length lm = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4304 |
and exist_unhalt_recf: "i < length gs" "gi = gs ! i" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4305 |
and complied_unhalt_recf: "rec_ci gi = (ga, gb, gc)" "gb = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4306 |
and all_halt_before_gi: "\<forall> j < i. (\<exists> rs. rec_calc_rel (gs!j) lm rs)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4307 |
and unhalt_condition: "\<And> slm. \<forall> stp. case abc_steps_l (0, lm @ 0\<up>(gc - gb) @ slm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4308 |
ga stp of (se, e) \<Rightarrow> se < length ga" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4309 |
shows " \<forall> stp. case abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suflm) aprog |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4310 |
stp of (ss, e) \<Rightarrow> ss < length aprog" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4311 |
using cn_recf compiled_cn_recf args_length exist_unhalt_recf complied_unhalt_recf |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4312 |
all_halt_before_gi unhalt_condition |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4313 |
proof(case_tac "rec_ci f", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4314 |
fix a b c |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4315 |
assume h1: "rf = Cn n f gs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4316 |
"rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4317 |
"length lm = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4318 |
"gi = gs ! i" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4319 |
"rec_ci (gs!i) = (ga, n, gc)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4320 |
"gb = n" "rec_ci f = (a, b, c)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4321 |
and h2: "\<forall>j<i. \<exists>rs. rec_calc_rel (gs ! j) lm rs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4322 |
"i < length gs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4323 |
and ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4324 |
"\<And> slm. \<forall> stp. case abc_steps_l (0, lm @ 0\<up>(gc - n) @ slm) ga stp of (se, e) \<Rightarrow> se < length ga" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4325 |
have h3: "rs_pos = n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4326 |
using h1 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4327 |
by(rule_tac ci_cn_para_eq, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4328 |
let ?ggs = "take i gs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4329 |
have "\<exists> ys. (length ys = i \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4330 |
(\<forall> k < i. rec_calc_rel (?ggs ! k) lm (ys ! k)))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4331 |
using h2 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4332 |
apply(induct i, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4333 |
apply(erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4334 |
apply(erule_tac x = ia in allE, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4335 |
apply(erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4336 |
apply(rule_tac x = "ys @ [x]" in exI, simp add: nth_append, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4337 |
apply(subgoal_tac "k = length ys", simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4338 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4339 |
from this obtain ys where g1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4340 |
"(length ys = i \<and> (\<forall> k < i. rec_calc_rel (?ggs ! k) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4341 |
lm (ys ! k)))" .. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4342 |
let ?pstr = "Max (set (Suc n # c # map (\<lambda>(aprog, p, n). n) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4343 |
(map rec_ci (f # gs))))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4344 |
have "\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - n) @ suflm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4345 |
(cn_merge_gs (map rec_ci ?ggs) ?pstr) stp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4346 |
(listsum (map ((\<lambda>(ap, pos, n). length ap) \<circ> rec_ci) ?ggs) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4347 |
3 * length ?ggs, lm @ 0\<up>(?pstr - n) @ ys @ 0\<up>(a_md -(?pstr + length ?ggs)) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4348 |
suflm) " |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4349 |
apply(rule_tac cn_merge_gs_ex) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4350 |
apply(rule_tac recursive_compile_correct, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4351 |
using h1 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4352 |
apply(simp add: rec_ci.simps, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4353 |
using g1 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4354 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4355 |
using h2 g1 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4356 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4357 |
apply(rule_tac min_max.le_supI2) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4358 |
apply(rule_tac Max_ge, simp, simp, rule_tac disjI2) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4359 |
apply(subgoal_tac "aa \<in> set gs", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4360 |
using h2 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4361 |
apply(rule_tac A = "set (take i gs)" in subsetD, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4362 |
simp add: set_take_subset, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4363 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4364 |
from this obtain stpa where g2: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4365 |
"abc_steps_l (0, lm @ 0\<up>(a_md - n) @ suflm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4366 |
(cn_merge_gs (map rec_ci ?ggs) ?pstr) stpa = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4367 |
(listsum (map ((\<lambda>(ap, pos, n). length ap) \<circ> rec_ci) ?ggs) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4368 |
3 * length ?ggs, lm @ 0\<up>(?pstr - n) @ ys @ 0\<up>(a_md -(?pstr + length ?ggs)) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4369 |
suflm)" .. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4370 |
moreover have |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4371 |
"\<exists> cp. aprog = (cn_merge_gs |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4372 |
(map rec_ci ?ggs) ?pstr) [+] ga [+] cp" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4373 |
using h1 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4374 |
apply(simp add: rec_ci.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4375 |
apply(rule_tac x = "mv_box n (?pstr + i) [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4376 |
(cn_merge_gs (map rec_ci (drop (Suc i) gs)) (?pstr + Suc i)) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4377 |
[+]mv_boxes 0 (Suc (max (Suc n) (Max (insert c |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4378 |
(((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4379 |
length gs)) n [+] mv_boxes (max (Suc n) (Max (insert c |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4380 |
(((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) 0 (length gs) [+] |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
4381 |
a [+] Recursive.mv_box b (max (Suc n) |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4382 |
(Max (insert c (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+] |
163
67063c5365e1
changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
131
diff
changeset
|
4383 |
empty_boxes (length gs) [+] Recursive.mv_box (max (Suc n) |
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4384 |
(Max (insert c (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) n [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4385 |
mv_boxes (Suc (max (Suc n) (Max (insert c |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4386 |
(((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + length gs)) 0 n" in exI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4387 |
apply(simp add: abc_append_commute [THEN sym]) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4388 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4389 |
using cn_merge_gs_split[of i gs ga "length lm" gc |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4390 |
"(max (Suc (length lm)) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4391 |
(Max (insert c (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))))"] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4392 |
