thys/UF.thy
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Mon, 22 Apr 2013 08:26:16 +0100
changeset 237 06a6db387cd2
parent 229 d8e6f0798e23
child 238 6ea1062da89a
permissions -rwxr-xr-x
updated and small modification
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
169
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
     1
(* Title: thys/UF.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
     2
   Author: Jian Xu, Xingyuan Zhang, and Christian Urban
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
     3
*)
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
     4
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
     5
header {* Construction of a Universal Function *}
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
     6
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     7
theory UF
163
67063c5365e1 changed theory names to uppercase
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 101
diff changeset
     8
imports Rec_Def GCD Abacus
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     9
begin
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    10
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    11
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    12
  This theory file constructs the Universal Function @{text "rec_F"}, which is the UTM defined
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    13
  in terms of recursive functions. This @{text "rec_F"} is essentially an 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    14
  interpreter of Turing Machines. Once the correctness of @{text "rec_F"} is established,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    15
  UTM can easil be obtained by compling @{text "rec_F"} into the corresponding Turing Machine.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    16
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    17
169
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 166
diff changeset
    18
section {* Universal Function *}
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    19
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    20
subsection {* The construction of component functions *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    21
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    22
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    23
  The recursive function used to do arithmatic addition.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    24
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    25
definition rec_add :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    26
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    27
  "rec_add \<equiv>  Pr 1 (id 1 0) (Cn 3 s [id 3 2])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    28
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    29
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    30
  The recursive function used to do arithmatic multiplication.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    31
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    32
definition rec_mult :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    33
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    34
  "rec_mult = Pr 1 z (Cn 3 rec_add [id 3 0, id 3 2])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    35
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    36
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    37
  The recursive function used to do arithmatic precede.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    38
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    39
definition rec_pred :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    40
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    41
  "rec_pred = Cn 1 (Pr 1 z (id 3 1)) [id 1 0, id 1 0]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    42
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    43
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    44
  The recursive function used to do arithmatic subtraction.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    45
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    46
definition rec_minus :: "recf" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    47
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    48
  "rec_minus = Pr 1 (id 1 0) (Cn 3 rec_pred [id 3 2])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    49
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    50
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    51
  @{text "constn n"} is the recursive function which computes 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    52
  nature number @{text "n"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    53
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    54
fun constn :: "nat \<Rightarrow> recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    55
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    56
  "constn 0 = z"  |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    57
  "constn (Suc n) = Cn 1 s [constn n]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    58
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    59
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    60
text {*
198
d93cc4295306 tuned some files
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 169
diff changeset
    61
  Sign function, which returns 1 when the input argument is greater than @{text "0"}.
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    62
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    63
definition rec_sg :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    64
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    65
  "rec_sg = Cn 1 rec_minus [constn 1, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    66
                  Cn 1 rec_minus [constn 1, id 1 0]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    67
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    68
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    69
  @{text "rec_less"} compares its two arguments, returns @{text "1"} if
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    70
  the first is less than the second; otherwise returns @{text "0"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    71
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    72
definition rec_less :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    73
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    74
  "rec_less = Cn 2 rec_sg [Cn 2 rec_minus [id 2 1, id 2 0]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    75
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    76
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    77
  @{text "rec_not"} inverse its argument: returns @{text "1"} when the
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    78
  argument is @{text "0"}; returns @{text "0"} otherwise.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    79
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    80
definition rec_not :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    81
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    82
  "rec_not = Cn 1 rec_minus [constn 1, id 1 0]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    83
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    84
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    85
  @{text "rec_eq"} compares its two arguments: returns @{text "1"}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    86
  if they are equal; return @{text "0"} otherwise.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    87
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    88
definition rec_eq :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    89
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    90
  "rec_eq = Cn 2 rec_minus [Cn 2 (constn 1) [id 2 0], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    91
             Cn 2 rec_add [Cn 2 rec_minus [id 2 0, id 2 1], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    92
               Cn 2 rec_minus [id 2 1, id 2 0]]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    93
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    94
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    95
  @{text "rec_conj"} computes the conjunction of its two arguments, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    96
  returns @{text "1"} if both of them are non-zero; returns @{text "0"}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    97
  otherwise.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    98
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    99
definition rec_conj :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   100
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   101
  "rec_conj = Cn 2 rec_sg [Cn 2 rec_mult [id 2 0, id 2 1]] "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   102
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   103
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   104
  @{text "rec_disj"} computes the disjunction of its two arguments, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   105
  returns @{text "0"} if both of them are zero; returns @{text "0"}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   106
  otherwise.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   107
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   108
definition rec_disj :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   109
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   110
  "rec_disj = Cn 2 rec_sg [Cn 2 rec_add [id 2 0, id 2 1]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   111
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   112
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   113
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   114
  Computes the arity of recursive function.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   115
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   116
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   117
fun arity :: "recf \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   118
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   119
  "arity z = 1" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   120
| "arity s = 1"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   121
| "arity (id m n) = m"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   122
| "arity (Cn n f gs) = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   123
| "arity (Pr n f g) = Suc n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   124
| "arity (Mn n f) = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   125
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   126
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   127
  @{text "get_fstn_args n (Suc k)"} returns
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   128
  @{text "[id n 0, id n 1, id n 2, \<dots>, id n k]"}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   129
  the effect of which is to take out the first @{text "Suc k"} 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   130
  arguments out of the @{text "n"} input arguments.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   131
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   132
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   133
fun get_fstn_args :: "nat \<Rightarrow>  nat \<Rightarrow> recf list"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   134
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   135
  "get_fstn_args n 0 = []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   136
| "get_fstn_args n (Suc y) = get_fstn_args n y @ [id n y]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   137
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   138
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   139
  @{text "rec_sigma f"} returns the recursive functions which 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   140
  sums up the results of @{text "f"}:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   141
  \[
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   142
  (rec\_sigma f)(x, y) = f(x, 0) + f(x, 1) + \cdots + f(x, y)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   143
  \]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   144
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   145
fun rec_sigma :: "recf \<Rightarrow> recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   146
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   147
  "rec_sigma rf = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   148
       (let vl = arity rf in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   149
          Pr (vl - 1) (Cn (vl - 1) rf (get_fstn_args (vl - 1) (vl - 1) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   150
                    [Cn (vl - 1) (constn 0) [id (vl - 1) 0]])) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   151
             (Cn (Suc vl) rec_add [id (Suc vl) vl, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   152
                    Cn (Suc vl) rf (get_fstn_args (Suc vl) (vl - 1) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   153
                        @ [Cn (Suc vl) s [id (Suc vl) (vl - 1)]])]))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   154
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   155
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   156
declare rec_exec.simps[simp del] constn.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   157
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   158
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   159
section {* Correctness of various recursive functions *}
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   160
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   161
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   162
lemma add_lemma: "rec_exec rec_add [x, y] =  x + y"
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   163
by(induct_tac y, auto simp: rec_add_def rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   164
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   165
lemma mult_lemma: "rec_exec rec_mult [x, y] = x * y"
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   166
by(induct_tac y, auto simp: rec_mult_def rec_exec.simps add_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   167
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   168
lemma pred_lemma: "rec_exec rec_pred [x] =  x - 1"
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   169
by(induct_tac x, auto simp: rec_pred_def rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   170
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   171
lemma minus_lemma: "rec_exec rec_minus [x, y] = x - y"
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   172
by(induct_tac y, auto simp: rec_exec.simps rec_minus_def pred_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   173
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   174
lemma sg_lemma: "rec_exec rec_sg [x] = (if x = 0 then 0 else 1)"
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   175
by(auto simp: rec_sg_def minus_lemma rec_exec.simps constn.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   176
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   177
lemma constn_lemma: "rec_exec (constn n) [x] = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   178
by(induct n, auto simp: rec_exec.simps constn.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   179
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   180
lemma less_lemma: "rec_exec rec_less [x, y] = (if x < y then 1 else 0)"
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   181
by(induct_tac y, auto simp: rec_exec.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   182
  rec_less_def minus_lemma sg_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   183
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   184
lemma not_lemma: "rec_exec rec_not [x] = (if x = 0 then 1 else 0)"
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   185
by(induct_tac x, auto simp: rec_exec.simps rec_not_def
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   186
  constn_lemma minus_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   187
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   188
lemma eq_lemma: "rec_exec rec_eq [x, y] = (if x = y then 1 else 0)"
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   189
by(induct_tac y, auto simp: rec_exec.simps rec_eq_def constn_lemma add_lemma minus_lemma)
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   190
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   191
lemma conj_lemma: "rec_exec rec_conj [x, y] = (if x = 0 \<or> y = 0 then 0 else 1)"
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   192
by(induct_tac y, auto simp: rec_exec.simps sg_lemma rec_conj_def mult_lemma)
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   193
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   194
lemma disj_lemma: "rec_exec rec_disj [x, y] = (if x = 0 \<and> y = 0 then 0 else 1)"
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   195
by(induct_tac y, auto simp: rec_disj_def sg_lemma add_lemma rec_exec.simps)
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   196
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   197
declare mult_lemma[simp] add_lemma[simp] pred_lemma[simp] 
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   198
        minus_lemma[simp] sg_lemma[simp] constn_lemma[simp] 
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   199
        less_lemma[simp] not_lemma[simp] eq_lemma[simp]
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   200
        conj_lemma[simp] disj_lemma[simp]
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   201
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   202
text {*
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   203
  @{text "primrec recf n"} is true iff @{text "recf"} is a primitive
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   204
  recursive function with arity @{text "n"}.
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   205
  *}
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   206
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   207
inductive primerec :: "recf \<Rightarrow> nat \<Rightarrow> bool"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   208
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   209
prime_z[intro]:  "primerec z (Suc 0)" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   210
prime_s[intro]:  "primerec s (Suc 0)" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   211
prime_id[intro!]: "\<lbrakk>n < m\<rbrakk> \<Longrightarrow> primerec (id m n) m" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   212
prime_cn[intro!]: "\<lbrakk>primerec f k; length gs = k; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   213
  \<forall> i < length gs. primerec (gs ! i) m; m = n\<rbrakk> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   214
  \<Longrightarrow> primerec (Cn n f gs) m" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   215
prime_pr[intro!]: "\<lbrakk>primerec f n; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   216
  primerec g (Suc (Suc n)); m = Suc n\<rbrakk> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   217
  \<Longrightarrow> primerec (Pr n f g) m" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   218
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   219
inductive_cases prime_cn_reverse'[elim]: "primerec (Cn n f gs) n" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   220
inductive_cases prime_mn_reverse: "primerec (Mn n f) m" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   221
inductive_cases prime_z_reverse[elim]: "primerec z n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   222
inductive_cases prime_s_reverse[elim]: "primerec s n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   223
inductive_cases prime_id_reverse[elim]: "primerec (id m n) k"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   224
inductive_cases prime_cn_reverse[elim]: "primerec (Cn n f gs) m"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   225
inductive_cases prime_pr_reverse[elim]: "primerec (Pr n f g) m"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   226
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   227
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   228
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   229
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   230
  @{text "Sigma"} is the logical specification of 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   231
  the recursive function @{text "rec_sigma"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   232
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   233
function Sigma :: "(nat list \<Rightarrow> nat) \<Rightarrow> nat list \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   234
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   235
  "Sigma g xs = (if last xs = 0 then g xs
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   236
                 else (Sigma g (butlast xs @ [last xs - 1]) + g xs)) "
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   237
by pat_completeness auto
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   238
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   239
termination
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   240
proof
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   241
  show "wf (measure (\<lambda> (f, xs). last xs))" by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   242
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   243
  fix g xs
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   244
  assume "last (xs::nat list) \<noteq> 0"
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   245
  thus "((g, butlast xs @ [last xs - 1]), g, xs) \<in> measure (\<lambda>(f, xs). last xs)"
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   246
    by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   247
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   248
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   249
declare rec_exec.simps[simp del] get_fstn_args.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   250
        arity.simps[simp del] Sigma.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   251
        rec_sigma.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   252
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   253
lemma [simp]: "arity z = 1"
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   254
  by(simp add: arity.simps)
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   255
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   256
lemma rec_pr_0_simp_rewrite: "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   257
  rec_exec (Pr n f g) (xs @ [0]) = rec_exec f xs"
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   258
  by(simp add: rec_exec.simps)
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   259
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   260
lemma rec_pr_0_simp_rewrite_single_param: "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   261
  rec_exec (Pr n f g) [0] = rec_exec f []"
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   262
  by(simp add: rec_exec.simps)
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   263
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   264
lemma rec_pr_Suc_simp_rewrite: 
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   265
  "rec_exec (Pr n f g) (xs @ [Suc x]) = rec_exec g (xs @ [x] @ [rec_exec (Pr n f g) (xs @ [x])])"
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   266
by(simp add: rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   267
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   268
lemma rec_pr_Suc_simp_rewrite_single_param: 
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   269
  "rec_exec (Pr n f g) ([Suc x]) = rec_exec g ([x] @ [rec_exec (Pr n f g) ([x])])"
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   270
by(simp add: rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   271
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   272
lemma Sigma_0_simp_rewrite_single_param:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   273
  "Sigma f [0] = f [0]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   274
by(simp add: Sigma.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   275
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   276
lemma Sigma_0_simp_rewrite:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   277
  "Sigma f (xs @ [0]) = f (xs @ [0])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   278
by(simp add: Sigma.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   279
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   280
lemma Sigma_Suc_simp_rewrite: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   281
  "Sigma f (xs @ [Suc x]) = Sigma f (xs @ [x]) + f (xs @ [Suc x])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   282
by(simp add: Sigma.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   283
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   284
lemma Sigma_Suc_simp_rewrite_single: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   285
  "Sigma f ([Suc x]) = Sigma f ([x]) + f ([Suc x])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   286
by(simp add: Sigma.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   287
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   288
lemma  [simp]: "(xs @ ys) ! (Suc (length xs)) = ys ! 1"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   289
by(simp add: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   290
  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   291
lemma get_fstn_args_take: "\<lbrakk>length xs = m; n \<le> m\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   292
  map (\<lambda> f. rec_exec f xs) (get_fstn_args m n)= take n xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   293
proof(induct n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   294
  case 0 thus "?case"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   295
    by(simp add: get_fstn_args.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   296
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   297
  case (Suc n) thus "?case"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   298
    by(simp add: get_fstn_args.simps rec_exec.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   299
             take_Suc_conv_app_nth)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   300
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   301
    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   302
lemma [simp]: "primerec f n \<Longrightarrow> arity f = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   303
  apply(case_tac f)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   304
  apply(auto simp: arity.simps )
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   305
  apply(erule_tac prime_mn_reverse)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   306
  done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   307
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   308
lemma rec_sigma_Suc_simp_rewrite: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   309
  "primerec f (Suc (length xs))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   310
    \<Longrightarrow> rec_exec (rec_sigma f) (xs @ [Suc x]) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   311
    rec_exec (rec_sigma f) (xs @ [x]) + rec_exec f (xs @ [Suc x])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   312
  apply(induct x)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   313
  apply(auto simp: rec_sigma.simps Let_def rec_pr_Suc_simp_rewrite
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   314
                   rec_exec.simps get_fstn_args_take)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   315
  done      
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   316
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   317
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   318
  The correctness of @{text "rec_sigma"} with respect to its specification.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   319
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   320
lemma sigma_lemma: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   321
  "primerec rg (Suc (length xs))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   322
     \<Longrightarrow> rec_exec (rec_sigma rg) (xs @ [x]) = Sigma (rec_exec rg) (xs @ [x])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   323
apply(induct x)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   324
apply(auto simp: rec_exec.simps rec_sigma.simps Let_def 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   325
         get_fstn_args_take Sigma_0_simp_rewrite
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   326
         Sigma_Suc_simp_rewrite) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   327
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   328
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   329
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   330
  @{text "rec_accum f (x1, x2, \<dots>, xn, k) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   331
           f(x1, x2, \<dots>, xn, 0) * 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   332
           f(x1, x2, \<dots>, xn, 1) *
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   333
               \<dots> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   334
           f(x1, x2, \<dots>, xn, k)"}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   335
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   336
fun rec_accum :: "recf \<Rightarrow> recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   337
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   338
  "rec_accum rf = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   339
       (let vl = arity rf in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   340
          Pr (vl - 1) (Cn (vl - 1) rf (get_fstn_args (vl - 1) (vl - 1) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   341
                     [Cn (vl - 1) (constn 0) [id (vl - 1) 0]])) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   342
             (Cn (Suc vl) rec_mult [id (Suc vl) (vl), 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   343
                    Cn (Suc vl) rf (get_fstn_args (Suc vl) (vl - 1) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   344
                      @ [Cn (Suc vl) s [id (Suc vl) (vl - 1)]])]))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   345
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   346
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   347
  @{text "Accum"} is the formal specification of @{text "rec_accum"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   348
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   349
function Accum :: "(nat list \<Rightarrow> nat) \<Rightarrow> nat list \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   350
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   351
  "Accum f xs = (if last xs = 0 then f xs 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   352
                     else (Accum f (butlast xs @ [last xs - 1]) *
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   353
                       f xs))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   354
by pat_completeness auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   355
termination
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   356
proof
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   357
  show "wf (measure (\<lambda> (f, xs). last xs))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   358
    by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   359
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   360
  fix f xs
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   361
  assume "last xs \<noteq> (0::nat)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   362
  thus "((f, butlast xs @ [last xs - 1]), f, xs) \<in> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   363
            measure (\<lambda>(f, xs). last xs)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   364
    by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   365
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   366
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   367
lemma rec_accum_Suc_simp_rewrite: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   368
  "primerec f (Suc (length xs))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   369
    \<Longrightarrow> rec_exec (rec_accum f) (xs @ [Suc x]) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   370
    rec_exec (rec_accum f) (xs @ [x]) * rec_exec f (xs @ [Suc x])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   371
  apply(induct x)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   372
  apply(auto simp: rec_sigma.simps Let_def rec_pr_Suc_simp_rewrite
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   373
                   rec_exec.simps get_fstn_args_take)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   374
  done  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   375
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   376
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   377
  The correctness of @{text "rec_accum"} with respect to its specification.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   378
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   379
lemma accum_lemma :
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   380
  "primerec rg (Suc (length xs))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   381