h2 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4393 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4394 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4395 |
from this obtain cp where g3: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4396 |
"aprog = (cn_merge_gs (map rec_ci ?ggs) ?pstr) [+] ga [+] cp" .. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4397 |
show "\<forall> stp. case abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suflm) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4398 |
aprog stp of (ss, e) \<Rightarrow> ss < length aprog" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4399 |
proof(rule_tac abc_append_unhalt2) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4400 |
show "abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suflm) ( |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4401 |
cn_merge_gs (map rec_ci ?ggs) ?pstr) stpa = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4402 |
(length ((cn_merge_gs (map rec_ci ?ggs) ?pstr)), |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4403 |
lm @ 0\<up>(?pstr - n) @ ys @ 0\<up>(a_md -(?pstr + length ?ggs)) @ suflm)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4404 |
using h3 g2 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4405 |
apply(simp add: cn_merge_gs_length) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4406 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4407 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4408 |
show "ga \<noteq> []" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4409 |
using h1 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4410 |
apply(simp add: rec_ci_not_null) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4411 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4412 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4413 |
show "\<forall>stp. case abc_steps_l (0, lm @ 0\<up>(?pstr - n) @ ys |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4414 |
@ 0\<up>(a_md - (?pstr + length (take i gs))) @ suflm) ga stp of |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4415 |
(ss, e) \<Rightarrow> ss < length ga" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4416 |
using ind[of "0\<up>(?pstr - gc) @ ys @ 0\<up>(a_md - (?pstr + length (take i gs))) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4417 |
@ suflm"] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4418 |
apply(subgoal_tac "lm @ 0\<up>(?pstr - n) @ ys |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4419 |
@ 0\<up>(a_md - (?pstr + length (take i gs))) @ suflm |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4420 |
= lm @ 0\<up>(gc - n) @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4421 |
0\<up>(?pstr - gc) @ ys @ 0\<up>(a_md - (?pstr + length (take i gs))) @ suflm", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4422 |
apply(simp add: replicate_add[THEN sym]) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4423 |
apply(subgoal_tac "gc > n \<and> ?pstr \<ge> gc") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4424 |
apply(erule_tac conjE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4425 |
apply(simp add: h1) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4426 |
using h1 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4427 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4428 |
apply(rule_tac min_max.le_supI2) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4429 |
apply(rule_tac Max_ge, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4430 |
apply(rule_tac disjI2) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4431 |
using h2 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4432 |
apply(rule_tac x = "gs!i" in rev_image_eqI, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4433 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4434 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4435 |
show "aprog = cn_merge_gs (map rec_ci (take i gs)) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4436 |
?pstr [+] ga [+] cp" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4437 |
using g3 by simp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4438 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4439 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4440 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4441 |
lemma recursive_compile_correct_spec: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4442 |
"\<lbrakk>rec_ci re = (ap, ary, fp); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4443 |
rec_calc_rel re args r\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4444 |
\<Longrightarrow> (\<exists> stp. (abc_steps_l (0, args @ 0\<up>(fp - ary)) ap stp) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4445 |
(length ap, args@[r]@0\<up>(fp - ary - 1)))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4446 |
using recursive_compile_correct[of re ap ary fp args r "[]"] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4447 |
by simp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4448 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4449 |
definition dummy_abc :: "nat \<Rightarrow> abc_inst list" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4450 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4451 |
"dummy_abc k = [Inc k, Dec k 0, Goto 3]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4452 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4453 |
definition abc_list_crsp:: "nat list \<Rightarrow> nat list \<Rightarrow> bool" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4454 |
where |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4455 |
"abc_list_crsp xs ys = (\<exists> n. xs = ys @ 0\<up>n \<or> ys = xs @ 0\<up>n)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4456 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4457 |
lemma [intro]: "abc_list_crsp (lm @ 0\<up>m) lm" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4458 |
apply(auto simp: abc_list_crsp_def) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4459 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4460 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4461 |
lemma abc_list_crsp_lm_v: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4462 |
"abc_list_crsp lma lmb \<Longrightarrow> abc_lm_v lma n = abc_lm_v lmb n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4463 |
apply(auto simp: abc_list_crsp_def abc_lm_v.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4464 |
nth_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4465 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4466 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4467 |
lemma rep_app_cons_iff: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4468 |
"k < n \<Longrightarrow> replicate n a[k:=b] = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4469 |
replicate k a @ b # replicate (n - k - 1) a" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4470 |
apply(induct n arbitrary: k, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4471 |
apply(simp split:nat.splits) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4472 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4473 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4474 |
lemma abc_list_crsp_lm_s: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4475 |
"abc_list_crsp lma lmb \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4476 |
abc_list_crsp (abc_lm_s lma m n) (abc_lm_s lmb m n)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4477 |
apply(auto simp: abc_list_crsp_def abc_lm_v.simps abc_lm_s.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4478 |
apply(simp_all add: list_update_append, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4479 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4480 |
fix na |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4481 |
assume h: "m < length lmb + na" " \<not> m < length lmb" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4482 |
hence "m - length lmb < na" by simp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4483 |
hence "replicate na 0[(m- length lmb):= n] = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4484 |
replicate (m - length lmb) 0 @ n # |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4485 |
replicate (na - (m - length lmb) - 1) 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4486 |
apply(erule_tac rep_app_cons_iff) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4487 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4488 |
thus "\<exists>nb. replicate na 0[m - length lmb := n] = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4489 |
replicate (m - length lmb) 0 @ n # replicate nb 0 \<or> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4490 |
replicate (m - length lmb) 0 @ [n] = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4491 |
replicate na 0[m - length lmb := n] @ replicate nb 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4492 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4493 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4494 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4495 |
fix na |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4496 |
assume h: "\<not> m < length lmb + na" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4497 |
show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4498 |
"\<exists>nb. replicate na 0 @ replicate (m - (length lmb + na)) 0 @ [n] = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4499 |
replicate (m - length lmb) 0 @ n # replicate nb 0 \<or> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4500 |
replicate (m - length lmb) 0 @ [n] = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4501 |
replicate na 0 @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4502 |
replicate (m - (length lmb + na)) 0 @ n # replicate nb 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4503 |
apply(rule_tac x = 0 in exI, simp, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4504 |
using h |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4505 |
apply(simp add: replicate_add[THEN sym]) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4506 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4507 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4508 |
fix na |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4509 |
assume h: "\<not> m < length lma" "m < length lma + na" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4510 |
hence "m - length lma < na" by simp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4511 |
hence |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4512 |
"replicate na 0[(m- length lma):= n] = replicate (m - length lma) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4513 |
0 @ n # replicate (na - (m - length lma) - 1) 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4514 |
apply(erule_tac rep_app_cons_iff) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4515 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4516 |
thus "\<exists>nb. replicate (m - length lma) 0 @ [n] = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4517 |
replicate na 0[m - length lma := n] @ replicate nb 0 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4518 |
\<or> replicate na 0[m - length lma := n] = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4519 |
replicate (m - length lma) 0 @ n # replicate nb 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4520 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4521 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4522 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4523 |
fix na |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4524 |
assume "\<not> m < length lma + na" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4525 |
thus " \<exists>nb. replicate (m - length lma) 0 @ [n] = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4526 |
replicate na 0 @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4527 |
replicate (m - (length lma + na)) 0 @ n # replicate nb 0 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4528 |
\<or> replicate na 0 @ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4529 |
replicate (m - (length lma + na)) 0 @ [n] = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4530 |
replicate (m - length lma) 0 @ n # replicate nb 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4531 |
apply(rule_tac x = 0 in exI, simp, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4532 |
apply(simp add: replicate_add[THEN sym]) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4533 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4534 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4535 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4536 |
lemma abc_list_crsp_step: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4537 |
"\<lbrakk>abc_list_crsp lma lmb; abc_step_l (aa, lma) i = (a, lma'); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4538 |
abc_step_l (aa, lmb) i = (a', lmb')\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4539 |
\<Longrightarrow> a' = a \<and> abc_list_crsp lma' lmb'" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4540 |
apply(case_tac i, auto simp: abc_step_l.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4541 |
abc_list_crsp_lm_s abc_list_crsp_lm_v Let_def |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4542 |
split: abc_inst.splits if_splits) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4543 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4544 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4545 |
lemma abc_list_crsp_steps: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4546 |
"\<lbrakk>abc_steps_l (0, lm @ 0\<up>m) aprog stp = (a, lm'); aprog \<noteq> []\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4547 |
\<Longrightarrow> \<exists> lma. abc_steps_l (0, lm) aprog stp = (a, lma) \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4548 |
abc_list_crsp lm' lma" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4549 |
apply(induct stp arbitrary: a lm', simp add: abc_steps_l.simps, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4550 |
apply(case_tac "abc_steps_l (0, lm @ 0\<up>m) aprog stp", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4551 |
simp add: abc_step_red) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4552 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4553 |
fix stp a lm' aa b |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4554 |
assume ind: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4555 |
"\<And>a lm'. aa = a \<and> b = lm' \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4556 |
\<exists>lma. abc_steps_l (0, lm) aprog stp = (a, lma) \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4557 |
abc_list_crsp lm' lma" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4558 |
and h: "abc_steps_l (0, lm @ 0\<up>m) aprog (Suc stp) = (a, lm')" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4559 |
"abc_steps_l (0, lm @ 0\<up>m) aprog stp = (aa, b)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4560 |
"aprog \<noteq> []" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4561 |
hence g1: "abc_steps_l (0, lm @ 0\<up>m) aprog (Suc stp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4562 |
= abc_step_l (aa, b) (abc_fetch aa aprog)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4563 |
apply(rule_tac abc_step_red, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4564 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4565 |
have "\<exists>lma. abc_steps_l (0, lm) aprog stp = (aa, lma) \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4566 |
abc_list_crsp b lma" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4567 |
apply(rule_tac ind, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4568 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4569 |
from this obtain lma where g2: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4570 |
"abc_steps_l (0, lm) aprog stp = (aa, lma) \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4571 |
abc_list_crsp b lma" .. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4572 |
hence g3: "abc_steps_l (0, lm) aprog (Suc stp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4573 |
= abc_step_l (aa, lma) (abc_fetch aa aprog)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4574 |
apply(rule_tac abc_step_red, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4575 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4576 |
show "\<exists>lma. abc_steps_l (0, lm) aprog (Suc stp) = (a, lma) \<and> abc_list_crsp lm' lma" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4577 |
using g1 g2 g3 h |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4578 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4579 |
apply(case_tac "abc_step_l (aa, b) (abc_fetch aa aprog)", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4580 |
case_tac "abc_step_l (aa, lma) (abc_fetch aa aprog)", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4581 |
apply(rule_tac abc_list_crsp_step, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4582 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4583 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4584 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4585 |
lemma recursive_compile_correct_norm: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4586 |
"\<lbrakk>rec_ci re = (aprog, rs_pos, a_md); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4587 |