     \<Longrightarrow> rec_exec (rec_accum rg) (xs @ [x]) = Accum (rec_exec rg) (xs @ [x])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   382
apply(induct x)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   383
apply(auto simp: rec_exec.simps rec_sigma.simps Let_def 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   384
                     get_fstn_args_take)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   385
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   386
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   387
declare rec_accum.simps [simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   388
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   389
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   390
  @{text "rec_all t f (x1, x2, \<dots>, xn)"} 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   391
  computes the charactrization function of the following FOL formula:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   392
  @{text "(\<forall> x \<le> t(x1, x2, \<dots>, xn). (f(x1, x2, \<dots>, xn, x) > 0))"}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   393
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   394
fun rec_all :: "recf \<Rightarrow> recf \<Rightarrow> recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   395
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   396
  "rec_all rt rf = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   397
    (let vl = arity rf in
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   398
       Cn (vl - 1) rec_sg [Cn (vl - 1) (rec_accum rf) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   399
                 (get_fstn_args (vl - 1) (vl - 1) @ [rt])])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   400
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   401
lemma rec_accum_ex: "primerec rf (Suc (length xs)) \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   402
     (rec_exec (rec_accum rf) (xs @ [x]) = 0) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   403
      (\<exists> t \<le> x. rec_exec rf (xs @ [t]) = 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   404
apply(induct x, simp_all add: rec_accum_Suc_simp_rewrite)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   405
apply(simp add: rec_exec.simps rec_accum.simps get_fstn_args_take, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   406
      auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   407
apply(rule_tac x = ta in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   408
apply(case_tac "t = Suc x", simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   409
apply(rule_tac x = t in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   410
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   411
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   412
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   413
  The correctness of @{text "rec_all"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   414
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   415
lemma all_lemma: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   416
  "\<lbrakk>primerec rf (Suc (length xs));
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   417
    primerec rt (length xs)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   418
  \<Longrightarrow> rec_exec (rec_all rt rf) xs = (if (\<forall> x \<le> (rec_exec rt xs). 0 < rec_exec rf (xs @ [x])) then 1
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   419
                                                                                              else 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   420
apply(auto simp: rec_all.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   421
apply(simp add: rec_exec.simps map_append get_fstn_args_take split: if_splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   422
apply(drule_tac x = "rec_exec rt xs" in rec_accum_ex)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   423
apply(case_tac "rec_exec (rec_accum rf) (xs @ [rec_exec rt xs]) = 0", simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   424
apply(erule_tac exE, erule_tac x = t in allE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   425
apply(simp add: rec_exec.simps map_append get_fstn_args_take)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   426
apply(drule_tac x = "rec_exec rt xs" in rec_accum_ex)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   427
apply(case_tac "rec_exec (rec_accum rf) (xs @ [rec_exec rt xs]) = 0", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   428
apply(erule_tac x = x in allE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   429
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   430
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   431
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   432
  @{text "rec_ex t f (x1, x2, \<dots>, xn)"} 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   433
  computes the charactrization function of the following FOL formula:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   434
  @{text "(\<exists> x \<le> t(x1, x2, \<dots>, xn). (f(x1, x2, \<dots>, xn, x) > 0))"}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   435
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   436
fun rec_ex :: "recf \<Rightarrow> recf \<Rightarrow> recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   437
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   438
  "rec_ex rt rf = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   439
       (let vl = arity rf in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   440
         Cn (vl - 1) rec_sg [Cn (vl - 1) (rec_sigma rf) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   441
                  (get_fstn_args (vl - 1) (vl - 1) @ [rt])])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   442
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   443
lemma rec_sigma_ex: "primerec rf (Suc (length xs))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   444
          \<Longrightarrow> (rec_exec (rec_sigma rf) (xs @ [x]) = 0) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   445
                          (\<forall> t \<le> x. rec_exec rf (xs @ [t]) = 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   446
apply(induct x, simp_all add: rec_sigma_Suc_simp_rewrite)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   447
apply(simp add: rec_exec.simps rec_sigma.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   448
                get_fstn_args_take, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   449
apply(case_tac "t = Suc x", simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   450
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   451
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   452
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   453
  The correctness of @{text "ex_lemma"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   454
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   455
lemma ex_lemma:"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   456
  \<lbrakk>primerec rf (Suc (length xs));
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   457
   primerec rt (length xs)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   458
\<Longrightarrow> (rec_exec (rec_ex rt rf) xs =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   459
    (if (\<exists> x \<le> (rec_exec rt xs). 0 <rec_exec rf (xs @ [x])) then 1
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   460
     else 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   461
apply(auto simp: rec_ex.simps rec_exec.simps map_append get_fstn_args_take 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   462
            split: if_splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   463
apply(drule_tac x = "rec_exec rt xs" in rec_sigma_ex, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   464
apply(drule_tac x = "rec_exec rt xs" in rec_sigma_ex, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   465
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   466
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   467
text {*
199
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 198
diff changeset
   468
  Definition of @{text "Min[R]"} on page 77 of Boolos's book.
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   469
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   470
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   471
fun Minr :: "(nat list \<Rightarrow> bool) \<Rightarrow> nat list \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   472
  where "Minr Rr xs w = (let setx = {y | y. (y \<le> w) \<and> Rr (xs @ [y])} in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   473
                        if (setx = {}) then (Suc w)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   474
                                       else (Min setx))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   475
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   476
declare Minr.simps[simp del] rec_all.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   477
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   478
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   479
  The following is a set of auxilliary lemmas about @{text "Minr"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   480
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   481
lemma Minr_range: "Minr Rr xs w \<le> w \<or> Minr Rr xs w = Suc w"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   482
apply(auto simp: Minr.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   483
apply(subgoal_tac "Min {x. x \<le> w \<and> Rr (xs @ [x])} \<le> x")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   484
apply(erule_tac order_trans, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   485
apply(rule_tac Min_le, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   486
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   487
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   488
lemma [simp]: "{x. x \<le> Suc w \<and> Rr (xs @ [x])}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   489
    = (if Rr (xs @ [Suc w]) then insert (Suc w) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   490
                              {x. x \<le> w \<and> Rr (xs @ [x])}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   491
      else {x. x \<le> w \<and> Rr (xs @ [x])})"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   492
by(auto, case_tac "x = Suc w", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   493
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   494
lemma [simp]: "Minr Rr xs w \<le> w \<Longrightarrow> Minr Rr xs (Suc w) = Minr Rr xs w"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   495
apply(simp add: Minr.simps, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   496
apply(case_tac "\<forall>x\<le>w. \<not> Rr (xs @ [x])", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   497
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   498
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   499
lemma [simp]: "\<forall>x\<le>w. \<not> Rr (xs @ [x]) \<Longrightarrow>  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   500
                           {x. x \<le> w \<and> Rr (xs @ [x])} = {} "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   501
by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   502
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   503
lemma [simp]: "\<lbrakk>Minr Rr xs w = Suc w; Rr (xs @ [Suc w])\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   504
                                       Minr Rr xs (Suc w) = Suc w"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   505
apply(simp add: Minr.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   506
apply(case_tac "\<forall>x\<le>w. \<not> Rr (xs @ [x])", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   507
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   508
 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   509
lemma [simp]: "\<lbrakk>Minr Rr xs w = Suc w; \<not> Rr (xs @ [Suc w])\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   510
                                   Minr Rr xs (Suc w) = Suc (Suc w)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   511
apply(simp add: Minr.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   512
apply(case_tac "\<forall>x\<le>w. \<not> Rr (xs @ [x])", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   513
apply(subgoal_tac "Min {x. x \<le> w \<and> Rr (xs @ [x])} \<in> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   514
                                {x. x \<le> w \<and> Rr (xs @ [x])}", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   515
apply(rule_tac Min_in, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   516
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   517
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   518
lemma Minr_Suc_simp: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   519
   "Minr Rr xs (Suc w) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   520
      (if Minr Rr xs w \<le> w then Minr Rr xs w
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   521
       else if (Rr (xs @ [Suc w])) then (Suc w)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   522
       else Suc (Suc w))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   523
by(insert Minr_range[of Rr xs w], auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   524
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   525
text {* 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   526
  @{text "rec_Minr"} is the recursive function 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   527
  used to implement @{text "Minr"}:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   528
  if @{text "Rr"} is implemented by a recursive function @{text "recf"},
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   529
  then @{text "rec_Minr recf"} is the recursive function used to 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   530
  implement @{text "Minr Rr"}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   531
 *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   532
fun rec_Minr :: "recf \<Rightarrow> recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   533
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   534
  "rec_Minr rf = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   535
     (let vl = arity rf
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   536
      in let rq = rec_all (id vl (vl - 1)) (Cn (Suc vl) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   537
              rec_not [Cn (Suc vl) rf 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   538
                    (get_fstn_args (Suc vl) (vl - 1) @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   539
                                        [id (Suc vl) (vl)])]) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   540
      in  rec_sigma rq)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   541
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   542
lemma length_getpren_params[simp]: "length (get_fstn_args m n) = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   543
by(induct n, auto simp: get_fstn_args.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   544
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   545
lemma length_app:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   546
  "(length (get_fstn_args (arity rf - Suc 0)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   547
                           (arity rf - Suc 0)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   548
   @ [Cn (arity rf - Suc 0) (constn 0)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   549
           [recf.id (arity rf - Suc 0) 0]]))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   550
    = (Suc (arity rf - Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   551
  apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   552
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   553
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   554
lemma primerec_accum: "primerec (rec_accum rf) n \<Longrightarrow> primerec rf n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   555
apply(auto simp: rec_accum.simps Let_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   556
apply(erule_tac prime_pr_reverse, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   557
apply(erule_tac prime_cn_reverse, simp only: length_app)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   558
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   559
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   560
lemma primerec_all: "primerec (rec_all rt rf) n \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   561
                       primerec rt n \<and> primerec rf (Suc n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   562
apply(simp add: rec_all.simps Let_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   563
apply(erule_tac prime_cn_reverse, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   564
apply(erule_tac prime_cn_reverse, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   565
apply(erule_tac x = n in allE, simp add: nth_append primerec_accum)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   566
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   567
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   568
lemma min_Suc_Suc[simp]: "min (Suc (Suc x)) x = x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   569
 by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   570
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   571
declare numeral_3_eq_3[simp]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   572
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   573
lemma [intro]: "primerec rec_pred (Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   574
apply(simp add: rec_pred_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   575
apply(rule_tac prime_cn, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   576
apply(case_tac i, auto intro: prime_id)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   577
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   578
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   579
lemma [intro]: "primerec rec_minus (Suc (Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   580
  apply(auto simp: rec_minus_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   581
  done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   582
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   583
lemma [intro]: "primerec (constn n) (Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   584
  apply(induct n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   585
  apply(auto simp: constn.simps intro: prime_z prime_cn prime_s)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   586
  done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   587
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   588
lemma [intro]: "primerec rec_sg (Suc 0)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   589
  apply(simp add: rec_sg_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   590
  apply(rule_tac k = "Suc (Suc 0)" in prime_cn, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   591
  apply(case_tac i, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   592
  apply(case_tac ia, auto intro: prime_id)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   593
  done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   594
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   595
lemma [simp]: "length (get_fstn_args m n) = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   596
  apply(induct n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   597
  apply(auto simp: get_fstn_args.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   598
  done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   599
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   600
lemma  primerec_getpren[elim]: "\<lbrakk>i < n; n \<le> m\<rbrakk> \<Longrightarrow> primerec (get_fstn_args m n ! i) m"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   601
apply(induct n, auto simp: get_fstn_args.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   602
apply(case_tac "i = n", auto simp: nth_append intro: prime_id)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   603
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   604
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   605
lemma [intro]: "primerec rec_add (Suc (Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   606
apply(simp add: rec_add_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   607
apply(rule_tac prime_pr, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   608
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   609
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   610
lemma [intro]:"primerec rec_mult (Suc (Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   611
apply(simp add: rec_mult_def )
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   612
apply(rule_tac prime_pr, auto intro: prime_z)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   613
apply(case_tac i, auto intro: prime_id)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   614
done  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   615
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   616
lemma [elim]: "\<lbrakk>primerec rf n; n \<ge> Suc (Suc 0)\<rbrakk>   \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   617
                        primerec (rec_accum rf) n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   618
apply(auto simp: rec_accum.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   619
apply(simp add: nth_append, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   620
apply(case_tac i, auto intro: prime_id)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   621
apply(auto simp: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   622
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   623
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   624
lemma primerec_all_iff: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   625
  "\<lbrakk>primerec rt n; primerec rf (Suc n); n > 0\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   626
                                 primerec (rec_all rt rf) n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   627
  apply(simp add: rec_all.simps, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   628
  apply(auto, simp add: nth_append, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   629
  done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   630
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   631
lemma [simp]: "Rr (xs @ [0]) \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   632
                   Min {x. x = (0::nat) \<and> Rr (xs @ [x])} = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   633
by(rule_tac Min_eqI, simp, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   634
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   635
lemma [intro]: "primerec rec_not (Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   636
apply(simp add: rec_not_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   637
apply(rule prime_cn, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   638
apply(case_tac i, auto intro: prime_id)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   639
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   640
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   641
lemma Min_false1[simp]: "\<lbrakk>\<not> Min {uu. uu \<le> w \<and> 0 < rec_exec rf (xs @ [uu])} \<le> w;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   642
       x \<le> w; 0 < rec_exec rf (xs @ [x])\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   643
      \<Longrightarrow>  False"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   644
apply(subgoal_tac "finite {uu. uu \<le> w \<and> 0 < rec_exec rf (xs @ [uu])}")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   645
apply(subgoal_tac "{uu. uu \<le> w \<and> 0 < rec_exec rf (xs @ [uu])} \<noteq> {}")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   646
apply(simp add: Min_le_iff, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   647
apply(rule_tac x = x in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   648
apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   649
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   650
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   651
lemma sigma_minr_lemma: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   652
  assumes prrf:  "primerec rf (Suc (length xs))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   653
  shows "UF.Sigma (rec_exec (rec_all (recf.id (Suc (length xs)) (length xs))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   654
     (Cn (Suc (Suc (length xs))) rec_not
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   655
      [Cn (Suc (Suc (length xs))) rf (get_fstn_args (Suc (Suc (length xs))) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   656
       (length xs) @ [recf.id (Suc (Suc (length xs))) (Suc (length xs))])])))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   657
      (xs @ [w]) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   658
       Minr (\<lambda>args. 0 < rec_exec rf args) xs w"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   659
proof(induct w)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   660
  let ?rt = "(recf.id (Suc (length xs)) ((length xs)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   661
  let ?rf = "(Cn (Suc (Suc (length xs))) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   662
    rec_not [Cn (Suc (Suc (length xs))) rf 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   663
    (get_fstn_args (Suc (Suc (length xs))) (length xs) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   664
                [recf.id (Suc (Suc (length xs))) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   665
    (Suc ((length xs)))])])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   666
  let ?rq = "(rec_all ?rt ?rf)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   667
  have prrf: "primerec ?rf (Suc (length (xs @ [0]))) \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   668
        primerec ?rt (length (xs @ [0]))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   669
    apply(auto simp: prrf nth_append)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   670
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   671
  show "Sigma (rec_exec (rec_all ?rt ?rf)) (xs @ [0])
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   672
       = Minr (\<lambda>args. 0 < rec_exec rf args) xs 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   673
    apply(simp add: Sigma.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   674
    apply(simp only: prrf all_lemma,  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   675
          auto simp: rec_exec.simps get_fstn_args_take Minr.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   676
    apply(rule_tac Min_eqI, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   677
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   678
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   679
  fix w
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   680
  let ?rt = "(recf.id (Suc (length xs)) ((length xs)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   681
  let ?rf = "(Cn (Suc (Suc (length xs))) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   682
    rec_not [Cn (Suc (Suc (length xs))) rf 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   683
    (get_fstn_args (Suc (Suc (length xs))) (length xs) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   684
                [recf.id (Suc (Suc (length xs))) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   685
    (Suc ((length xs)))])])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   686
  let ?rq = "(rec_all ?rt ?rf)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   687
  assume ind:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   688
    "Sigma (rec_exec (rec_all ?rt ?rf)) (xs @ [w]) = Minr (\<lambda>args. 0 < rec_exec rf args) xs w"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   689
  have prrf: "primerec ?rf (Suc (length (xs @ [Suc w]))) \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   690
        primerec ?rt (length (xs @ [Suc w]))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   691
    apply(auto simp: prrf nth_append)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   692
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   693
  show "UF.Sigma (rec_exec (rec_all ?rt ?rf))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   694
         (xs @ [Suc w]) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   695
        Minr (\<lambda>args. 0 < rec_exec rf args) xs (Suc w)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   696
    apply(auto simp: Sigma_Suc_simp_rewrite ind Minr_Suc_simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   697
    apply(simp_all only: prrf all_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   698
    apply(auto simp: rec_exec.simps get_fstn_args_take Let_def Minr.simps split: if_splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   699
    apply(drule_tac Min_false1, simp, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   700
    apply(case_tac "x = Suc w", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   701
    apply(drule_tac Min_false1, simp, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   702
    apply(drule_tac Min_false1, simp, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   703
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   704
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   705
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   706
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   707
  The correctness of @{text "rec_Minr"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   708
  *}
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   709
lemma Minr_lemma: 
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   710
  assumes h: "primerec rf (Suc (length xs))" 
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   711
  shows "rec_exec (rec_Minr rf) (xs @ [w]) = Minr (\<lambda> args. (0 < rec_exec rf args)) xs w"
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   712
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   713
  let ?rt = "(recf.id (Suc (length xs)) ((length xs)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   714
  let ?rf = "(Cn (Suc (Suc (length xs))) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   715
    rec_not [Cn (Suc (Suc (length xs))) rf 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   716
    (get_fstn_args (Suc (Suc (length xs))) (length xs) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   717
                [recf.id (Suc (Suc (length xs))) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   718
    (Suc ((length xs)))])])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   719
  let ?rq = "(rec_all ?rt ?rf)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   720
  have h1: "primerec ?rq (Suc (length xs))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   721
    apply(rule_tac primerec_all_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   722
    apply(auto simp: h nth_append)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   723
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   724
  moreover have "arity rf = Suc (length xs)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   725
    using h by auto
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   726
  ultimately show "rec_exec (rec_Minr rf) (xs @ [w]) = Minr (\<lambda> args. (0 < rec_exec rf args)) xs w"
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   727
    apply(simp add: rec_exec.simps rec_Minr.simps arity.simps Let_def 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   728
                    sigma_lemma all_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   729
    apply(rule_tac  sigma_minr_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   730
    apply(simp add: h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   731
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   732
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   733
    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   734
text {* 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   735
  @{text "rec_le"} is the comparasion function 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   736
  which compares its two arguments, testing whether the 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   737
  first is less or equal to the second.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   738
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   739
definition rec_le :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   740
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   741
  "rec_le = Cn (Suc (Suc 0)) rec_disj [rec_less, rec_eq]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   742
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   743
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   744
  The correctness of @{text "rec_le"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   745
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   746
lemma le_lemma: 
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   747
  "rec_exec rec_le [x, y] = (if (x \<le> y) then 1 else 0)"
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   748
by(auto simp: rec_le_def rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   749
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   750
text {*
199
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 198
diff changeset
   751
  Definition of @{text "Max[Rr]"} on page 77 of Boolos's book.