rec_calc_rel re lm rs\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4588 |
\<Longrightarrow> (\<exists> stp lm' m. (abc_steps_l (0, lm) aprog stp) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4589 |
(length aprog, lm') \<and> abc_list_crsp lm' (lm @ rs # 0\<up>m))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4590 |
apply(frule_tac recursive_compile_correct_spec, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4591 |
apply(drule_tac abc_list_crsp_steps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4592 |
apply(rule_tac rec_ci_not_null, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4593 |
apply(erule_tac exE, rule_tac x = stp in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4594 |
auto simp: abc_list_crsp_def) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4595 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4596 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4597 |
lemma [simp]: "length (dummy_abc (length lm)) = 3" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4598 |
apply(simp add: dummy_abc_def) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4599 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4600 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4601 |
lemma [simp]: "dummy_abc (length lm) \<noteq> []" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4602 |
apply(simp add: dummy_abc_def) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4603 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4604 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4605 |
lemma dummy_abc_steps_ex: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4606 |
"\<exists>bstp. abc_steps_l (0, lm') (dummy_abc (length lm)) bstp = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4607 |
((Suc (Suc (Suc 0))), abc_lm_s lm' (length lm) (abc_lm_v lm' (length lm)))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4608 |
apply(rule_tac x = "Suc (Suc (Suc 0))" in exI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4609 |
apply(auto simp: abc_steps_l.simps abc_step_l.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4610 |
dummy_abc_def abc_fetch.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4611 |
apply(auto simp: abc_lm_s.simps abc_lm_v.simps nth_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4612 |
apply(simp add: butlast_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4613 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4614 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4615 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4616 |
"\<lbrakk>Suc (length lm) - length lm' \<le> n; \<not> length lm < length lm'; lm @ rs # 0 \<up> m = lm' @ 0 \<up> n\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4617 |
\<Longrightarrow> lm' @ 0 \<up> Suc (length lm - length lm') = lm @ [rs]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4618 |
apply(subgoal_tac "n > m") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4619 |
apply(subgoal_tac "\<exists> d. n = d + m", erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4620 |
apply(simp add: replicate_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4621 |
apply(drule_tac length_equal, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4622 |
apply(simp add: replicate_Suc[THEN sym] del: replicate_Suc) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4623 |
apply(rule_tac x = "n - m" in exI, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4624 |
apply(drule_tac length_equal, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4625 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4626 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4627 |
lemma [elim]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4628 |
"lm @ rs # 0\<up>m = lm' @ 0\<up>n \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4629 |
\<exists>m. abc_lm_s lm' (length lm) (abc_lm_v lm' (length lm)) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4630 |
lm @ rs # 0\<up>m" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4631 |
proof(cases "length lm' > length lm") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4632 |
case True |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4633 |
assume h: "lm @ rs # 0\<up>m = lm' @ 0\<up>n" "length lm < length lm'" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4634 |
hence "m \<ge> n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4635 |
apply(drule_tac length_equal) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4636 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4637 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4638 |
hence "\<exists> d. m = d + n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4639 |
apply(rule_tac x = "m - n" in exI, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4640 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4641 |
from this obtain d where "m = d + n" .. |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4642 |
from h and this show "?thesis" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4643 |
apply(auto simp: abc_lm_s.simps abc_lm_v.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4644 |
replicate_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4645 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4646 |
next |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4647 |
case False |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4648 |
assume h:"lm @ rs # 0\<up>m = lm' @ 0\<up>n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4649 |
and g: "\<not> length lm < length lm'" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4650 |
have "take (Suc (length lm)) (lm @ rs # 0\<up>m) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4651 |
take (Suc (length lm)) (lm' @ 0\<up>n)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4652 |
using h by simp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4653 |
moreover have "n \<ge> (Suc (length lm) - length lm')" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4654 |
using h g |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4655 |
apply(drule_tac length_equal) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4656 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4657 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4658 |
ultimately show |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4659 |
"\<exists>m. abc_lm_s lm' (length lm) (abc_lm_v lm' (length lm)) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4660 |
lm @ rs # 0\<up>m" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4661 |
using g h |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4662 |
apply(simp add: abc_lm_s.simps abc_lm_v.simps min_def) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4663 |
apply(rule_tac x = 0 in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4664 |
simp add:replicate_append_same replicate_Suc[THEN sym] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4665 |
del:replicate_Suc) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4666 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4667 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4668 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4669 |
lemma [elim]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4670 |
"abc_list_crsp lm' (lm @ rs # 0\<up>m) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4671 |
\<Longrightarrow> \<exists>m. abc_lm_s lm' (length lm) (abc_lm_v lm' (length lm)) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4672 |
= lm @ rs # 0\<up>m" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4673 |
apply(auto simp: abc_list_crsp_def) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4674 |
apply(simp add: abc_lm_v.simps abc_lm_s.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4675 |
apply(rule_tac x = "m + n" in exI, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4676 |
simp add: replicate_add) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4677 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4678 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4679 |
lemma abc_append_dummy_complie: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4680 |
"\<lbrakk>rec_ci recf = (ap, ary, fp); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4681 |
rec_calc_rel recf args r; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4682 |
length args = k\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4683 |
\<Longrightarrow> (\<exists> stp m. (abc_steps_l (0, args) (ap [+] dummy_abc k) stp) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4684 |
(length ap + 3, args @ r # 0\<up>m))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4685 |
apply(drule_tac recursive_compile_correct_norm, auto simp: numeral_3_eq_3) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4686 |
proof - |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4687 |
fix stp lm' m |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4688 |
assume h: "rec_calc_rel recf args r" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4689 |
"abc_steps_l (0, args) ap stp = (length ap, lm')" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4690 |
"abc_list_crsp lm' (args @ r # 0\<up>m)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4691 |
have "\<exists>stp. abc_steps_l (0, args) (ap [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4692 |
(dummy_abc (length args))) stp = (length ap + 3, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4693 |
abc_lm_s lm' (length args) (abc_lm_v lm' (length args)))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4694 |
using h |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4695 |
apply(rule_tac bm = lm' in abc_append_exc2, |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4696 |
auto intro: dummy_abc_steps_ex simp: numeral_3_eq_3) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4697 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4698 |
thus "\<exists>stp m. abc_steps_l (0, args) (ap [+] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4699 |
dummy_abc (length args)) stp = (Suc (Suc (Suc (length ap))), args @ r # 0\<up>m)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4700 |
using h |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4701 |
apply(erule_tac exE) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4702 |
apply(rule_tac x = stpa in exI, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4703 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4704 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4705 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4706 |
lemma [simp]: "length (dummy_abc k) = 3" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4707 |
apply(simp add: dummy_abc_def) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4708 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4709 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4710 |
lemma [simp]: "length args = k \<Longrightarrow> abc_lm_v (args @ r # 0\<up>m) k = r " |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4711 |
apply(simp add: abc_lm_v.simps nth_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4712 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4713 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4714 |
lemma [simp]: "crsp (layout_of (ap [+] dummy_abc k)) (0, args) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4715 |
(Suc 0, Bk # Bk # ires, <args> @ Bk \<up> rn) ires" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4716 |
apply(auto simp: crsp.simps start_of.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4717 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4718 |
|
129
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4719 |
(* cccc *) |
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4720 |
|
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4721 |
fun tm_of_rec :: "recf \<Rightarrow> instr list" |
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4722 |
where "tm_of_rec recf = (let (ap, k, fp) = rec_ci recf in |
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4723 |
let tp = tm_of (ap [+] dummy_abc k) in |
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4724 |
tp @ (shift (mopup k) (length tp div 2)))" |
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4725 |
|
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4726 |
lemma recursive_compile_to_tm_correct: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4727 |
"\<lbrakk>rec_ci recf = (ap, ary, fp); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4728 |
rec_calc_rel recf args r; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4729 |
length args = k; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4730 |
ly = layout_of (ap [+] dummy_abc k); |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4731 |
tp = tm_of (ap [+] dummy_abc k)\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4732 |
\<Longrightarrow> \<exists> stp m l. steps0 (Suc 0, Bk # Bk # ires, <args> @ Bk\<up>rn) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4733 |
(tp @ shift (mopup k) (length tp div 2)) stp |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4734 |
= (0, Bk\<up>m @ Bk # Bk # ires, Oc\<up>Suc r @ Bk\<up>l)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4735 |
using abc_append_dummy_complie[of recf ap ary fp args r k] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4736 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4737 |
apply(erule_tac exE)+ |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4738 |
apply(frule_tac tp = tp and n = k |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4739 |
and ires = ires in compile_correct_halt, simp_all add: length_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4740 |
apply(simp_all add: length_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4741 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4742 |
|
126
0b302c0b449a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
70
diff
changeset
|
4743 |
lemma recursive_compile_to_tm_correct2: |
0b302c0b449a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
70
diff
changeset
|
4744 |
assumes "rec_ci recf = (ap, ary, fp)" |
0b302c0b449a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
70
diff
changeset
|
4745 |
and "rec_calc_rel recf args r" |
0b302c0b449a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
70
diff
changeset
|
4746 |
and "length args = k" |
0b302c0b449a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
70
diff
changeset
|
4747 |
and "tp = tm_of (ap [+] dummy_abc k)" |
0b302c0b449a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
70
diff
changeset
|
4748 |
shows "\<exists> m n. {\<lambda>tp. tp = ([Bk, Bk], <args>)} |
0b302c0b449a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
70
diff
changeset
|
4749 |
(tp @ (shift (mopup k) (length tp div 2))) |
0b302c0b449a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
70
diff
changeset
|
4750 |
{\<lambda>tp. tp = (Bk \<up> m, Oc \<up> (Suc r) @ Bk \<up> n)}" |
0b302c0b449a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
70
diff
changeset
|
4751 |
using recursive_compile_to_tm_correct[where ires="[]" and rn="0", OF assms(1-3) _ assms(4)] |
0b302c0b449a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
70
diff
changeset
|
4752 |
apply(simp add: Hoare_halt_def) |
0b302c0b449a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
70
diff
changeset
|
4753 |
apply(drule_tac x="layout_of (ap [+] dummy_abc k)" in meta_spec) |
0b302c0b449a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
70
diff
changeset
|
4754 |
apply(auto) |
0b302c0b449a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
70
diff
changeset
|
4755 |
apply(rule_tac x="m + 2" in exI) |
0b302c0b449a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
70
diff
changeset
|
4756 |
apply(rule_tac x="l" in exI) |
0b302c0b449a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
70
diff
changeset
|
4757 |
apply(rule_tac x="stp" in exI) |
0b302c0b449a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
70
diff
changeset
|
4758 |
apply(auto) |
0b302c0b449a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
70
diff
changeset
|
4759 |
by (metis append_Nil2 replicate_app_Cons_same) |
0b302c0b449a
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
70
diff
changeset
|
4760 |
|
129
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4761 |
lemma recursive_compile_to_tm_correct3: |
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4762 |
assumes "rec_calc_rel recf args r" |
130
1e89c65f844b
added UTM
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
129
diff
changeset
|
4763 |
shows "{\<lambda>tp. tp = ([Bk, Bk], <args>)} tm_of_rec recf {\<lambda>tp. \<exists>k l. tp = (Bk \<up> k, <r> @ Bk \<up> l)}" |
129
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4764 |
using recursive_compile_to_tm_correct2[OF _ assms] |
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4765 |
apply(auto) |
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4766 |
apply(case_tac "rec_ci recf") |
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4767 |
apply(auto) |
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4768 |
apply(drule_tac x="a" in meta_spec) |
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4769 |
apply(drule_tac x="b" in meta_spec) |
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4770 |
apply(drule_tac x="c" in meta_spec) |
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4771 |