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   752
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   753
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   754
fun Maxr :: "(nat list \<Rightarrow> bool) \<Rightarrow> nat list \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   755
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   756
  "Maxr Rr xs w = (let setx = {y. y \<le> w \<and> Rr (xs @[y])} in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   757
                  if setx = {} then 0
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   758
                  else Max setx)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   759
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   760
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   761
  @{text "rec_maxr"} is the recursive function 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   762
  used to implementation @{text "Maxr"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   763
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   764
fun rec_maxr :: "recf \<Rightarrow> recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   765
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   766
  "rec_maxr rr = (let vl = arity rr in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   767
                  let rt = id (Suc vl) (vl - 1) in
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   768
                  let rf1 = Cn (Suc (Suc vl)) rec_le 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   769
                    [id (Suc (Suc vl)) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   770
                     ((Suc vl)), id (Suc (Suc vl)) (vl)] in
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   771
                  let rf2 = Cn (Suc (Suc vl)) rec_not 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   772
                      [Cn (Suc (Suc vl)) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   773
                           rr (get_fstn_args (Suc (Suc vl)) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   774
                            (vl - 1) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   775
                             [id (Suc (Suc vl)) ((Suc vl))])] in
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   776
                  let rf = Cn (Suc (Suc vl)) rec_disj [rf1, rf2] in
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   777
                  let Qf = Cn (Suc vl) rec_not [rec_all rt rf]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   778
                  in Cn vl (rec_sigma Qf) (get_fstn_args vl vl @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   779
                                                         [id vl (vl - 1)]))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   780
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   781
declare rec_maxr.simps[simp del] Maxr.simps[simp del] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   782
declare le_lemma[simp]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   783
lemma [simp]: "(min (Suc (Suc (Suc (x)))) (x)) = x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   784
by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   785
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   786
declare numeral_2_eq_2[simp]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   787
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   788
lemma [intro]: "primerec rec_disj (Suc (Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   789
  apply(simp add: rec_disj_def, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   790
  apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   791
  apply(case_tac ia, auto intro: prime_id)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   792
  done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   793
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   794
lemma [intro]: "primerec rec_less (Suc (Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   795
  apply(simp add: rec_less_def, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   796
  apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   797
  apply(case_tac ia , auto intro: prime_id)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   798
  done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   799
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   800
lemma [intro]: "primerec rec_eq (Suc (Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   801
  apply(simp add: rec_eq_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   802
  apply(rule_tac prime_cn, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   803
  apply(case_tac i, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   804
  apply(case_tac ia, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   805
  apply(case_tac [!] i, auto intro: prime_id)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   806
  done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   807
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   808
lemma [intro]: "primerec rec_le (Suc (Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   809
  apply(simp add: rec_le_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   810
  apply(rule_tac prime_cn, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   811
  apply(case_tac i, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   812
  done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   813
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   814
lemma [simp]:  
237
06a6db387cd2 updated and small modification
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 229
diff changeset
   815
  "length ys = Suc n \<Longrightarrow> (take n ys @ [ys ! n, ys ! n]) = ys @ [ys ! n]"
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   816
apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   817
apply(subgoal_tac "\<exists> xs y. ys = xs @ [y]", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   818
apply(rule_tac x = "butlast ys" in exI, rule_tac x = "last ys" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   819
apply(case_tac "ys = []", simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   820
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   821
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   822
lemma Maxr_Suc_simp: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   823
  "Maxr Rr xs (Suc w) =(if Rr (xs @ [Suc w]) then Suc w
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   824
     else Maxr Rr xs w)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   825
apply(auto simp: Maxr.simps Max.insert)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   826
apply(rule_tac Max_eqI, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   827
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   828
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   829
lemma [simp]: "min (Suc n) n = n" by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   830
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   831
lemma Sigma_0: "\<forall> i \<le> n. (f (xs @ [i]) = 0) \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   832
                              Sigma f (xs @ [n]) = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   833
apply(induct n, simp add: Sigma.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   834
apply(simp add: Sigma_Suc_simp_rewrite)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   835
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   836
  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   837
lemma [elim]: "\<forall>k<Suc w. f (xs @ [k]) = Suc 0
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   838
        \<Longrightarrow> Sigma f (xs @ [w]) = Suc w"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   839
apply(induct w)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   840
apply(simp add: Sigma.simps, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   841
apply(simp add: Sigma.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   842
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   843
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   844
lemma Sigma_max_point: "\<lbrakk>\<forall> k < ma. f (xs @ [k]) = 1;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   845
        \<forall> k \<ge> ma. f (xs @ [k]) = 0; ma \<le> w\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   846
    \<Longrightarrow> Sigma f (xs @ [w]) = ma"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   847
apply(induct w, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   848
apply(rule_tac Sigma_0, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   849
apply(simp add: Sigma_Suc_simp_rewrite)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   850
apply(case_tac "ma = Suc w", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   851
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   852
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   853
lemma Sigma_Max_lemma: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   854
  assumes prrf: "primerec rf (Suc (length xs))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   855
  shows "UF.Sigma (rec_exec (Cn (Suc (Suc (length xs))) rec_not
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   856
  [rec_all (recf.id (Suc (Suc (length xs))) (length xs))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   857
  (Cn (Suc (Suc (Suc (length xs)))) rec_disj
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   858
  [Cn (Suc (Suc (Suc (length xs)))) rec_le
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   859
  [recf.id (Suc (Suc (Suc (length xs)))) (Suc (Suc (length xs))), 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   860
  recf.id (Suc (Suc (Suc (length xs)))) (Suc (length xs))],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   861
  Cn (Suc (Suc (Suc (length xs)))) rec_not
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   862
  [Cn (Suc (Suc (Suc (length xs)))) rf
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   863
  (get_fstn_args (Suc (Suc (Suc (length xs)))) (length xs) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   864
  [recf.id (Suc (Suc (Suc (length xs)))) (Suc (Suc (length xs)))])]])]))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   865
  ((xs @ [w]) @ [w]) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   866
       Maxr (\<lambda>args. 0 < rec_exec rf args) xs w"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   867
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   868
  let ?rt = "(recf.id (Suc (Suc (length xs))) ((length xs)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   869
  let ?rf1 = "Cn (Suc (Suc (Suc (length xs))))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   870
    rec_le [recf.id (Suc (Suc (Suc (length xs)))) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   871
    ((Suc (Suc (length xs)))), recf.id 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   872
    (Suc (Suc (Suc (length xs)))) ((Suc (length xs)))]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   873
  let ?rf2 = "Cn (Suc (Suc (Suc (length xs)))) rf 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   874
               (get_fstn_args (Suc (Suc (Suc (length xs))))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   875
    (length xs) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   876
    [recf.id (Suc (Suc (Suc (length xs))))    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   877
    ((Suc (Suc (length xs))))])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   878
  let ?rf3 = "Cn (Suc (Suc (Suc (length xs)))) rec_not [?rf2]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   879
  let ?rf = "Cn (Suc (Suc (Suc (length xs)))) rec_disj [?rf1, ?rf3]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   880
  let ?rq = "rec_all ?rt ?rf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   881
  let ?notrq = "Cn (Suc (Suc (length xs))) rec_not [?rq]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   882
  show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   883
  proof(auto simp: Maxr.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   884
    assume h: "\<forall>x\<le>w. rec_exec rf (xs @ [x]) = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   885
    have "primerec ?rf (Suc (length (xs @ [w, i]))) \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   886
          primerec ?rt (length (xs @ [w, i]))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   887
      using prrf
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   888
      apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   889
      apply(case_tac i, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   890
      apply(case_tac ia, auto simp: h nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   891
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   892
    hence "Sigma (rec_exec ?notrq) ((xs@[w])@[w]) = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   893
      apply(rule_tac Sigma_0)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   894
      apply(auto simp: rec_exec.simps all_lemma
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   895
                       get_fstn_args_take nth_append h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   896
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   897
    thus "UF.Sigma (rec_exec ?notrq)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   898
      (xs @ [w, w]) = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   899
      by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   900
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   901
    fix x
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   902
    assume h: "x \<le> w" "0 < rec_exec rf (xs @ [x])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   903
    hence "\<exists> ma. Max {y. y \<le> w \<and> 0 < rec_exec rf (xs @ [y])} = ma"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   904
      by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   905
    from this obtain ma where k1: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   906
      "Max {y. y \<le> w \<and> 0 < rec_exec rf (xs @ [y])} = ma" ..
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   907
    hence k2: "ma \<le> w \<and> 0 < rec_exec rf (xs @ [ma])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   908
      using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   909
      apply(subgoal_tac
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   910
        "Max {y. y \<le> w \<and> 0 < rec_exec rf (xs @ [y])} \<in>  {y. y \<le> w \<and> 0 < rec_exec rf (xs @ [y])}")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   911
      apply(erule_tac CollectE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   912
      apply(rule_tac Max_in, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   913
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   914
    hence k3: "\<forall> k < ma. (rec_exec ?notrq (xs @ [w, k]) = 1)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   915
      apply(auto simp: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   916
      apply(subgoal_tac "primerec ?rf (Suc (length (xs @ [w, k]))) \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   917
        primerec ?rt (length (xs @ [w, k]))")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   918
      apply(auto simp: rec_exec.simps all_lemma get_fstn_args_take nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   919
      using prrf
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   920
      apply(case_tac i, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   921
      apply(case_tac ia, auto simp: h nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   922
      done    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   923
    have k4: "\<forall> k \<ge> ma. (rec_exec ?notrq (xs @ [w, k]) = 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   924
      apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   925
      apply(subgoal_tac "primerec ?rf (Suc (length (xs @ [w, k]))) \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   926
        primerec ?rt (length (xs @ [w, k]))")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   927
      apply(auto simp: rec_exec.simps all_lemma get_fstn_args_take nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   928
      apply(subgoal_tac "x \<le> Max {y. y \<le> w \<and> 0 < rec_exec rf (xs @ [y])}",
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   929
        simp add: k1)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   930
      apply(rule_tac Max_ge, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   931
      using prrf
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   932
      apply(case_tac i, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   933
      apply(case_tac ia, auto simp: h nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   934
      done 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   935
    from k3 k4 k1 have "Sigma (rec_exec ?notrq) ((xs @ [w]) @ [w]) = ma"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   936
      apply(rule_tac Sigma_max_point, simp, simp, simp add: k2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   937
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   938
    from k1 and this show "Sigma (rec_exec ?notrq) (xs @ [w, w]) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   939
      Max {y. y \<le> w \<and> 0 < rec_exec rf (xs @ [y])}"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   940
      by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   941
  qed  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   942
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   943
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   944
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   945
  The correctness of @{text "rec_maxr"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   946
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   947
lemma Maxr_lemma:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   948
 assumes h: "primerec rf (Suc (length xs))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   949
 shows   "rec_exec (rec_maxr rf) (xs @ [w]) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   950
            Maxr (\<lambda> args. 0 < rec_exec rf args) xs w"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   951
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   952
  from h have "arity rf = Suc (length xs)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   953
    by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   954
  thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   955
  proof(simp add: rec_exec.simps rec_maxr.simps nth_append get_fstn_args_take)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   956
    let ?rt = "(recf.id (Suc (Suc (length xs))) ((length xs)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   957
    let ?rf1 = "Cn (Suc (Suc (Suc (length xs))))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   958
                     rec_le [recf.id (Suc (Suc (Suc (length xs)))) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   959
              ((Suc (Suc (length xs)))), recf.id 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   960
             (Suc (Suc (Suc (length xs)))) ((Suc (length xs)))]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   961
    let ?rf2 = "Cn (Suc (Suc (Suc (length xs)))) rf 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   962
               (get_fstn_args (Suc (Suc (Suc (length xs))))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   963
                (length xs) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   964
                  [recf.id (Suc (Suc (Suc (length xs))))    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   965
                           ((Suc (Suc (length xs))))])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   966
    let ?rf3 = "Cn (Suc (Suc (Suc (length xs)))) rec_not [?rf2]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   967
    let ?rf = "Cn (Suc (Suc (Suc (length xs)))) rec_disj [?rf1, ?rf3]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   968
    let ?rq = "rec_all ?rt ?rf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   969
    let ?notrq = "Cn (Suc (Suc (length xs))) rec_not [?rq]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   970
    have prt: "primerec ?rt (Suc (Suc (length xs)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   971
      by(auto intro: prime_id)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   972
    have prrf: "primerec ?rf (Suc (Suc (Suc (length xs))))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   973
      apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   974
      apply(case_tac i, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   975
      apply(case_tac ia, auto intro: prime_id)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   976
      apply(simp add: h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   977
      apply(simp add: nth_append, auto intro: prime_id)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   978
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   979
    from prt and prrf have prrq: "primerec ?rq 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   980
                                       (Suc (Suc (length xs)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   981
      by(erule_tac primerec_all_iff, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   982
    hence prnotrp: "primerec ?notrq (Suc (length ((xs @ [w]))))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   983
      by(rule_tac prime_cn, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   984
    have g1: "rec_exec (rec_sigma ?notrq) ((xs @ [w]) @ [w]) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   985
      = Maxr (\<lambda>args. 0 < rec_exec rf args) xs w"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   986
      using prnotrp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   987
      using sigma_lemma
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   988
      apply(simp only: sigma_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   989
      apply(rule_tac Sigma_Max_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   990
      apply(simp add: h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   991
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   992
    thus "rec_exec (rec_sigma ?notrq)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   993
     (xs @ [w, w]) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   994
    Maxr (\<lambda>args. 0 < rec_exec rf args) xs w"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   995
      apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   996
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   997
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   998
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   999
      
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1000
text {* 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1001
  @{text "quo"} is the formal specification of division.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1002
 *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1003
fun quo :: "nat list \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1004
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1005
  "quo [x, y] = (let Rr = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1006
                         (\<lambda> zs. ((zs ! (Suc 0) * zs ! (Suc (Suc 0))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1007
                                 \<le> zs ! 0) \<and> zs ! Suc 0 \<noteq> (0::nat)))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1008
                 in Maxr Rr [x, y] x)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1009
 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1010
declare quo.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1011
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1012
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1013
  The following lemmas shows more directly the menaing of @{text "quo"}:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1014
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1015
lemma [elim!]: "y > 0 \<Longrightarrow> quo [x, y] = x div y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1016
proof(simp add: quo.simps Maxr.simps, auto,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1017
      rule_tac Max_eqI, simp, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1018
  fix xa ya
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1019
  assume h: "y * ya \<le> x"  "y > 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1020
  hence "(y * ya) div y \<le> x div y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1021
    by(insert div_le_mono[of "y * ya" x y], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1022
  from this and h show "ya \<le> x div y" by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1023
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1024
  fix xa
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1025
  show "y * (x div y) \<le> x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1026
    apply(subgoal_tac "y * (x div y) + x mod y = x")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1027
    apply(rule_tac k = "x mod y" in add_leD1, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1028
    apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1029
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1030
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1031
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1032
lemma [intro]: "quo [x, 0] = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1033
by(simp add: quo.simps Maxr.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1034
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1035
lemma quo_div: "quo [x, y] = x div y"  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1036
by(case_tac "y=0", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1037
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1038
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1039
  @{text "rec_noteq"} is the recursive function testing whether its
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1040
  two arguments are not equal.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1041
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1042
definition rec_noteq:: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1043
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1044
  "rec_noteq = Cn (Suc (Suc 0)) rec_not [Cn (Suc (Suc 0)) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1045
              rec_eq [id (Suc (Suc 0)) (0), id (Suc (Suc 0)) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1046
                                        ((Suc 0))]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1047
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1048
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1049
  The correctness of @{text "rec_noteq"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1050
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1051
lemma noteq_lemma: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1052
  "\<And> x y. rec_exec rec_noteq [x, y] = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1053
               (if x \<noteq> y then 1 else 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1054