apply(drule_tac x="length args" in meta_spec) |
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4772 |
apply(drule_tac x="tm_of (a [+] dummy_abc (length args))" in meta_spec) |
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4773 |
apply(auto) |
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4774 |
apply(simp add: tape_of_nat_abv) |
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4775 |
apply(subgoal_tac "b = length args") |
131
e995ae949731
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
130
diff
changeset
|
4776 |
apply(simp add: Hoare_halt_def) |
e995ae949731
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
130
diff
changeset
|
4777 |
apply(auto)[1] |
e995ae949731
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
130
diff
changeset
|
4778 |
apply(rule_tac x="na" in exI) |
e995ae949731
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
130
diff
changeset
|
4779 |
apply(auto)[1] |
e995ae949731
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
130
diff
changeset
|
4780 |
apply(case_tac "steps0 (Suc 0, [Bk, Bk], <args>) |
e995ae949731
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
130
diff
changeset
|
4781 |
(tm_of (a [+] dummy_abc (length args)) @ |
e995ae949731
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
130
diff
changeset
|
4782 |
shift (mopup (length args)) |
e995ae949731
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
130
diff
changeset
|
4783 |
(listsum |
e995ae949731
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
130
diff
changeset
|
4784 |
(layout_of (a [+] dummy_abc (length args))))) |
e995ae949731
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
130
diff
changeset
|
4785 |
na") |
129
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4786 |
apply(simp) |
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4787 |
by (metis assms para_pattern) |
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4788 |
|
c3832c4963c4
updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
126
diff
changeset
|
4789 |
|
70
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4790 |
lemma [simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4791 |
"list_all (\<lambda>(acn, s). s \<le> Suc (Suc (Suc (Suc (Suc (Suc (2 * n))))))) xs \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4792 |
list_all (\<lambda>(acn, s). s \<le> Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (2 * n))))))))) xs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4793 |
apply(induct xs, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4794 |
apply(case_tac a, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4795 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4796 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4797 |
lemma shift_append: "shift (xs @ ys) n = shift xs n @ shift ys n" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4798 |
apply(simp add: shift.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4799 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4800 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4801 |
lemma [simp]: "length (shift (mopup n) ss) = 4 * n + 12" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4802 |
apply(auto simp: mopup.simps shift_append mopup_b_def) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4803 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4804 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4805 |
lemma length_tm_even[intro]: "length (tm_of ap) mod 2 = 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4806 |
apply(simp add: tm_of.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4807 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4808 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4809 |
lemma [simp]: "k < length ap \<Longrightarrow> tms_of ap ! k = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4810 |
ci (layout_of ap) (start_of (layout_of ap) k) (ap ! k)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4811 |
apply(simp add: tms_of.simps tpairs_of.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4812 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4813 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4814 |
lemma start_of_suc_inc: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4815 |
"\<lbrakk>k < length ap; ap ! k = Inc n\<rbrakk> \<Longrightarrow> start_of (layout_of ap) (Suc k) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4816 |
start_of (layout_of ap) k + 2 * n + 9" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4817 |
apply(rule_tac start_of_Suc1, auto simp: abc_fetch.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4818 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4819 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4820 |
lemma start_of_suc_dec: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4821 |
"\<lbrakk>k < length ap; ap ! k = (Dec n e)\<rbrakk> \<Longrightarrow> start_of (layout_of ap) (Suc k) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4822 |
start_of (layout_of ap) k + 2 * n + 16" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4823 |
apply(rule_tac start_of_Suc2, auto simp: abc_fetch.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4824 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4825 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4826 |
lemma inc_state_all_le: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4827 |
"\<lbrakk>k < length ap; ap ! k = Inc n; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4828 |
(a, b) \<in> set (shift (shift tinc_b (2 * n)) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4829 |
(start_of (layout_of ap) k - Suc 0))\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4830 |
\<Longrightarrow> b \<le> start_of (layout_of ap) (length ap)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4831 |
apply(subgoal_tac "b \<le> start_of (layout_of ap) (Suc k)") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4832 |
apply(subgoal_tac "start_of (layout_of ap) (Suc k) \<le> start_of (layout_of ap) (length ap) ") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4833 |
apply(arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4834 |
apply(case_tac "Suc k = length ap", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4835 |
apply(rule_tac start_of_less, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4836 |
apply(auto simp: tinc_b_def shift.simps start_of_suc_inc length_of.simps startof_not0) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4837 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4838 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4839 |
lemma findnth_le[elim]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4840 |
"(a, b) \<in> set (shift (findnth n) (start_of (layout_of ap) k - Suc 0)) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4841 |
\<Longrightarrow> b \<le> Suc (start_of (layout_of ap) k + 2 * n)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4842 |
apply(induct n, simp add: findnth.simps shift.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4843 |
apply(simp add: findnth.simps shift_append, auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4844 |
apply(auto simp: shift.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4845 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4846 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4847 |
lemma findnth_state_all_le1: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4848 |
"\<lbrakk>k < length ap; ap ! k = Inc n; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4849 |
(a, b) \<in> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4850 |
set (shift (findnth n) (start_of (layout_of ap) k - Suc 0))\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4851 |
\<Longrightarrow> b \<le> start_of (layout_of ap) (length ap)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4852 |
apply(subgoal_tac "b \<le> start_of (layout_of ap) (Suc k)") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4853 |
apply(subgoal_tac "start_of (layout_of ap) (Suc k) \<le> start_of (layout_of ap) (length ap) ") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4854 |
apply(arith) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4855 |
apply(case_tac "Suc k = length ap", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4856 |
apply(rule_tac start_of_less, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4857 |
apply(subgoal_tac "b \<le> start_of (layout_of ap) k + 2*n + 1 \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4858 |
start_of (layout_of ap) k + 2*n + 1 \<le> start_of (layout_of ap) (Suc k)", auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4859 |
apply(auto simp: tinc_b_def shift.simps length_of.simps startof_not0 start_of_suc_inc) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4860 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4861 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4862 |
lemma start_of_eq: "length ap < as \<Longrightarrow> start_of (layout_of ap) as = start_of (layout_of ap) (length ap)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4863 |
apply(induct as, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4864 |
apply(case_tac "length ap < as", simp add: start_of.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4865 |
apply(subgoal_tac "as = length ap") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4866 |
apply(simp add: start_of.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4867 |
apply arith |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4868 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4869 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4870 |
lemma start_of_all_le: "start_of (layout_of ap) as \<le> start_of (layout_of ap) (length ap)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4871 |
apply(subgoal_tac "as > length ap \<or> as = length ap \<or> as < length ap", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4872 |
auto simp: start_of_eq start_of_less) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4873 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4874 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4875 |
lemma findnth_state_all_le2: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4876 |
"\<lbrakk>k < length ap; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4877 |
ap ! k = Dec n e; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4878 |
(a, b) \<in> set (shift (findnth n) (start_of (layout_of ap) k - Suc 0))\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4879 |
\<Longrightarrow> b \<le> start_of (layout_of ap) (length ap)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4880 |
apply(subgoal_tac "b \<le> start_of (layout_of ap) k + 2*n + 1 \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4881 |
start_of (layout_of ap) k + 2*n + 1 \<le> start_of (layout_of ap) (Suc k) \<and> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4882 |
start_of (layout_of ap) (Suc k) \<le> start_of (layout_of ap) (length ap)", auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4883 |
apply(subgoal_tac "start_of (layout_of ap) (Suc k) = |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4884 |
start_of (layout_of ap) k + 2*n + 16", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4885 |
apply(simp add: start_of_suc_dec) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4886 |
apply(rule_tac start_of_all_le) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4887 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4888 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4889 |
lemma dec_state_all_le[simp]: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4890 |
"\<lbrakk>k < length ap; ap ! k = Dec n e; |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4891 |
(a, b) \<in> set (shift (shift tdec_b (2 * n)) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4892 |
(start_of (layout_of ap) k - Suc 0))\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4893 |
\<Longrightarrow> b \<le> start_of (layout_of ap) (length ap)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4894 |
apply(subgoal_tac "2*n + start_of (layout_of ap) k + 16 \<le> start_of (layout_of ap) (length ap) \<and> start_of (layout_of ap) k > 0") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4895 |
prefer 2 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4896 |
apply(subgoal_tac "start_of (layout_of ap) (Suc k) = start_of (layout_of ap) k + 2*n + 16 |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4897 |
\<and> start_of (layout_of ap) (Suc k) \<le> start_of (layout_of ap) (length ap)") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4898 |
apply(simp add: startof_not0, rule_tac conjI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4899 |
apply(simp add: start_of_suc_dec) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4900 |
apply(rule_tac start_of_all_le) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4901 |
apply(auto simp: tdec_b_def shift.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4902 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4903 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4904 |
lemma tms_any_less: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4905 |
"\<lbrakk>k < length ap; (a, b) \<in> set (tms_of ap ! k)\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4906 |
b \<le> start_of (layout_of ap) (length ap)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4907 |
apply(case_tac "ap!k", auto simp: tms_of.simps tpairs_of.simps ci.simps shift_append sete.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4908 |
apply(erule_tac findnth_state_all_le1, simp_all) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4909 |
apply(erule_tac inc_state_all_le, simp_all) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4910 |
apply(erule_tac findnth_state_all_le2, simp_all) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4911 |
apply(rule_tac start_of_all_le) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4912 |
apply(rule_tac dec_state_all_le, simp_all) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4913 |
apply(rule_tac start_of_all_le) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4914 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4915 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4916 |
lemma concat_in: "i < length (concat xs) \<Longrightarrow> \<exists>k < length xs. concat xs ! i \<in> set (xs ! k)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4917 |
apply(induct xs rule: list_tl_induct, simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4918 |
apply(case_tac "i < length (concat list)", simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4919 |
apply(erule_tac exE, rule_tac x = k in exI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4920 |
apply(simp add: nth_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4921 |
apply(rule_tac x = "length list" in exI, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4922 |
apply(simp add: nth_append) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4923 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4924 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4925 |
lemma [simp]: "length (tms_of ap) = length ap" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4926 |
apply(simp add: tms_of.simps tpairs_of.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4927 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4928 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4929 |
declare length_concat[simp] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4930 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4931 |
lemma in_tms: "i < length (tm_of ap) \<Longrightarrow> \<exists> k < length ap. (tm_of ap ! i) \<in> set (tms_of ap ! k)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4932 |
apply(simp only: tm_of.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4933 |
using concat_in[of i "tms_of ap"] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4934 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4935 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4936 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4937 |
lemma all_le_start_of: "list_all (\<lambda>(acn, s). |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4938 |
s \<le> start_of (layout_of ap) (length ap)) (tm_of ap)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4939 |
apply(simp only: list_all_length) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4940 |
apply(rule_tac allI, rule_tac impI) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4941 |
apply(drule_tac in_tms, auto elim: tms_any_less) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4942 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4943 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4944 |
lemma length_ci: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4945 |
"\<lbrakk>k < length ap; length (ci ly y (ap ! k)) = 2 * qa\<rbrakk> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4946 |
\<Longrightarrow> layout_of ap ! k = qa" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4947 |
apply(case_tac "ap ! k") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4948 |
apply(auto simp: layout_of.simps ci.simps |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4949 |
length_of.simps tinc_b_def tdec_b_def length_findnth sete.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4950 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4951 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4952 |