by(simp add: rec_exec.simps rec_noteq_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1055
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1056
declare noteq_lemma[simp]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1057
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1058
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1059
  @{text "rec_quo"} is the recursive function used to implement @{text "quo"}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1060
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1061
definition rec_quo :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1062
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1063
  "rec_quo = (let rR = Cn (Suc (Suc (Suc 0))) rec_conj
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1064
              [Cn (Suc (Suc (Suc 0))) rec_le 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1065
               [Cn (Suc (Suc (Suc 0))) rec_mult 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1066
                  [id (Suc (Suc (Suc 0))) (Suc 0), 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1067
                     id (Suc (Suc (Suc 0))) ((Suc (Suc 0)))],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1068
                id (Suc (Suc (Suc 0))) (0)], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1069
                Cn (Suc (Suc (Suc 0))) rec_noteq 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1070
                         [id (Suc (Suc (Suc 0))) (Suc (0)),
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1071
                Cn (Suc (Suc (Suc 0))) (constn 0) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1072
                              [id (Suc (Suc (Suc 0))) (0)]]] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1073
              in Cn (Suc (Suc 0)) (rec_maxr rR)) [id (Suc (Suc 0)) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1074
                           (0),id (Suc (Suc 0)) (Suc (0)), 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1075
                                   id (Suc (Suc 0)) (0)]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1076
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1077
lemma [intro]: "primerec rec_conj (Suc (Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1078
  apply(simp add: rec_conj_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1079
  apply(rule_tac prime_cn, auto)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1080
  apply(case_tac i, auto intro: prime_id)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1081
  done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1082
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1083
lemma [intro]: "primerec rec_noteq (Suc (Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1084
apply(simp add: rec_noteq_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1085
apply(rule_tac prime_cn, auto)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1086
apply(case_tac i, auto intro: prime_id)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1087
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1088
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1089
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1090
lemma quo_lemma1: "rec_exec rec_quo [x, y] = quo [x, y]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1091
proof(simp add: rec_exec.simps rec_quo_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1092
  let ?rR = "(Cn (Suc (Suc (Suc 0))) rec_conj
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1093
               [Cn (Suc (Suc (Suc 0))) rec_le
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1094
                   [Cn (Suc (Suc (Suc 0))) rec_mult 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1095
               [recf.id (Suc (Suc (Suc 0))) (Suc (0)), 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1096
                recf.id (Suc (Suc (Suc 0))) (Suc (Suc (0)))],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1097
                 recf.id (Suc (Suc (Suc 0))) (0)],  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1098
          Cn (Suc (Suc (Suc 0))) rec_noteq 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1099
                              [recf.id (Suc (Suc (Suc 0))) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1100
             (Suc (0)), Cn (Suc (Suc (Suc 0))) (constn 0) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1101
                      [recf.id (Suc (Suc (Suc 0))) (0)]]])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1102
  have "rec_exec (rec_maxr ?rR) ([x, y]@ [ x]) = Maxr (\<lambda> args. 0 < rec_exec ?rR args) [x, y] x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1103
  proof(rule_tac Maxr_lemma, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1104
    show "primerec ?rR (Suc (Suc (Suc 0)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1105
      apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1106
      apply(case_tac i, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1107
      apply(case_tac [!] ia, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1108
      apply(case_tac i, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1109
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1110
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1111
  hence g1: "rec_exec (rec_maxr ?rR) ([x, y,  x]) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1112
             Maxr (\<lambda> args. if rec_exec ?rR args = 0 then False
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1113
                           else True) [x, y] x" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1114
    by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1115
  have g2: "Maxr (\<lambda> args. if rec_exec ?rR args = 0 then False
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1116
                           else True) [x, y] x = quo [x, y]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1117
    apply(simp add: rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1118
    apply(simp add: Maxr.simps quo.simps, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1119
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1120
  from g1 and g2 show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1121
    "rec_exec (rec_maxr ?rR) ([x, y,  x]) = quo [x, y]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1122
    by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1123
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1124
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1125
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1126
  The correctness of @{text "quo"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1127
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1128
lemma quo_lemma2: "rec_exec rec_quo [x, y] = x div y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1129
  using quo_lemma1[of x y] quo_div[of x y]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1130
  by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1131
 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1132
text {* 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1133
  @{text "rec_mod"} is the recursive function used to implement 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1134
  the reminder function.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1135
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1136
definition rec_mod :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1137
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1138
  "rec_mod = Cn (Suc (Suc 0)) rec_minus [id (Suc (Suc 0)) (0), 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1139
               Cn (Suc (Suc 0)) rec_mult [rec_quo, id (Suc (Suc 0))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1140
                                                     (Suc (0))]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1141
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1142
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1143
  The correctness of @{text "rec_mod"}:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1144
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1145
lemma mod_lemma: "\<And> x y. rec_exec rec_mod [x, y] = (x mod y)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1146
proof(simp add: rec_exec.simps rec_mod_def quo_lemma2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1147
  fix x y
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1148
  show "x - x div y * y = x mod (y::nat)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1149
    using mod_div_equality2[of y x]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1150
    apply(subgoal_tac "y * (x div y) = (x div y ) * y", arith, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1151
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1152
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1153
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1154
text{* lemmas for embranch function*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1155
type_synonym ftype = "nat list \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1156
type_synonym rtype = "nat list \<Rightarrow> bool"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1157
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1158
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1159
  The specifation of the mutli-way branching statement on
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1160
  page 79 of Boolos's book.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1161
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1162
fun Embranch :: "(ftype * rtype) list \<Rightarrow> nat list \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1163
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1164
  "Embranch [] xs = 0" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1165
  "Embranch (gc # gcs) xs = (
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1166
                   let (g, c) = gc in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1167
                   if c xs then g xs else Embranch gcs xs)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1168
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1169
fun rec_embranch' :: "(recf * recf) list \<Rightarrow> nat \<Rightarrow> recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1170
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1171
  "rec_embranch' [] vl = Cn vl z [id vl (vl - 1)]" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1172
  "rec_embranch' ((rg, rc) # rgcs) vl = Cn vl rec_add
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1173
                   [Cn vl rec_mult [rg, rc], rec_embranch' rgcs vl]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1174
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1175
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1176
  @{text "rec_embrach"} is the recursive function used to implement
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1177
  @{text "Embranch"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1178
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1179
fun rec_embranch :: "(recf * recf) list \<Rightarrow> recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1180
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1181
  "rec_embranch ((rg, rc) # rgcs) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1182
         (let vl = arity rg in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1183
          rec_embranch' ((rg, rc) # rgcs) vl)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1184
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1185
declare Embranch.simps[simp del] rec_embranch.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1186
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1187
lemma embranch_all0: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1188
  "\<lbrakk>\<forall> j < length rcs. rec_exec (rcs ! j) xs = 0;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1189
    length rgs = length rcs;  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1190
  rcs \<noteq> []; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1191
  list_all (\<lambda> rf. primerec rf (length xs)) (rgs @ rcs)\<rbrakk>  \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1192
  rec_exec (rec_embranch (zip rgs rcs)) xs = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1193
proof(induct rcs arbitrary: rgs, simp, case_tac rgs, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1194
  fix a rcs rgs aa list
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1195
  assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1196
    "\<And>rgs. \<lbrakk>\<forall>j<length rcs. rec_exec (rcs ! j) xs = 0; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1197
             length rgs = length rcs; rcs \<noteq> []; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1198
            list_all (\<lambda>rf. primerec rf (length xs)) (rgs @ rcs)\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1199
                      rec_exec (rec_embranch (zip rgs rcs)) xs = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1200
  and h:  "\<forall>j<length (a # rcs). rec_exec ((a # rcs) ! j) xs = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1201
  "length rgs = length (a # rcs)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1202
    "a # rcs \<noteq> []" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1203
    "list_all (\<lambda>rf. primerec rf (length xs)) (rgs @ a # rcs)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1204
    "rgs = aa # list"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1205
  have g: "rcs \<noteq> [] \<Longrightarrow> rec_exec (rec_embranch (zip list rcs)) xs = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1206
    using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1207
    by(rule_tac ind, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1208
  show "rec_exec (rec_embranch (zip rgs (a # rcs))) xs = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1209
  proof(case_tac "rcs = []", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1210
    show "rec_exec (rec_embranch (zip rgs [a])) xs = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1211
      using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1212
      apply(simp add: rec_embranch.simps rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1213
      apply(erule_tac x = 0 in allE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1214
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1215
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1216
    assume "rcs \<noteq> []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1217
    hence "rec_exec (rec_embranch (zip list rcs)) xs = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1218
      using g by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1219
    thus "rec_exec (rec_embranch (zip rgs (a # rcs))) xs = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1220
      using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1221
      apply(simp add: rec_embranch.simps rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1222
      apply(case_tac rcs,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1223
        auto simp: rec_exec.simps rec_embranch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1224
      apply(case_tac list,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1225
        auto simp: rec_exec.simps rec_embranch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1226
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1227
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1228
qed     
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1229
 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1230
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1231
lemma embranch_exec_0: "\<lbrakk>rec_exec aa xs = 0; zip rgs list \<noteq> []; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1232
       list_all (\<lambda> rf. primerec rf (length xs)) ([a, aa] @ rgs @ list)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1233
       \<Longrightarrow> rec_exec (rec_embranch ((a, aa) # zip rgs list)) xs
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1234
         = rec_exec (rec_embranch (zip rgs list)) xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1235
apply(simp add: rec_exec.simps rec_embranch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1236
apply(case_tac "zip rgs list", simp, case_tac ab, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1237
  simp add: rec_embranch.simps rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1238
apply(subgoal_tac "arity a = length xs", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1239
apply(subgoal_tac "arity aaa = length xs", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1240
apply(case_tac rgs, simp, case_tac list, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1241
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1242
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1243
lemma zip_null_iff: "\<lbrakk>length xs = k; length ys = k; zip xs ys = []\<rbrakk> \<Longrightarrow> xs = [] \<and> ys = []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1244
apply(case_tac xs, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1245
apply(case_tac ys, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1246
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1247
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1248
lemma zip_null_gr: "\<lbrakk>length xs = k; length ys = k; zip xs ys \<noteq> []\<rbrakk> \<Longrightarrow> 0 < k"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1249
apply(case_tac xs, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1250
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1251
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1252
lemma Embranch_0:  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1253
  "\<lbrakk>length rgs = k; length rcs = k; k > 0; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1254
  \<forall> j < k. rec_exec (rcs ! j) xs = 0\<rbrakk> \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1255
  Embranch (zip (map rec_exec rgs) (map (\<lambda>r args. 0 < rec_exec r args) rcs)) xs = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1256
proof(induct rgs arbitrary: rcs k, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1257
  fix a rgs rcs k
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1258
  assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1259
    "\<And>rcs k. \<lbrakk>length rgs = k; length rcs = k; 0 < k; \<forall>j<k. rec_exec (rcs ! j) xs = 0\<rbrakk> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1260
    \<Longrightarrow> Embranch (zip (map rec_exec rgs) (map (\<lambda>r args. 0 < rec_exec r args) rcs)) xs = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1261
  and h: "Suc (length rgs) = k" "length rcs = k"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1262
    "\<forall>j<k. rec_exec (rcs ! j) xs = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1263
  from h show  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1264
    "Embranch (zip (rec_exec a # map rec_exec rgs) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1265
           (map (\<lambda>r args. 0 < rec_exec r args) rcs)) xs = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1266
    apply(case_tac rcs, simp, case_tac "rgs = []", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1267
    apply(simp add: Embranch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1268
    apply(erule_tac x = 0 in allE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1269
    apply(simp add: Embranch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1270
    apply(erule_tac x = 0 in all_dupE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1271
    apply(rule_tac ind, simp, simp, simp, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1272
    apply(erule_tac x = "Suc j" in allE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1273
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1274
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1275
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1276
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1277
  The correctness of @{text "rec_embranch"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1278
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1279
lemma embranch_lemma:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1280
  assumes branch_num:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1281
  "length rgs = n" "length rcs = n" "n > 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1282
  and partition: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1283
  "(\<exists> i < n. (rec_exec (rcs ! i) xs = 1 \<and> (\<forall> j < n. j \<noteq> i \<longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1284
                                      rec_exec (rcs ! j) xs = 0)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1285
  and prime_all: "list_all (\<lambda> rf. primerec rf (length xs)) (rgs @ rcs)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1286
  shows "rec_exec (rec_embranch (zip rgs rcs)) xs =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1287
                  Embranch (zip (map rec_exec rgs) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1288
                     (map (\<lambda> r args. 0 < rec_exec r args) rcs)) xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1289
  using branch_num partition prime_all
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1290
proof(induct rgs arbitrary: rcs n, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1291
  fix a rgs rcs n
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1292
  assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1293
    "\<And>rcs n. \<lbrakk>length rgs = n; length rcs = n; 0 < n;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1294
    \<exists>i<n. rec_exec (rcs ! i) xs = 1 \<and> (\<forall>j<n. j \<noteq> i \<longrightarrow> rec_exec (rcs ! j) xs = 0);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1295
    list_all (\<lambda>rf. primerec rf (length xs)) (rgs @ rcs)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1296
    \<Longrightarrow> rec_exec (rec_embranch (zip rgs rcs)) xs =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1297
    Embranch (zip (map rec_exec rgs) (map (\<lambda>r args. 0 < rec_exec r args) rcs)) xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1298
  and h: "length (a # rgs) = n" "length (rcs::recf list) = n" "0 < n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1299
         " \<exists>i<n. rec_exec (rcs ! i) xs = 1 \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1300
         (\<forall>j<n. j \<noteq> i \<longrightarrow> rec_exec (rcs ! j) xs = 0)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1301
    "list_all (\<lambda>rf. primerec rf (length xs)) ((a # rgs) @ rcs)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1302
  from h show "rec_exec (rec_embranch (zip (a # rgs) rcs)) xs =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1303
    Embranch (zip (map rec_exec (a # rgs)) (map (\<lambda>r args. 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1304
                0 < rec_exec r args) rcs)) xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1305
    apply(case_tac rcs, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1306
    apply(case_tac "rec_exec aa xs = 0")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1307
    apply(case_tac [!] "zip rgs list = []", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1308
    apply(subgoal_tac "rgs = [] \<and> list = []", simp add: Embranch.simps rec_exec.simps rec_embranch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1309
    apply(rule_tac  zip_null_iff, simp, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1310
  proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1311
    fix aa list
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1312
    assume g:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1313
      "Suc (length rgs) = n" "Suc (length list) = n" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1314
      "\<exists>i<n. rec_exec ((aa # list) ! i) xs = Suc 0 \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1315
          (\<forall>j<n. j \<noteq> i \<longrightarrow> rec_exec ((aa # list) ! j) xs = 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1316
      "primerec a (length xs) \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1317
      list_all (\<lambda>rf. primerec rf (length xs)) rgs \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1318
      primerec aa (length xs) \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1319
      list_all (\<lambda>rf. primerec rf (length xs)) list"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1320
      "rec_exec aa xs = 0" "rcs = aa # list" "zip rgs list \<noteq> []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1321
    have "rec_exec (rec_embranch ((a, aa) # zip rgs list)) xs
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1322
        = rec_exec (rec_embranch (zip rgs list)) xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1323
      apply(rule embranch_exec_0, simp_all add: g)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1324
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1325
    from g and this show "rec_exec (rec_embranch ((a, aa) # zip rgs list)) xs =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1326
         Embranch ((rec_exec a, \<lambda>args. 0 < rec_exec aa args) # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1327
           zip (map rec_exec rgs) (map (\<lambda>r args. 0 < rec_exec r args) list)) xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1328
      apply(simp add: Embranch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1329
      apply(rule_tac n = "n - Suc 0" in ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1330
      apply(case_tac n, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1331
      apply(case_tac n, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1332
      apply(case_tac n, simp, simp add: zip_null_gr )
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1333
      apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1334
      apply(case_tac i, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1335
      apply(rule_tac x = nat in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1336
      apply(rule_tac allI, erule_tac x = "Suc j" in allE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1337
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1338
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1339
    fix aa list
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1340
    assume g: "Suc (length rgs) = n" "Suc (length list) = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1341
      "\<exists>i<n. rec_exec ((aa # list) ! i) xs = Suc 0 \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1342
      (\<forall>j<n. j \<noteq> i \<longrightarrow> rec_exec ((aa # list) ! j) xs = 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1343
      "primerec a (length xs) \<and> list_all (\<lambda>rf. primerec rf (length xs)) rgs \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1344
      primerec aa (length xs) \<and> list_all (\<lambda>rf. primerec rf (length xs)) list"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1345
    "rcs = aa # list" "rec_exec aa xs \<noteq> 0" "zip rgs list = []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1346
    thus "rec_exec (rec_embranch ((a, aa) # zip rgs list)) xs = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1347
        Embranch ((rec_exec a, \<lambda>args. 0 < rec_exec aa args) # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1348
       zip (map rec_exec rgs) (map (\<lambda>r args. 0 < rec_exec r args) list)) xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1349
      apply(subgoal_tac "rgs = [] \<and> list = []", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1350
      prefer 2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1351
      apply(rule_tac zip_null_iff, simp, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1352
      apply(simp add: rec_exec.simps rec_embranch.simps Embranch.simps, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1353
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1354
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1355
    fix aa list
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1356
    assume g: "Suc (length rgs) = n" "Suc (length list) = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1357
      "\<exists>i<n. rec_exec ((aa # list) ! i) xs = Suc 0 \<and>  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1358
           (\<forall>j<n. j \<noteq> i \<longrightarrow> rec_exec ((aa # list) ! j) xs = 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1359
      "primerec a (length xs) \<and> list_all (\<lambda>rf. primerec rf (length xs)) rgs
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1360
      \<and> primerec aa (length xs) \<and> list_all (\<lambda>rf. primerec rf (length xs)) list"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1361
      "rcs = aa # list" "rec_exec aa xs \<noteq> 0" "zip rgs list \<noteq> []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1362
    have "rec_exec aa xs =  Suc 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1363
      using g
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1364
      apply(case_tac "rec_exec aa xs", simp, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1365
      done      
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1366
    moreover have "rec_exec (rec_embranch' (zip rgs list) (length xs)) xs = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1367
    proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1368
      have "rec_embranch' (zip rgs list) (length xs) = rec_embranch (zip rgs list)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1369
        using g
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1370
        apply(case_tac "zip rgs list", simp, case_tac ab)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1371
        apply(simp add: rec_embranch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1372
        apply(subgoal_tac "arity aaa = length xs", simp, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1373
        apply(case_tac rgs, simp, simp, case_tac list, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1374
        done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1375
      moreover have "rec_exec (rec_embranch (zip rgs list)) xs = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1376
      proof(rule embranch_all0)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1377
        show " \<forall>j<length list. rec_exec (list ! j) xs = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1378
          using g
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1379
          apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1380
          apply(case_tac i, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1381
          apply(erule_tac x = "Suc j" in allE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1382
          apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1383
          apply(erule_tac x = 0 in allE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1384
          done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1385
      next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1386
        show "length rgs = length list"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1387
          using g
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1388
          apply(case_tac n, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1389
          done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1390
      next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1391
        show "list \<noteq> []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1392
          using g
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1393
          apply(case_tac list, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1394
          done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1395
      next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1396
        show "list_all (\<lambda>rf. primerec rf (length xs)) (rgs @ list)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1397
          using g
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1398
          apply auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1399
          done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1400
      qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1401
      ultimately show "rec_exec (rec_embranch' (zip rgs list) (length xs)) xs = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1402
        by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1403
    qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1404
    moreover have 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1405
      "Embranch (zip (map rec_exec rgs) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1406
          (map (\<lambda>r args. 0 < rec_exec r args) list)) xs = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1407
      using g
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1408
      apply(rule_tac k = "length rgs" in Embranch_0)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1409
      apply(simp, case_tac n, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1410
      apply(case_tac rgs, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1411
      apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1412
      apply(case_tac i, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1413
      apply(erule_tac x = "Suc j" in allE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1414
      apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1415
      apply(rule_tac x = 0 in allE, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1416
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1417
    moreover have "arity a = length xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1418
      using g
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1419
      apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1420
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1421
    ultimately show "rec_exec (rec_embranch ((a, aa) # zip rgs list)) xs = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1422
      Embranch ((rec_exec a, \<lambda>args. 0 < rec_exec aa args) #
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1423
           zip (map rec_exec rgs) (map (\<lambda>r args. 0 < rec_exec r args) list)) xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1424
      apply(simp add: rec_exec.simps rec_embranch.simps Embranch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1425
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1426
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1427
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1428
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1429
text{* 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1430
  @{text "prime n"} means @{text "n"} is a prime number.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1431
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1432
fun Prime :: "nat \<Rightarrow> bool"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1433
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1434
  "Prime x = (1 < x \<and> (\<forall> u < x. (\<forall> v < x. u * v \<noteq> x)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1435
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1436
declare Prime.simps [simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1437
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1438
lemma primerec_all1: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1439
  "primerec (rec_all rt rf) n \<Longrightarrow> primerec rt n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1440
  by (simp add: primerec_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1441
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1442
lemma primerec_all2: "primerec (rec_all rt rf) n \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1443
  primerec rf (Suc n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1444
by(insert primerec_all[of rt rf n], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1445
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1446
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1447
  @{text "rec_prime"} is the recursive function used to implement
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1448
  @{text "Prime"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1449
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1450
definition rec_prime :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1451
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1452
  "rec_prime = Cn (Suc 0) rec_conj 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1453
  [Cn (Suc 0) rec_less [constn 1, id (Suc 0) (0)],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1454
        rec_all (Cn 1 rec_minus [id 1 0, constn 1]) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1455
       (rec_all (Cn 2 rec_minus [id 2 0, Cn 2 (constn 1) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1456
  [id 2 0]]) (Cn 3 rec_noteq 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1457
       [Cn 3 rec_mult [id 3 1, id 3 2], id 3 0]))]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1458
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1459
declare numeral_2_eq_2[simp del] numeral_3_eq_3[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1460
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1461
lemma exec_tmp: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1462
  "rec_exec (rec_all (Cn 2 rec_minus [recf.id 2 0, Cn 2 (constn (Suc 0)) [recf.id 2 0]]) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1463
  (Cn 3 rec_noteq [Cn 3 rec_mult [recf.id 3 (Suc 0), recf.id 3 2], recf.id 3 0]))  [x, k] = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1464
  ((if (\<forall>w\<le>rec_exec (Cn 2 rec_minus [recf.id 2 0, Cn 2 (constn (Suc 0)) [recf.id 2 0]]) ([x, k]). 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1465
  0 < rec_exec (Cn 3 rec_noteq [Cn 3 rec_mult [recf.id 3 (Suc 0), recf.id 3 2], recf.id 3 0])
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1466
  ([x, k] @ [w])) then 1 else 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1467
apply(rule_tac all_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1468
apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1469
apply(case_tac [!] i, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1470
apply(case_tac ia, auto simp: numeral_3_eq_3 numeral_2_eq_2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1471
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1472
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1473
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1474
  The correctness of @{text "Prime"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1475
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1476
lemma prime_lemma: "rec_exec rec_prime [x] = (if Prime x then 1 else 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1477
proof(simp add: rec_exec.simps rec_prime_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1478
  let ?rt1 = "(Cn 2 rec_minus [recf.id 2 0, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1479
    Cn 2 (constn (Suc 0)) [recf.id 2 0]])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1480
  let ?rf1 = "(Cn 3 rec_noteq [Cn 3 rec_mult 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1481
    [recf.id 3 (Suc 0), recf.id 3 2], recf.id 3 (0)])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1482
  let ?rt2 = "(Cn (Suc 0) rec_minus 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1483
    [recf.id (Suc 0) 0, constn (Suc 0)])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1484
  let ?rf2 = "rec_all ?rt1 ?rf1"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1485
  have h1: "rec_exec (rec_all ?rt2 ?rf2) ([x]) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1486
        (if (\<forall>k\<le>rec_exec ?rt2 ([x]). 0 < rec_exec ?rf2 ([x] @ [k])) then 1 else 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1487
  proof(rule_tac all_lemma, simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1488
    show "primerec ?rf2 (Suc (Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1489
      apply(rule_tac primerec_all_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1490
      apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1491
      apply(case_tac [!] i, auto simp: numeral_2_eq_2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1492
      apply(case_tac ia, auto simp: numeral_3_eq_3)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1493
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1494
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1495
    show "primerec (Cn (Suc 0) rec_minus
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1496
             [recf.id (Suc 0) 0, constn (Suc 0)]) (Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1497
      apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1498
      apply(case_tac i, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1499
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1500
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1501
  from h1 show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1502
   "(Suc 0 < x \<longrightarrow>  (rec_exec (rec_all ?rt2 ?rf2) [x] = 0 \<longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1503
    \<not> Prime x) \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1504
     (0 < rec_exec (rec_all ?rt2 ?rf2) [x] \<longrightarrow> Prime x)) \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1505
    (\<not> Suc 0 < x \<longrightarrow> \<not> Prime x \<and> (rec_exec (rec_all ?rt2 ?rf2) [x] = 0
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1506
    \<longrightarrow> \<not> Prime x))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1507
    apply(auto simp:rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1508
    apply(simp add: exec_tmp rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1509
  proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1510
    assume "\<forall>k\<le>x - Suc 0. (0::nat) < (if \<forall>w\<le>x - Suc 0. 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1511
           0 < (if k * w \<noteq> x then 1 else (0 :: nat)) then 1 else 0)" "Suc 0 < x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1512
    thus "Prime x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1513
      apply(simp add: rec_exec.simps split: if_splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1514
      apply(simp add: Prime.simps, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1515
      apply(erule_tac x = u in allE, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1516
      apply(case_tac u, simp, case_tac nat, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1517
      apply(case_tac v, simp, case_tac nat, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1518
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1519
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1520
    assume "\<not> Suc 0 < x" "Prime x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1521
    thus "False"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1522
      apply(simp add: Prime.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1523
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1524
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1525
    fix k
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1526
    assume "rec_exec (rec_all ?rt1 ?rf1)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1527
      [x, k] = 0" "k \<le> x - Suc 0" "Prime x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1528
    thus "False"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1529
      apply(simp add: exec_tmp rec_exec.simps Prime.simps split: if_splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1530
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1531
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1532
    fix k
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1533
    assume "rec_exec (rec_all ?rt1 ?rf1)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1534
      [x, k] = 0" "k \<le> x - Suc 0" "Prime x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1535
    thus "False"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1536
      apply(simp add: exec_tmp rec_exec.simps Prime.simps split: if_splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1537
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1538
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1539
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1540
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1541
definition rec_dummyfac :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1542
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1543
  "rec_dummyfac = Pr 1 (constn 1) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1544
  (Cn 3 rec_mult [id 3 2, Cn 3 s [id 3 1]])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1545
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1546
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1547
  The recursive function used to implment factorization.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1548
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1549
definition rec_fac :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1550
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1551
  "rec_fac = Cn 1 rec_dummyfac [id 1 0, id 1 0]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1552
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1553
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1554
  Formal specification of factorization.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1555
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1556
fun fac :: "nat \<Rightarrow> nat"  ("_!" [100] 99)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1557
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1558
  "fac 0 = 1" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1559
  "fac (Suc x) = (Suc x) * fac x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1560
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1561
lemma [simp]: "rec_exec rec_dummyfac [0, 0] = Suc 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1562
by(simp add: rec_dummyfac_def rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1563
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1564
lemma rec_cn_simp: "rec_exec (Cn n f gs) xs = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1565
                (let rgs = map (\<lambda> g. rec_exec g xs) gs in
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1566
                 rec_exec f rgs)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1567
by(simp add: rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1568
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1569
lemma rec_id_simp: "rec_exec (id m n) xs = xs ! n" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1570
  by(simp add: rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1571
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1572
lemma fac_dummy: "rec_exec rec_dummyfac [x, y] = y !"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1573
apply(induct y)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1574
apply(auto simp: rec_dummyfac_def rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1575
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1576
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1577
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1578
  The correctness of @{text "rec_fac"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1579
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1580
lemma fac_lemma: "rec_exec rec_fac [x] =  x!"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1581
apply(simp add: rec_fac_def rec_exec.simps fac_dummy)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1582
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1583
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1584
declare fac.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1585
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1586
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1587
  @{text "Np x"} returns the first prime number after @{text "x"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1588
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1589
fun Np ::"nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1590
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1591
  "Np x = Min {y. y \<le> Suc (x!) \<and> x < y \<and> Prime y}"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1592
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1593
declare Np.simps[simp del] rec_Minr.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1594
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1595
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1596
  @{text "rec_np"} is the recursive function used to implement
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1597
  @{text "Np"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1598
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1599
definition rec_np :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1600
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1601
  "rec_np = (let Rr = Cn 2 rec_conj [Cn 2 rec_less [id 2 0, id 2 1], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1602
  Cn 2 rec_prime [id 2 1]]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1603
             in Cn 1 (rec_Minr Rr) [id 1 0, Cn 1 s [rec_fac]])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1604
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1605
lemma [simp]: "n < Suc (n!)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1606
apply(induct n, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1607
apply(simp add: fac.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1608
apply(case_tac n, auto simp: fac.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1609
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1610
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1611
lemma divsor_ex: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1612
"\<lbrakk>\<not> Prime x; x > Suc 0\<rbrakk> \<Longrightarrow> (\<exists> u > Suc 0. (\<exists> v > Suc 0. u * v = x))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1613
 by(auto simp: Prime.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1614
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1615
lemma divsor_prime_ex: "\<lbrakk>\<not> Prime x; x > Suc 0\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1616
  \<exists> p. Prime p \<and> p dvd x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1617
apply(induct x rule: wf_induct[where r = "measure (\<lambda> y. y)"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1618
apply(drule_tac divsor_ex, simp, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1619
apply(erule_tac x = u in allE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1620
apply(case_tac "Prime u", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1621
apply(rule_tac x = u in exI, simp, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1622
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1623
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1624
lemma [intro]: "0 < n!"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1625
apply(induct n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1626
apply(auto simp: fac.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1627
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1628
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1629
lemma fac_Suc: "Suc n! =  (Suc n) * (n!)" by(simp add: fac.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1630
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1631
lemma fac_dvd: "\<lbrakk>0 < q; q \<le> n\<rbrakk> \<Longrightarrow> q dvd n!"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1632
apply(induct n, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1633
apply(case_tac "q \<le> n", simp add: fac_Suc)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1634
apply(subgoal_tac "q = Suc n", simp only: fac_Suc)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1635
apply(rule_tac dvd_mult2, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1636
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1637
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1638
lemma fac_dvd2: "\<lbrakk>Suc 0 < q; q dvd n!; q \<le> n\<rbrakk> \<Longrightarrow> \<not> q dvd Suc (n!)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1639
proof(auto simp: dvd_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1640
  fix k ka
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1641
  assume h1: "Suc 0 < q" "q \<le> n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1642
  and h2: "Suc (q * k) = q * ka"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1643
  have "k < ka"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1644
  proof - 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1645
    have "q * k < q * ka" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1646
      using h2 by arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1647
    thus "k < ka"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1648
      using h1
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1649
      by(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1650
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1651
  hence "\<exists>d. d > 0 \<and>  ka = d + k"  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1652
    by(rule_tac x = "ka - k" in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1653
  from this obtain d where "d > 0 \<and> ka = d + k" ..
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1654
  from h2 and this and h1 show "False"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1655
    by(simp add: add_mult_distrib2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1656
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1657
    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1658
lemma prime_ex: "\<exists> p. n < p \<and> p \<le> Suc (n!) \<and> Prime p"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1659
proof(cases "Prime (n! + 1)")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1660
  case True thus "?thesis" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1661
    by(rule_tac x = "Suc (n!)" in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1662
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1663
  assume h: "\<not> Prime (n! + 1)"  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1664
  hence "\<exists> p. Prime p \<and> p dvd (n! + 1)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1665
    by(erule_tac divsor_prime_ex, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1666
  from this obtain q where k: "Prime q \<and> q dvd (n! + 1)" ..