lemma [intro]: "length (ci ly y i) mod 2 = 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4953 |
apply(case_tac i, auto simp: ci.simps length_findnth |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4954 |
tinc_b_def sete.simps tdec_b_def) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4955 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4956 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4957 |
lemma [intro]: "listsum (map (length \<circ> (\<lambda>(x, y). ci ly x y)) zs) mod 2 = 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4958 |
apply(induct zs rule: list_tl_induct, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4959 |
apply(case_tac a, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4960 |
apply(subgoal_tac "length (ci ly aa b) mod 2 = 0") |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4961 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4962 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4963 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4964 |
lemma zip_pre: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4965 |
"(length ys) \<le> length ap \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4966 |
zip ys ap = zip ys (take (length ys) (ap::'a list))" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4967 |
proof(induct ys arbitrary: ap, simp, case_tac ap, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4968 |
fix a ys ap aa list |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4969 |
assume ind: "\<And>(ap::'a list). length ys \<le> length ap \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4970 |
zip ys ap = zip ys (take (length ys) ap)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4971 |
and h: "length (a # ys) \<le> length ap" "(ap::'a list) = aa # (list::'a list)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4972 |
from h show "zip (a # ys) ap = zip (a # ys) (take (length (a # ys)) ap)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4973 |
using ind[of list] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4974 |
apply(simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4975 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4976 |
qed |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4977 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4978 |
lemma length_start_of_tm: "start_of (layout_of ap) (length ap) = Suc (length (tm_of ap) div 2)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4979 |
using tpa_states[of "tm_of ap" "length ap" ap] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4980 |
apply(simp add: tm_of.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4981 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4982 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4983 |
lemma [elim]: "list_all (\<lambda>(acn, s). s \<le> Suc q) xs |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4984 |
\<Longrightarrow> list_all (\<lambda>(acn, s). s \<le> q + (2 * n + 6)) xs" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4985 |
apply(simp add: list_all_length) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4986 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4987 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4988 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4989 |
lemma [simp]: "length mopup_b = 12" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4990 |
apply(simp add: mopup_b_def) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4991 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4992 |
(* |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4993 |
lemma [elim]: "\<lbrakk>na < 4 * n; tshift (mop_bef n) q ! na = (a, b)\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4994 |
b \<le> q + (2 * n + 6)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4995 |
apply(induct n, simp, simp add: mop_bef.simps nth_append tshift_append shift_length) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4996 |
apply(case_tac "na < 4*n", simp, simp) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4997 |
apply(subgoal_tac "na = 4*n \<or> na = 1 + 4*n \<or> na = 2 + 4*n \<or> na = 3 + 4*n", |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4998 |
auto simp: shift_length) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4999 |
apply(simp_all add: tshift.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5000 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5001 |
*) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5002 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5003 |
lemma mp_up_all_le: "list_all (\<lambda>(acn, s). s \<le> q + (2 * n + 6)) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5004 |
[(R, Suc (Suc (2 * n + q))), (R, Suc (2 * n + q)), |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5005 |
(L, 5 + 2 * n + q), (W0, Suc (Suc (Suc (2 * n + q)))), (R, 4 + 2 * n + q), |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5006 |
(W0, Suc (Suc (Suc (2 * n + q)))), (R, Suc (Suc (2 * n + q))), |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5007 |
(W0, Suc (Suc (Suc (2 * n + q)))), (L, 5 + 2 * n + q), |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5008 |
(L, 6 + 2 * n + q), (R, 0), (L, 6 + 2 * n + q)]" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5009 |
apply(auto) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5010 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5011 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5012 |
lemma [simp]: "(a, b) \<in> set (mopup_a n) \<Longrightarrow> b \<le> 2 * n + 6" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5013 |
apply(induct n, auto simp: mopup_a.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5014 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5015 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5016 |
lemma [simp]: "(a, b) \<in> set (shift (mopup n) (listsum (layout_of ap))) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5017 |
\<Longrightarrow> b \<le> (2 * listsum (layout_of ap) + length (mopup n)) div 2" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5018 |
apply(auto simp: mopup.simps shift_append shift.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5019 |
apply(auto simp: mopup_a.simps mopup_b_def) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5020 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5021 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5022 |
lemma [intro]: " 2 \<le> 2 * listsum (layout_of ap) + length (mopup n)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5023 |
apply(simp add: mopup.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5024 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5025 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5026 |
lemma [intro]: " (2 * listsum (layout_of ap) + length (mopup n)) mod 2 = 0" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5027 |
apply(auto simp: mopup.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5028 |
apply arith |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5029 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5030 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5031 |
lemma [simp]: "b \<le> Suc x |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5032 |
\<Longrightarrow> b \<le> (2 * x + length (mopup n)) div 2" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5033 |
apply(auto simp: mopup.simps) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5034 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5035 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5036 |
lemma t_compiled_correct: |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5037 |
"\<lbrakk>tp = tm_of ap; ly = layout_of ap; mop_ss = start_of ly (length ap)\<rbrakk> \<Longrightarrow> |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5038 |
tm_wf (tp @ shift( mopup n) (length tp div 2), 0)" |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5039 |
using length_start_of_tm[of ap] all_le_start_of[of ap] |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5040 |
apply(auto simp: tm_wf.simps List.list_all_iff) |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5041 |
done |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5042 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5043 |
end |
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5044 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5045 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5046 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5047 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5048 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5049 |
|
2363eb91d9fd
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5050 |