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1667
  thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1668
  proof(cases "q > n")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1669
    case True thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1670
      using k
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1671
      apply(rule_tac x = q in exI, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1672
      apply(rule_tac dvd_imp_le, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1673
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1674
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1675
    case False thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1676
    proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1677
      assume g: "\<not> n < q"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1678
      have j: "q > Suc 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1679
        using k by(case_tac q, auto simp: Prime.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1680
      hence "q dvd n!"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1681
        using g 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1682
        apply(rule_tac fac_dvd, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1683
        done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1684
      hence "\<not> q dvd Suc (n!)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1685
        using g j
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1686
        by(rule_tac fac_dvd2, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1687
      thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1688
        using k by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1689
    qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1690
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1691
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1692
  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1693
lemma Suc_Suc_induct[elim!]: "\<lbrakk>i < Suc (Suc 0); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1694
  primerec (ys ! 0) n; primerec (ys ! 1) n\<rbrakk> \<Longrightarrow> primerec (ys ! i) n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1695
by(case_tac i, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1696
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1697
lemma [intro]: "primerec rec_prime (Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1698
apply(auto simp: rec_prime_def, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1699
apply(rule_tac primerec_all_iff, auto, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1700
apply(rule_tac primerec_all_iff, auto, auto simp:  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1701
  numeral_2_eq_2 numeral_3_eq_3)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1702
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1703
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1704
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1705
  The correctness of @{text "rec_np"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1706
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1707
lemma np_lemma: "rec_exec rec_np [x] = Np x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1708
proof(auto simp: rec_np_def rec_exec.simps Let_def fac_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1709
  let ?rr = "(Cn 2 rec_conj [Cn 2 rec_less [recf.id 2 0,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1710
    recf.id 2 (Suc 0)], Cn 2 rec_prime [recf.id 2 (Suc 0)]])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1711
  let ?R = "\<lambda> zs. zs ! 0 < zs ! 1 \<and> Prime (zs ! 1)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1712
  have g1: "rec_exec (rec_Minr ?rr) ([x] @ [Suc (x!)]) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1713
    Minr (\<lambda> args. 0 < rec_exec ?rr args) [x] (Suc (x!))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1714
    by(rule_tac Minr_lemma, auto simp: rec_exec.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1715
      prime_lemma, auto simp:  numeral_2_eq_2 numeral_3_eq_3)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1716
  have g2: "Minr (\<lambda> args. 0 < rec_exec ?rr args) [x] (Suc (x!)) = Np x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1717
    using prime_ex[of x]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1718
    apply(auto simp: Minr.simps Np.simps rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1719
    apply(erule_tac x = p in allE, simp add: prime_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1720
    apply(simp add: prime_lemma split: if_splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1721
    apply(subgoal_tac
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1722
   "{uu. (Prime uu \<longrightarrow> (x < uu \<longrightarrow> uu \<le> Suc (x!)) \<and> x < uu) \<and> Prime uu}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1723
    = {y. y \<le> Suc (x!) \<and> x < y \<and> Prime y}", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1724
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1725
  from g1 and g2 show "rec_exec (rec_Minr ?rr) ([x, Suc (x!)]) = Np x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1726
    by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1727
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1728
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1729
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1730
  @{text "rec_power"} is the recursive function used to implement
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1731
  power function.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1732
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1733
definition rec_power :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1734
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1735
  "rec_power = Pr 1 (constn 1) (Cn 3 rec_mult [id 3 0, id 3 2])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1736
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1737
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1738
  The correctness of @{text "rec_power"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1739
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1740
lemma power_lemma: "rec_exec rec_power [x, y] = x^y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1741
  by(induct y, auto simp: rec_exec.simps rec_power_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1742
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1743
text{*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1744
  @{text "Pi k"} returns the @{text "k"}-th prime number.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1745
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1746
fun Pi :: "nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1747
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1748
  "Pi 0 = 2" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1749
  "Pi (Suc x) = Np (Pi x)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1750
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1751
definition rec_dummy_pi :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1752
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1753
  "rec_dummy_pi = Pr 1 (constn 2) (Cn 3 rec_np [id 3 2])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1754
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1755
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1756
  @{text "rec_pi"} is the recursive function used to implement
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1757
  @{text "Pi"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1758
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1759
definition rec_pi :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1760
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1761
  "rec_pi = Cn 1 rec_dummy_pi [id 1 0, id 1 0]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1762
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1763
lemma pi_dummy_lemma: "rec_exec rec_dummy_pi [x, y] = Pi y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1764
apply(induct y)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1765
by(auto simp: rec_exec.simps rec_dummy_pi_def Pi.simps np_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1766
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1767
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1768
  The correctness of @{text "rec_pi"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1769
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1770
lemma pi_lemma: "rec_exec rec_pi [x] = Pi x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1771
apply(simp add: rec_pi_def rec_exec.simps pi_dummy_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1772
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1773
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1774
fun loR :: "nat list \<Rightarrow> bool"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1775
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1776
  "loR [x, y, u] = (x mod (y^u) = 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1777
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1778
declare loR.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1779
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1780
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1781
  @{text "Lo"} specifies the @{text "lo"} function given on page 79 of 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1782
  Boolos's book. It is one of the two notions of integeral logarithmatic
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1783
  operation on that page. The other is @{text "lg"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1784
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1785
fun lo :: " nat \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1786
  where 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1787
  "lo x y  = (if x > 1 \<and> y > 1 \<and> {u. loR [x, y, u]} \<noteq> {} then Max {u. loR [x, y, u]}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1788
                                                         else 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1789
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1790
declare lo.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1791
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1792
lemma [elim]: "primerec rf n \<Longrightarrow> n > 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1793
apply(induct rule: primerec.induct, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1794
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1795
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1796
lemma primerec_sigma[intro!]:  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1797
  "\<lbrakk>n > Suc 0; primerec rf n\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1798
  primerec (rec_sigma rf) n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1799
apply(simp add: rec_sigma.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1800
apply(auto, auto simp: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1801
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1802
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1803
lemma [intro!]:  "\<lbrakk>primerec rf n; n > 0\<rbrakk> \<Longrightarrow> primerec (rec_maxr rf) n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1804
apply(simp add: rec_maxr.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1805
apply(rule_tac prime_cn, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1806
apply(rule_tac primerec_all_iff, auto, auto simp: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1807
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1808
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1809
lemma Suc_Suc_Suc_induct[elim!]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1810
  "\<lbrakk>i < Suc (Suc (Suc (0::nat))); primerec (ys ! 0) n;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1811
  primerec (ys ! 1) n;  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1812
  primerec (ys ! 2) n\<rbrakk> \<Longrightarrow> primerec (ys ! i) n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1813
apply(case_tac i, auto, case_tac nat, simp, simp add: numeral_2_eq_2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1814
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1815
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1816
lemma [intro]: "primerec rec_quo (Suc (Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1817
apply(simp add: rec_quo_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1818
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1819
    @{thm prime_id}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1820
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1821
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1822
lemma [intro]: "primerec rec_mod (Suc (Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1823
apply(simp add: rec_mod_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1824
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1825
    @{thm prime_id}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1826
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1827
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1828
lemma [intro]: "primerec rec_power (Suc (Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1829
apply(simp add: rec_power_def  numeral_2_eq_2 numeral_3_eq_3)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1830
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1831
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1832
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1833
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1834
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1835
  @{text "rec_lo"} is the recursive function used to implement @{text "Lo"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1836
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1837
definition rec_lo :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1838
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1839
  "rec_lo = (let rR = Cn 3 rec_eq [Cn 3 rec_mod [id 3 0, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1840
               Cn 3 rec_power [id 3 1, id 3 2]], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1841
                     Cn 3 (constn 0) [id 3 1]] in
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1842
             let rb =  Cn 2 (rec_maxr rR) [id 2 0, id 2 1, id 2 0] in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1843
             let rcond = Cn 2 rec_conj [Cn 2 rec_less [Cn 2 (constn 1)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1844
                                             [id 2 0], id 2 0], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1845
                                        Cn 2 rec_less [Cn 2 (constn 1)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1846
                                                [id 2 0], id 2 1]] in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1847
             let rcond2 = Cn 2 rec_minus 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1848
                              [Cn 2 (constn 1) [id 2 0], rcond] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1849
             in Cn 2 rec_add [Cn 2 rec_mult [rb, rcond], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1850
                  Cn 2 rec_mult [Cn 2 (constn 0) [id 2 0], rcond2]])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1851
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1852
lemma rec_lo_Maxr_lor:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1853
  "\<lbrakk>Suc 0 < x; Suc 0 < y\<rbrakk> \<Longrightarrow>  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1854
        rec_exec rec_lo [x, y] = Maxr loR [x, y] x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1855
proof(auto simp: rec_exec.simps rec_lo_def Let_def 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1856
    numeral_2_eq_2 numeral_3_eq_3)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1857
  let ?rR = "(Cn (Suc (Suc (Suc 0))) rec_eq
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1858
     [Cn (Suc (Suc (Suc 0))) rec_mod [recf.id (Suc (Suc (Suc 0))) 0,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1859
     Cn (Suc (Suc (Suc 0))) rec_power [recf.id (Suc (Suc (Suc 0)))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1860
     (Suc 0), recf.id (Suc (Suc (Suc 0))) (Suc (Suc 0))]],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1861
     Cn (Suc (Suc (Suc 0))) (constn 0) [recf.id (Suc (Suc (Suc 0))) (Suc 0)]])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1862
  have h: "rec_exec (rec_maxr ?rR) ([x, y] @ [x]) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1863
    Maxr (\<lambda> args. 0 < rec_exec ?rR args) [x, y] x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1864
    by(rule_tac Maxr_lemma, auto simp: rec_exec.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1865
      mod_lemma power_lemma, auto simp: numeral_2_eq_2 numeral_3_eq_3)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1866
  have "Maxr loR [x, y] x =  Maxr (\<lambda> args. 0 < rec_exec ?rR args) [x, y] x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1867
    apply(simp add: rec_exec.simps mod_lemma power_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1868
    apply(simp add: Maxr.simps loR.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1869
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1870
  from h and this show "rec_exec (rec_maxr ?rR) [x, y, x] = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1871
    Maxr loR [x, y] x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1872
    apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1873
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1874
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1875
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1876
lemma [simp]: "Max {ya. ya = 0 \<and> loR [0, y, ya]} = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1877
apply(rule_tac Max_eqI, auto simp: loR.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1878
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1879
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1880
lemma [simp]: "Suc 0 < y \<Longrightarrow> Suc (Suc 0) < y * y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1881
apply(induct y, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1882
apply(case_tac y, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1883
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1884
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1885
lemma less_mult: "\<lbrakk>x > 0; y > Suc 0\<rbrakk> \<Longrightarrow> x < y * x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1886
apply(case_tac y, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1887
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1888
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1889
lemma x_less_exp: "\<lbrakk>y > Suc 0\<rbrakk> \<Longrightarrow> x < y^x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1890
apply(induct x, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1891
apply(case_tac x, simp, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1892
apply(rule_tac y = "y* y^nat" in le_less_trans, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1893
apply(rule_tac less_mult, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1894
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1895
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1896
lemma le_mult: "y \<noteq> (0::nat) \<Longrightarrow> x \<le> x * y"  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1897
  by(induct y, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1898
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1899
lemma uplimit_loR:  "\<lbrakk>Suc 0 < x; Suc 0 < y; loR [x, y, xa]\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1900
  xa \<le> x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1901
apply(simp add: loR.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1902
apply(rule_tac classical, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1903
apply(subgoal_tac "xa < y^xa")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1904
apply(subgoal_tac "y^xa \<le> y^xa * q", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1905
apply(rule_tac le_mult, case_tac q, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1906
apply(rule_tac x_less_exp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1907
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1908
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1909
lemma [simp]: "\<lbrakk>xa \<le> x; loR [x, y, xa]; Suc 0 < x; Suc 0 < y\<rbrakk> \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1910
  {u. loR [x, y, u]} = {ya. ya \<le> x \<and> loR [x, y, ya]}"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1911
apply(rule_tac Collect_cong, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1912
apply(erule_tac uplimit_loR, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1913
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1914
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1915
lemma Maxr_lo: "\<lbrakk>Suc 0 < x; Suc 0 < y\<rbrakk> \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1916
  Maxr loR [x, y] x = lo x y" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1917
apply(simp add: Maxr.simps lo.simps, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1918
apply(erule_tac x = xa in allE, simp, simp add: uplimit_loR)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1919
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1920
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1921
lemma lo_lemma': "\<lbrakk>Suc 0 < x; Suc 0 < y\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1922
  rec_exec rec_lo [x, y] = lo x y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1923
by(simp add: Maxr_lo  rec_lo_Maxr_lor)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1924
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1925
lemma lo_lemma'': "\<lbrakk>\<not> Suc 0 < x\<rbrakk> \<Longrightarrow> rec_exec rec_lo [x, y] = lo x y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1926
apply(case_tac x, auto simp: rec_exec.simps rec_lo_def 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1927
  Let_def lo.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1928
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1929
  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1930
lemma lo_lemma''': "\<lbrakk>\<not> Suc 0 < y\<rbrakk> \<Longrightarrow> rec_exec rec_lo [x, y] = lo x y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1931
apply(case_tac y, auto simp: rec_exec.simps rec_lo_def 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1932
  Let_def lo.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1933
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1934
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1935
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1936
  The correctness of @{text "rec_lo"}:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1937
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1938
lemma lo_lemma: "rec_exec rec_lo [x, y] = lo x y" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1939
apply(case_tac "Suc 0 < x \<and> Suc 0 < y")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1940
apply(auto simp: lo_lemma' lo_lemma'' lo_lemma''')
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1941
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1942
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1943
fun lgR :: "nat list \<Rightarrow> bool"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1944
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1945
  "lgR [x, y, u] = (y^u \<le> x)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1946
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1947
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1948
  @{text "lg"} specifies the @{text "lg"} function given on page 79 of 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1949
  Boolos's book. It is one of the two notions of integeral logarithmatic
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1950
  operation on that page. The other is @{text "lo"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1951
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1952
fun lg :: "nat \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1953
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1954
  "lg x y = (if x > 1 \<and> y > 1 \<and> {u. lgR [x, y, u]} \<noteq> {} then 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1955
                 Max {u. lgR [x, y, u]}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1956
              else 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1957
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1958
declare lg.simps[simp del] lgR.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1959
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1960
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1961
  @{text "rec_lg"} is the recursive function used to implement @{text "lg"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1962
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1963
definition rec_lg :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1964
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1965
  "rec_lg = (let rec_lgR = Cn 3 rec_le
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1966
  [Cn 3 rec_power [id 3 1, id 3 2], id 3 0] in
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1967
  let conR1 = Cn 2 rec_conj [Cn 2 rec_less 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1968
                     [Cn 2 (constn 1) [id 2 0], id 2 0], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1969
                            Cn 2 rec_less [Cn 2 (constn 1) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1970
                                 [id 2 0], id 2 1]] in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1971
  let conR2 = Cn 2 rec_not [conR1] in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1972
        Cn 2 rec_add [Cn 2 rec_mult 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1973
              [conR1, Cn 2 (rec_maxr rec_lgR)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1974
                       [id 2 0, id 2 1, id 2 0]], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1975
                       Cn 2 rec_mult [conR2, Cn 2 (constn 0) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1976
                                [id 2 0]]])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1977
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1978
lemma lg_maxr: "\<lbrakk>Suc 0 < x; Suc 0 < y\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1979
                      rec_exec rec_lg [x, y] = Maxr lgR [x, y] x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1980
proof(simp add: rec_exec.simps rec_lg_def Let_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1981
  assume h: "Suc 0 < x" "Suc 0 < y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1982
  let ?rR = "(Cn 3 rec_le [Cn 3 rec_power
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1983
               [recf.id 3 (Suc 0), recf.id 3 2], recf.id 3 0])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1984
  have "rec_exec (rec_maxr ?rR) ([x, y] @ [x])
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1985
              = Maxr ((\<lambda> args. 0 < rec_exec ?rR args)) [x, y] x" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1986
  proof(rule Maxr_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1987
    show "primerec (Cn 3 rec_le [Cn 3 rec_power 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1988
              [recf.id 3 (Suc 0), recf.id 3 2], recf.id 3 0]) (Suc (length [x, y]))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1989
      apply(auto simp: numeral_3_eq_3)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1990
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1991
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1992
  moreover have "Maxr lgR [x, y] x = Maxr ((\<lambda> args. 0 < rec_exec ?rR args)) [x, y] x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1993
    apply(simp add: rec_exec.simps power_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1994
    apply(simp add: Maxr.simps lgR.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1995
    done 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1996
  ultimately show "rec_exec (rec_maxr ?rR) [x, y, x] = Maxr lgR [x, y] x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1997
    by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1998
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1999
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2000
lemma [simp]: "\<lbrakk>Suc 0 < y; lgR [x, y, xa]\<rbrakk> \<Longrightarrow> xa \<le> x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2001
apply(simp add: lgR.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2002
apply(subgoal_tac "y^xa > xa", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2003
apply(erule x_less_exp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2004
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2005
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2006
lemma [simp]: "\<lbrakk>Suc 0 < x; Suc 0 < y; lgR [x, y, xa]\<rbrakk> \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2007
           {u. lgR [x, y, u]} =  {ya. ya \<le> x \<and> lgR [x, y, ya]}"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2008
apply(rule_tac Collect_cong, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2009
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2010
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2011
lemma maxr_lg: "\<lbrakk>Suc 0 < x; Suc 0 < y\<rbrakk> \<Longrightarrow> Maxr lgR [x, y] x = lg x y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2012
apply(simp add: lg.simps Maxr.simps, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2013
apply(erule_tac x = xa in allE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2014
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2015
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2016
lemma lg_lemma': "\<lbrakk>Suc 0 < x; Suc 0 < y\<rbrakk> \<Longrightarrow> rec_exec rec_lg [x, y] = lg x y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2017
apply(simp add: maxr_lg lg_maxr)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2018
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2019
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2020
lemma lg_lemma'': "\<not> Suc 0 < x \<Longrightarrow> rec_exec rec_lg [x, y] = lg x y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2021
apply(simp add: rec_exec.simps rec_lg_def Let_def lg.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2022
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2023
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2024
lemma lg_lemma''': "\<not> Suc 0 < y \<Longrightarrow> rec_exec rec_lg [x, y] = lg x y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2025
apply(simp add: rec_exec.simps rec_lg_def Let_def lg.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2026
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2027
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2028
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2029
  The correctness of @{text "rec_lg"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2030
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2031
lemma lg_lemma: "rec_exec rec_lg [x, y] = lg x y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2032
apply(case_tac "Suc 0 < x \<and> Suc 0 < y", auto simp: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2033
                            lg_lemma' lg_lemma'' lg_lemma''')
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2034
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2035
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2036
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2037
  @{text "Entry sr i"} returns the @{text "i"}-th entry of a list of natural 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2038
  numbers encoded by number @{text "sr"} using Godel's coding.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2039
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2040
fun Entry :: "nat \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2041
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2042
  "Entry sr i = lo sr (Pi (Suc i))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2043
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2044
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2045
  @{text "rec_entry"} is the recursive function used to implement
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2046
  @{text "Entry"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2047
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2048
definition rec_entry:: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2049
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2050
  "rec_entry = Cn 2 rec_lo [id 2 0, Cn 2 rec_pi [Cn 2 s [id 2 1]]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2051
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2052
declare Pi.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2053
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2054
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2055
  The correctness of @{text "rec_entry"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2056
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2057
lemma entry_lemma: "rec_exec rec_entry [str, i] = Entry str i"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2058
  by(simp add: rec_entry_def  rec_exec.simps lo_lemma pi_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2059
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2060
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2061
subsection {* The construction of F *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2062
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2063
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2064
  Using the auxilliary functions obtained in last section, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2065
  we are going to contruct the function @{text "F"}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2066
  which is an interpreter of Turing Machines.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2067
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2068
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2069
fun listsum2 :: "nat list \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2070
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2071
  "listsum2 xs 0 = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2072
| "listsum2 xs (Suc n) = listsum2 xs n + xs ! n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2073
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2074
fun rec_listsum2 :: "nat \<Rightarrow> nat \<Rightarrow> recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2075
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2076
  "rec_listsum2 vl 0 = Cn vl z [id vl 0]"
199
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 198
diff changeset
  2077
| "rec_listsum2 vl (Suc n) = Cn vl rec_add [rec_listsum2 vl n, id vl n]"
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2078
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2079
declare listsum2.simps[simp del] rec_listsum2.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2080
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2081
lemma listsum2_lemma: "\<lbrakk>length xs = vl; n \<le> vl\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2082
      rec_exec (rec_listsum2 vl n) xs = listsum2 xs n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2083
apply(induct n, simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2084
apply(simp_all add: rec_exec.simps rec_listsum2.simps listsum2.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2085
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2086
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2087
fun strt' :: "nat list \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2088
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2089
  "strt' xs 0 = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2090
| "strt' xs (Suc n) = (let dbound = listsum2 xs n + n in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2091
                       strt' xs n + (2^(xs ! n + dbound) - 2^dbound))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2092
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2093
fun rec_strt' :: "nat \<Rightarrow> nat \<Rightarrow> recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2094
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2095
  "rec_strt' vl 0 = Cn vl z [id vl 0]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2096
| "rec_strt' vl (Suc n) = (let rec_dbound =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2097
  Cn vl rec_add [rec_listsum2 vl n, Cn vl (constn n) [id vl 0]]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2098
  in Cn vl rec_add [rec_strt' vl n, Cn vl rec_minus 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2099
  [Cn vl rec_power [Cn vl (constn 2) [id vl 0], Cn vl rec_add
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2100
  [id vl (n), rec_dbound]], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2101
  Cn vl rec_power [Cn vl (constn 2) [id vl 0], rec_dbound]]])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2102
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2103
declare strt'.simps[simp del] rec_strt'.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2104
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2105
lemma strt'_lemma: "\<lbrakk>length xs = vl; n \<le> vl\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2106
  rec_exec (rec_strt' vl n) xs = strt' xs n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2107
apply(induct n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2108
apply(simp_all add: rec_exec.simps rec_strt'.simps strt'.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2109
  Let_def power_lemma listsum2_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2110
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2111
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2112
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2113
  @{text "strt"} corresponds to the @{text "strt"} function on page 90 of B book, but 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2114
  this definition generalises the original one to deal with multiple input arguments.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2115
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2116
fun strt :: "nat list \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2117
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2118
  "strt xs = (let ys = map Suc xs in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2119
              strt' ys (length ys))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2120
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2121
fun rec_map :: "recf \<Rightarrow> nat \<Rightarrow> recf list"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2122
  where
199
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 198
diff changeset
  2123
  "rec_map rf vl = map (\<lambda> i. Cn vl rf [id vl i]) [0..<vl]"
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2124
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2125
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2126
  @{text "rec_strt"} is the recursive function used to implement @{text "strt"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2127
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2128
fun rec_strt :: "nat \<Rightarrow> recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2129
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2130
  "rec_strt vl = Cn vl (rec_strt' vl vl) (rec_map s vl)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2131
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2132
lemma map_s_lemma: "length xs = vl \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2133
  map ((\<lambda>a. rec_exec a xs) \<circ> (\<lambda>i. Cn vl s [recf.id vl i]))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2134
  [0..<vl]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2135
        = map Suc xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2136
apply(induct vl arbitrary: xs, simp, auto simp: rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2137
apply(subgoal_tac "\<exists> ys y. xs = ys @ [y]", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2138
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2139
  fix ys y
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2140
  assume ind: "\<And>xs. length xs = length (ys::nat list) \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2141
      map ((\<lambda>a. rec_exec a xs) \<circ> (\<lambda>i. Cn (length ys) s 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2142
        [recf.id (length ys) (i)])) [0..<length ys] = map Suc xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2143
  show
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2144
    "map ((\<lambda>a. rec_exec a (ys @ [y])) \<circ> (\<lambda>i. Cn (Suc (length ys)) s 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2145
  [recf.id (Suc (length ys)) (i)])) [0..<length ys] = map Suc ys"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2146
  proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2147
    have "map ((\<lambda>a. rec_exec a ys) \<circ> (\<lambda>i. Cn (length ys) s
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2148
        [recf.id (length ys) (i)])) [0..<length ys] = map Suc ys"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2149
      apply(rule_tac ind, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2150
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2151
    moreover have
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2152
      "map ((\<lambda>a. rec_exec a (ys @ [y])) \<circ> (\<lambda>i. Cn (Suc (length ys)) s
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2153
           [recf.id (Suc (length ys)) (i)])) [0..<length ys]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2154
         = map ((\<lambda>a. rec_exec a ys) \<circ> (\<lambda>i. Cn (length ys) s 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2155
                 [recf.id (length ys) (i)])) [0..<length ys]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2156
      apply(rule_tac map_ext, auto simp: rec_exec.simps nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2157
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2158
    ultimately show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2159
      by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2160
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2161
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2162
  fix vl xs
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2163
  assume "length xs = Suc vl"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2164
  thus "\<exists>ys y. xs = ys @ [y]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2165
    apply(rule_tac x = "butlast xs" in exI, rule_tac x = "last xs" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2166
    apply(subgoal_tac "xs \<noteq> []", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2167
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2168
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2169
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2170
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2171
  The correctness of @{text "rec_strt"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2172
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2173
lemma strt_lemma: "length xs = vl \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2174
  rec_exec (rec_strt vl) xs = strt xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2175
apply(simp add: strt.simps rec_exec.simps strt'_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2176
apply(subgoal_tac "(map ((\<lambda>a. rec_exec a xs) \<circ> (\<lambda>i. Cn vl s [recf.id vl (i)])) [0..<vl])
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2177
                  = map Suc xs", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2178
apply(rule map_s_lemma, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2179
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2180
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2181
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2182
  The @{text "scan"} function on page 90 of B book.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2183
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2184
fun scan :: "nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2185
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2186
  "scan r = r mod 2"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2187
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2188
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2189
  @{text "rec_scan"} is the implemention of @{text "scan"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2190
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2191
definition rec_scan :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2192
  where "rec_scan = Cn 1 rec_mod [id 1 0, constn 2]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2193
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2194
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2195
  The correctness of @{text "scan"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2196
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2197
lemma scan_lemma: "rec_exec rec_scan [r] = r mod 2"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2198
  by(simp add: rec_exec.simps rec_scan_def mod_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2199
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2200
fun newleft0 :: "nat list \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2201
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2202
  "newleft0 [p, r] = p"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2203
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2204
definition rec_newleft0 :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2205
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2206
  "rec_newleft0 = id 2 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2207
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2208
fun newrgt0 :: "nat list \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2209
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2210
  "newrgt0 [p, r] = r - scan r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2211
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2212
definition rec_newrgt0 :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2213
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2214
  "rec_newrgt0 = Cn 2 rec_minus [id 2 1, Cn 2 rec_scan [id 2 1]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2215
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2216
(*newleft1, newrgt1: left rgt number after execute on step*)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2217
fun newleft1 :: "nat list \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2218
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2219
  "newleft1 [p, r] = p"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2220
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2221
definition rec_newleft1 :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2222
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2223
  "rec_newleft1 = id 2 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2224
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2225
fun newrgt1 :: "nat list \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2226
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2227
  "newrgt1 [p, r] = r + 1 - scan r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2228
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2229
definition rec_newrgt1 :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2230
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2231
  "rec_newrgt1 = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2232
  Cn 2 rec_minus [Cn 2 rec_add [id 2 1, Cn 2 (constn 1) [id 2 0]], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2233
                  Cn 2 rec_scan [id 2 1]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2234
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2235
fun newleft2 :: "nat list \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2236
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2237
  "newleft2 [p, r] = p div 2"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2238
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2239
definition rec_newleft2 :: "recf" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2240
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2241
  "rec_newleft2 = Cn 2 rec_quo [id 2 0, Cn 2 (constn 2) [id 2 0]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2242
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2243
fun newrgt2 :: "nat list \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2244
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2245
  "newrgt2 [p, r] = 2 * r + p mod 2"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2246
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2247
definition rec_newrgt2 :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2248
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2249
  "rec_newrgt2 =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2250
    Cn 2 rec_add [Cn 2 rec_mult [Cn 2 (constn 2) [id 2 0], id 2 1],                     
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2251
                 Cn 2 rec_mod [id 2 0, Cn 2 (constn 2) [id 2 0]]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2252
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2253
fun newleft3 :: "nat list \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2254
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2255
  "newleft3 [p, r] = 2 * p + r mod 2"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2256
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2257
definition rec_newleft3 :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2258
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2259
  "rec_newleft3 = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2260
  Cn 2 rec_add [Cn 2 rec_mult [Cn 2 (constn 2) [id 2 0], id 2 0], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2261
                Cn 2 rec_mod [id 2 1, Cn 2 (constn 2) [id 2 0]]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2262
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2263
fun newrgt3 :: "nat list \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2264
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2265
  "newrgt3 [p, r] = r div 2"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2266
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2267
definition rec_newrgt3 :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2268
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2269
  "rec_newrgt3 = Cn 2 rec_quo [id 2 1, Cn 2 (constn 2) [id 2 0]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2270
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2271
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2272
  The @{text "new_left"} function on page 91 of B book.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2273
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2274
fun newleft :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2275
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2276
  "newleft p r a = (if a = 0 \<or> a = 1 then newleft0 [p, r] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2277
                    else if a = 2 then newleft2 [p, r]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2278
                    else if a = 3 then newleft3 [p, r]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2279
                    else p)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2280
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2281
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2282
  @{text "rec_newleft"} is the recursive function used to 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2283
  implement @{text "newleft"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2284
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2285
definition rec_newleft :: "recf" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2286
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2287
  "rec_newleft =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2288
  (let g0 = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2289
      Cn 3 rec_newleft0 [id 3 0, id 3 1] in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2290
  let g1 = Cn 3 rec_newleft2 [id 3 0, id 3 1] in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2291
  let g2 = Cn 3 rec_newleft3 [id 3 0, id 3 1] in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2292
  let g3 = id 3 0 in
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2293
  let r0 = Cn 3 rec_disj
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2294
          [Cn 3 rec_eq [id 3 2, Cn 3 (constn 0) [id 3 0]],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2295
           Cn 3 rec_eq [id 3 2, Cn 3 (constn 1) [id 3 0]]] in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2296
  let r1 = Cn 3 rec_eq [id 3 2, Cn 3 (constn 2) [id 3 0]] in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2297
  let r2 = Cn 3 rec_eq [id 3 2, Cn 3 (constn 3) [id 3 0]] in
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2298
  let r3 = Cn 3 rec_less [Cn 3 (constn 3) [id 3 0], id 3 2] in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2299
  let gs = [g0, g1, g2, g3] in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2300
  let rs = [r0, r1, r2, r3] in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2301
  rec_embranch (zip gs rs))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2302
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2303
declare newleft.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2304
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2305
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2306
lemma Suc_Suc_Suc_Suc_induct: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2307
  "\<lbrakk>i < Suc (Suc (Suc (Suc 0))); i = 0 \<Longrightarrow>  P i;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2308
    i = 1 \<Longrightarrow> P i; i =2 \<Longrightarrow> P i; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2309
    i =3 \<Longrightarrow> P i\<rbrakk> \<Longrightarrow> P i"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2310
apply(case_tac i, simp, case_tac nat, simp, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2311
      case_tac nata, simp, case_tac natb, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2312
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2313
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2314
declare quo_lemma2[simp] mod_lemma[simp]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2315
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2316
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2317
  The correctness of @{text "rec_newleft"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2318
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2319
lemma newleft_lemma: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2320
  "rec_exec rec_newleft [p, r, a] = newleft p r a"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2321
proof(simp only: rec_newleft_def Let_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2322
  let ?rgs = "[Cn 3 rec_newleft0 [recf.id 3 0, recf.id 3 1], Cn 3 rec_newleft2 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2323
       [recf.id 3 0, recf.id 3 1], Cn 3 rec_newleft3 [recf.id 3 0, recf.id 3 1], recf.id 3 0]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2324
  let ?rrs = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2325
    "[Cn 3 rec_disj [Cn 3 rec_eq [recf.id 3 2, Cn 3 (constn 0) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2326
     [recf.id 3 0]], Cn 3 rec_eq [recf.id 3 2, Cn 3 (constn 1) [recf.id 3 0]]], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2327
     Cn 3 rec_eq [recf.id 3 2, Cn 3 (constn 2) [recf.id 3 0]],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2328
     Cn 3 rec_eq [recf.id 3 2, Cn 3 (constn 3) [recf.id 3 0]],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2329
     Cn 3 rec_less [Cn 3 (constn 3) [recf.id 3 0], recf.id 3 2]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2330
  have k1: "rec_exec (rec_embranch (zip ?rgs ?rrs)) [p, r, a]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2331
                         = Embranch (zip (map rec_exec ?rgs) (map (\<lambda>r args. 0 < rec_exec r args) ?rrs)) [p, r, a]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2332
    apply(rule_tac embranch_lemma )
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2333
    apply(auto simp: numeral_3_eq_3 numeral_2_eq_2 rec_newleft0_def 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2334
             rec_newleft1_def rec_newleft2_def rec_newleft3_def)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2335
    apply(case_tac "a = 0 \<or> a = 1", rule_tac x = 0 in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2336
    prefer 2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2337
    apply(case_tac "a = 2", rule_tac x = "Suc 0" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2338
    prefer 2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2339
    apply(case_tac "a = 3", rule_tac x = "2" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2340
    prefer 2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2341
    apply(case_tac "a > 3", rule_tac x = "3" in exI, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2342
    apply(auto simp: rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2343
    apply(erule_tac [!] Suc_Suc_Suc_Suc_induct, auto simp: rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2344
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2345
  have k2: "Embranch (zip (map rec_exec ?rgs) (map (\<lambda>r args. 0 < rec_exec r args) ?rrs)) [p, r, a] = newleft p r a"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2346
    apply(simp add: Embranch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2347
    apply(simp add: rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2348
    apply(auto simp: newleft.simps rec_newleft0_def rec_exec.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2349
                     rec_newleft1_def rec_newleft2_def rec_newleft3_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2350
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2351
  from k1 and k2 show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2352
   "rec_exec (rec_embranch (zip ?rgs ?rrs)) [p, r, a] = newleft p r a"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2353
    by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2354
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2355
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2356
text {* 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2357
  The @{text "newrght"} function is one similar to @{text "newleft"}, but used to 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2358
  compute the right number.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2359
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2360
fun newrght :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2361
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2362
  "newrght p r a  = (if a = 0 then newrgt0 [p, r]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2363
                    else if a = 1 then newrgt1 [p, r]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2364
                    else if a = 2 then newrgt2 [p, r]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2365
                    else if a = 3 then newrgt3 [p, r]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2366
                    else r)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2367
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2368
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2369
  @{text "rec_newrght"} is the recursive function used to implement 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2370
  @{text "newrgth"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2371
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2372
definition rec_newrght :: "recf" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2373
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2374
  "rec_newrght =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2375
  (let g0 = Cn 3 rec_newrgt0 [id 3 0, id 3 1] in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2376
  let g1 = Cn 3 rec_newrgt1 [id 3 0, id 3 1] in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2377
  let g2 = Cn 3 rec_newrgt2 [id 3 0, id 3 1] in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2378
  let g3 = Cn 3 rec_newrgt3 [id 3 0, id 3 1] in
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2379
  let g4 = id 3 1 in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2380
  let r0 = Cn 3 rec_eq [id 3 2, Cn 3 (constn 0) [id 3 0]] in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2381
  let r1 = Cn 3 rec_eq [id 3 2, Cn 3 (constn 1) [id 3 0]] in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2382
  let r2 = Cn 3 rec_eq [id 3 2, Cn 3 (constn 2) [id 3 0]] in
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2383
  let r3 = Cn 3 rec_eq [id 3 2, Cn 3 (constn 3) [id 3 0]] in
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2384
  let r4 = Cn 3 rec_less [Cn 3 (constn 3) [id 3 0], id 3 2] in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2385
  let gs = [g0, g1, g2, g3, g4] in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2386
  let rs = [r0, r1, r2, r3, r4] in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2387
  rec_embranch (zip gs rs))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2388
declare newrght.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2389
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2390
lemma numeral_4_eq_4: "4 = Suc 3"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2391
by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2392
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2393
lemma Suc_5_induct: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2394
  "\<lbrakk>i < Suc (Suc (Suc (Suc (Suc 0)))); i = 0 \<Longrightarrow> P 0;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2395
  i = 1 \<Longrightarrow> P 1; i = 2 \<Longrightarrow> P 2; i = 3 \<Longrightarrow> P 3; i = 4 \<Longrightarrow> P 4\<rbrakk> \<Longrightarrow> P i"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2396
apply(case_tac i, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2397
apply(case_tac nat, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2398
apply(case_tac nata, auto simp: numeral_2_eq_2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2399
apply(case_tac nat, auto simp: numeral_3_eq_3 numeral_4_eq_4)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2400
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2401
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2402
lemma [intro]: "primerec rec_scan (Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2403
apply(auto simp: rec_scan_def, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2404
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2405
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2406
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2407
  The correctness of @{text "rec_newrght"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2408
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2409
lemma newrght_lemma: "rec_exec rec_newrght [p, r, a] = newrght p r a"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2410
proof(simp only: rec_newrght_def Let_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2411
  let ?gs' = "[newrgt0, newrgt1, newrgt2, newrgt3, \<lambda> zs. zs ! 1]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2412
  let ?r0 = "\<lambda> zs. zs ! 2 = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2413
  let ?r1 = "\<lambda> zs. zs ! 2 = 1"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2414
  let ?r2 = "\<lambda> zs. zs ! 2 = 2"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2415
  let ?r3 = "\<lambda> zs. zs ! 2 = 3"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2416
  let ?r4 = "\<lambda> zs. zs ! 2 > 3"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2417
  let ?gs = "map (\<lambda> g. (\<lambda> zs. g [zs ! 0, zs ! 1])) ?gs'"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2418
  let ?rs = "[?r0, ?r1, ?r2, ?r3, ?r4]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2419
  let ?rgs = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2420
 "[Cn 3 rec_newrgt0 [recf.id 3 0, recf.id 3 1],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2421
    Cn 3 rec_newrgt1 [recf.id 3 0, recf.id 3 1],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2422
     Cn 3 rec_newrgt2 [recf.id 3 0, recf.id 3 1], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2423
      Cn 3 rec_newrgt3 [recf.id 3 0, recf.id 3 1], recf.id 3 1]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2424
  let ?rrs = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2425
 "[Cn 3 rec_eq [recf.id 3 2, Cn 3 (constn 0) [recf.id 3 0]], Cn 3 rec_eq [recf.id 3 2, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2426
    Cn 3 (constn 1) [recf.id 3 0]], Cn 3 rec_eq [recf.id 3 2, Cn 3 (constn 2) [recf.id 3 0]],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2427
     Cn 3 rec_eq [recf.id 3 2, Cn 3 (constn 3) [recf.id 3 0]], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2428
       Cn 3 rec_less [Cn 3 (constn 3) [recf.id 3 0], recf.id 3 2]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2429
    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2430
  have k1: "rec_exec (rec_embranch (zip ?rgs ?rrs)) [p, r, a]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2431
    = Embranch (zip (map rec_exec ?rgs) (map (\<lambda>r args. 0 < rec_exec r args) ?rrs)) [p, r, a]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2432
    apply(rule_tac embranch_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2433
    apply(auto simp: numeral_3_eq_3 numeral_2_eq_2 rec_newrgt0_def 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2434
             rec_newrgt1_def rec_newrgt2_def rec_newrgt3_def)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2435
    apply(case_tac "a = 0", rule_tac x = 0 in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2436
    prefer 2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2437
    apply(case_tac "a = 1", rule_tac x = "Suc 0" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2438
    prefer 2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2439
    apply(case_tac "a = 2", rule_tac x = "2" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2440
    prefer 2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2441
    apply(case_tac "a = 3", rule_tac x = "3" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2442
    prefer 2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2443
    apply(case_tac "a > 3", rule_tac x = "4" in exI, auto simp: rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2444
    apply(erule_tac [!] Suc_5_induct, auto simp: rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2445
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2446
  have k2: "Embranch (zip (map rec_exec ?rgs)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2447
    (map (\<lambda>r args. 0 < rec_exec r args) ?rrs)) [p, r, a] = newrght p r a"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2448
    apply(auto simp:Embranch.simps rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2449
    apply(auto simp: newrght.simps rec_newrgt3_def rec_newrgt2_def
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2450
                     rec_newrgt1_def rec_newrgt0_def rec_exec.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2451
                     scan_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2452
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2453
  from k1 and k2 show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2454
    "rec_exec (rec_embranch (zip ?rgs ?rrs)) [p, r, a] =      
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2455
                                    newrght p r a" by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2456
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2457
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2458
declare Entry.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2459
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2460
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2461
  The @{text "actn"} function given on page 92 of B book, which is used to 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2462
  fetch Turing Machine intructions. 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2463
  In @{text "actn m q r"}, @{text "m"} is the Godel coding of a Turing Machine,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2464
  @{text "q"} is the current state of Turing Machine, @{text "r"} is the
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2465
  right number of Turing Machine tape.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2466
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2467
fun actn :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2468
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2469
  "actn m q r = (if q \<noteq> 0 then Entry m (4*(q - 1) + 2 * scan r)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2470
                 else 4)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2471
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2472
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2473
  @{text "rec_actn"} is the recursive function used to implement @{text "actn"}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2474
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2475
definition rec_actn :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2476
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2477
  "rec_actn = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2478
  Cn 3 rec_add [Cn 3 rec_mult 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2479
        [Cn 3 rec_entry [id 3 0, Cn 3 rec_add [Cn 3 rec_mult 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2480
                                 [Cn 3 (constn 4) [id 3 0], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2481
                Cn 3 rec_minus [id 3 1, Cn 3 (constn 1) [id 3 0]]], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2482
                   Cn 3 rec_mult [Cn 3 (constn 2) [id 3 0],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2483
                      Cn 3 rec_scan [id 3 2]]]], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2484
            Cn 3 rec_noteq [id 3 1, Cn 3 (constn 0) [id 3 0]]], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2485
                             Cn 3 rec_mult [Cn 3 (constn 4) [id 3 0], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2486
             Cn 3 rec_eq [id 3 1, Cn 3 (constn 0) [id 3 0]]]] "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2487
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2488
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2489
  The correctness of @{text "actn"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2490
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2491
lemma actn_lemma: "rec_exec rec_actn [m, q, r] = actn m q r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2492
  by(auto simp: rec_actn_def rec_exec.simps entry_lemma scan_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2493
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2494
fun newstat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2495
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2496
  "newstat m q r = (if q \<noteq> 0 then Entry m (4*(q - 1) + 2*scan r + 1)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2497
                    else 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2498
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2499
definition rec_newstat :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2500
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2501
  "rec_newstat = Cn 3 rec_add 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2502
    [Cn 3 rec_mult [Cn 3 rec_entry [id 3 0, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2503
           Cn 3 rec_add [Cn 3 rec_mult [Cn 3 (constn 4) [id 3 0], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2504
           Cn 3 rec_minus [id 3 1, Cn 3 (constn 1) [id 3 0]]], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2505
           Cn 3 rec_add [Cn 3 rec_mult [Cn 3 (constn 2) [id 3 0],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2506
           Cn 3 rec_scan [id 3 2]], Cn 3 (constn 1) [id 3 0]]]], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2507
           Cn 3 rec_noteq [id 3 1, Cn 3 (constn 0) [id 3 0]]], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2508
           Cn 3 rec_mult [Cn 3 (constn 0) [id 3 0], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2509
           Cn 3 rec_eq [id 3 1, Cn 3 (constn 0) [id 3 0]]]] "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2510
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2511
lemma newstat_lemma: "rec_exec rec_newstat [m, q, r] = newstat m q r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2512
by(auto simp:  rec_exec.simps entry_lemma scan_lemma rec_newstat_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2513
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2514
declare newstat.simps[simp del] actn.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2515
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2516
text{*code the configuration*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2517
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2518
fun trpl :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2519
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2520
  "trpl p q r = (Pi 0)^p * (Pi 1)^q * (Pi 2)^r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2521
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2522
definition rec_trpl :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2523
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2524
  "rec_trpl = Cn 3 rec_mult [Cn 3 rec_mult 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2525
       [Cn 3 rec_power [Cn 3 (constn (Pi 0)) [id 3 0], id 3 0], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2526
        Cn 3 rec_power [Cn 3 (constn (Pi 1)) [id 3 0], id 3 1]],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2527
        Cn 3 rec_power [Cn 3 (constn (Pi 2)) [id 3 0], id 3 2]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2528
declare trpl.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2529
lemma trpl_lemma: "rec_exec rec_trpl [p, q, r] = trpl p q r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2530
by(auto simp: rec_trpl_def rec_exec.simps power_lemma trpl.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2531
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2532
text{*left, stat, rght: decode func*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2533
fun left :: "nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2534
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2535
  "left c = lo c (Pi 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2536
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2537
fun stat :: "nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2538
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2539
  "stat c = lo c (Pi 1)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2540
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2541
fun rght :: "nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2542
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2543
  "rght c = lo c (Pi 2)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2544
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2545
fun inpt :: "nat \<Rightarrow> nat list \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2546
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2547
  "inpt m xs = trpl 0 1 (strt xs)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2548
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2549
fun newconf :: "nat \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2550
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2551
  "newconf m c = trpl (newleft (left c) (rght c) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2552
                        (actn m (stat c) (rght c)))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2553
                        (newstat m (stat c) (rght c)) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2554
                        (newrght (left c) (rght c) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2555
                              (actn m (stat c) (rght c)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2556
  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2557
declare left.simps[simp del] stat.simps[simp del] rght.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2558
        inpt.simps[simp del] newconf.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2559
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2560
definition rec_left :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2561
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2562
  "rec_left = Cn 1 rec_lo [id 1 0, constn (Pi 0)]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2563
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2564
definition rec_right :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2565
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2566
  "rec_right = Cn 1 rec_lo [id 1 0, constn (Pi 2)]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2567
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2568
definition rec_stat :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2569
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2570
  "rec_stat = Cn 1 rec_lo [id 1 0, constn (Pi 1)]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2571
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2572
definition rec_inpt :: "nat \<Rightarrow> recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2573
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2574
  "rec_inpt vl = Cn vl rec_trpl 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2575
                  [Cn vl (constn 0) [id vl 0], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2576
                   Cn vl (constn 1) [id vl 0], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2577
                   Cn vl (rec_strt (vl - 1)) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2578
                        (map (\<lambda> i. id vl (i)) [1..<vl])]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2579
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2580
lemma left_lemma: "rec_exec rec_left [c] = left c"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2581
by(simp add: rec_exec.simps rec_left_def left.simps lo_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2582
      
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2583
lemma right_lemma: "rec_exec rec_right [c] = rght c"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2584
by(simp add: rec_exec.simps rec_right_def rght.simps lo_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2585
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2586
lemma stat_lemma: "rec_exec rec_stat [c] = stat c"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2587
by(simp add: rec_exec.simps rec_stat_def stat.simps lo_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2588
 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2589
declare rec_strt.simps[simp del] strt.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2590
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2591
lemma map_cons_eq: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2592
  "(map ((\<lambda>a. rec_exec a (m # xs)) \<circ> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2593
    (\<lambda>i. recf.id (Suc (length xs)) (i))) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2594
          [Suc 0..<Suc (length xs)])
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2595
        = map (\<lambda> i. xs ! (i - 1)) [Suc 0..<Suc (length xs)]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2596
apply(rule map_ext, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2597
apply(auto simp: rec_exec.simps nth_append nth_Cons split: nat.split)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2598
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2599
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2600
lemma list_map_eq: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2601
  "vl = length (xs::nat list) \<Longrightarrow> map (\<lambda> i. xs ! (i - 1))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2602
                                          [Suc 0..<Suc vl] = xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2603
apply(induct vl arbitrary: xs, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2604
apply(subgoal_tac "\<exists> ys y. xs = ys @ [y]", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2605
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2606
  fix ys y
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2607
  assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2608
    "\<And>xs. length (ys::nat list) = length (xs::nat list) \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2609
            map (\<lambda>i. xs ! (i - Suc 0)) [Suc 0..<length xs] @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2610
                                [xs ! (length xs - Suc 0)] = xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2611
  and h: "Suc 0 \<le> length (ys::nat list)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2612
  have "map (\<lambda>i. ys ! (i - Suc 0)) [Suc 0..<length ys] @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2613
                                   [ys ! (length ys - Suc 0)] = ys"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2614
    apply(rule_tac ind, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2615
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2616
  moreover have 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2617
    "map (\<lambda>i. (ys @ [y]) ! (i - Suc 0)) [Suc 0..<length ys]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2618
      = map (\<lambda>i. ys ! (i - Suc 0)) [Suc 0..<length ys]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2619
    apply(rule map_ext)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2620
    using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2621
    apply(auto simp: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2622
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2623
  ultimately show "map (\<lambda>i. (ys @ [y]) ! (i - Suc 0)) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2624
        [Suc 0..<length ys] @ [(ys @ [y]) ! (length ys - Suc 0)] = ys"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2625
    apply(simp del: map_eq_conv add: nth_append, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2626
    using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2627
    apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2628
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2629
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2630
  fix vl xs
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2631
  assume "Suc vl = length (xs::nat list)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2632
  thus "\<exists>ys y. xs = ys @ [y]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2633
    apply(rule_tac x = "butlast xs" in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2634
          rule_tac x = "last xs" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2635
    apply(case_tac "xs \<noteq> []", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2636
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2637
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2638
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2639
lemma [elim]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2640
  "Suc 0 \<le> length xs \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2641
     (map ((\<lambda>a. rec_exec a (m # xs)) \<circ> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2642
         (\<lambda>i. recf.id (Suc (length xs)) (i))) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2643
             [Suc 0..<length xs] @ [(m # xs) ! length xs]) = xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2644
using map_cons_eq[of m xs]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2645
apply(simp del: map_eq_conv add: rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2646
using list_map_eq[of "length xs" xs]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2647
apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2648
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2649
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2650
    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2651
lemma inpt_lemma:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2652
  "\<lbrakk>Suc (length xs) = vl\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2653
            rec_exec (rec_inpt vl) (m # xs) = inpt m xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2654
apply(auto simp: rec_exec.simps rec_inpt_def 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2655
                 trpl_lemma inpt.simps strt_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2656
apply(subgoal_tac
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2657
  "(map ((\<lambda>a. rec_exec a (m # xs)) \<circ> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2658
          (\<lambda>i. recf.id (Suc (length xs)) (i))) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2659
            [Suc 0..<length xs] @ [(m # xs) ! length xs]) = xs", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2660
apply(auto, case_tac xs, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2661
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2662
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2663
definition rec_newconf:: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2664
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2665
  "rec_newconf = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2666
    Cn 2 rec_trpl 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2667
        [Cn 2 rec_newleft [Cn 2 rec_left [id 2 1], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2668
                           Cn 2 rec_right [id 2 1], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2669
                           Cn 2 rec_actn [id 2 0, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2670
                                          Cn 2 rec_stat [id 2 1], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2671
                           Cn 2 rec_right [id 2 1]]],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2672
          Cn 2 rec_newstat [id 2 0, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2673
                            Cn 2 rec_stat [id 2 1], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2674
                            Cn 2 rec_right [id 2 1]],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2675
           Cn 2 rec_newrght [Cn 2 rec_left [id 2 1], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2676
                             Cn 2 rec_right [id 2 1], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2677
                             Cn 2 rec_actn [id 2 0, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2678
                                   Cn 2 rec_stat [id 2 1], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2679
                             Cn 2 rec_right [id 2 1]]]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2680
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2681
lemma newconf_lemma: "rec_exec rec_newconf [m ,c] = newconf m c"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2682
by(auto simp: rec_newconf_def rec_exec.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2683
              trpl_lemma newleft_lemma left_lemma
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2684
              right_lemma stat_lemma newrght_lemma actn_lemma 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2685
               newstat_lemma stat_lemma newconf.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2686
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2687
declare newconf_lemma[simp]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2688
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2689
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2690
  @{text "conf m r k"} computes the TM configuration after @{text "k"} steps of execution
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2691
  of TM coded as @{text "m"} starting from the initial configuration where the left number equals @{text "0"}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2692
  right number equals @{text "r"}. 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2693
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2694
fun conf :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2695
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2696
  "conf m r 0 = trpl 0 (Suc 0) r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2697
| "conf m r (Suc t) = newconf m (conf m r t)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2698
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2699
declare conf.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2700
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2701
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2702
  @{text "conf"} is implemented by the following recursive function @{text "rec_conf"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2703
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2704
definition rec_conf :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2705
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2706
  "rec_conf = Pr 2 (Cn 2 rec_trpl [Cn 2 (constn 0) [id 2 0], Cn 2 (constn (Suc 0)) [id 2 0], id 2 1])
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2707
                  (Cn 4 rec_newconf [id 4 0, id 4 3])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2708
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2709
lemma conf_step: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2710
  "rec_exec rec_conf [m, r, Suc t] =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2711
         rec_exec rec_newconf [m, rec_exec rec_conf [m, r, t]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2712
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2713
  have "rec_exec rec_conf ([m, r] @ [Suc t]) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2714
          rec_exec rec_newconf [m, rec_exec rec_conf [m, r, t]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2715
    by(simp only: rec_conf_def rec_pr_Suc_simp_rewrite,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2716
        simp add: rec_exec.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2717
  thus "rec_exec rec_conf [m, r, Suc t] =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2718
                rec_exec rec_newconf [m, rec_exec rec_conf [m, r, t]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2719
    by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2720
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2721
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2722
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2723
  The correctness of @{text "rec_conf"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2724
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2725
lemma conf_lemma: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2726
  "rec_exec rec_conf [m, r, t] = conf m r t"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2727
apply(induct t)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2728
apply(simp add: rec_conf_def rec_exec.simps conf.simps inpt_lemma trpl_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2729
apply(simp add: conf_step conf.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2730
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2731
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2732
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2733
  @{text "NSTD c"} returns true if the configureation coded by @{text "c"} is no a stardard
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2734
  final configuration.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2735
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2736
fun NSTD :: "nat \<Rightarrow> bool"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2737
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2738
  "NSTD c = (stat c \<noteq> 0 \<or> left c \<noteq> 0 \<or> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2739
             rght c \<noteq> 2^(lg (rght c + 1) 2) - 1 \<or> rght c = 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2740
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2741
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2742
  @{text "rec_NSTD"} is the recursive function implementing @{text "NSTD"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2743
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2744
definition rec_NSTD :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2745
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2746
  "rec_NSTD =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2747
     Cn 1 rec_disj [
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2748
          Cn 1 rec_disj [
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2749
             Cn 1 rec_disj 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2750
                [Cn 1 rec_noteq [rec_stat, constn 0], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2751
                 Cn 1 rec_noteq [rec_left, constn 0]] , 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2752
              Cn 1 rec_noteq [rec_right,  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2753
                              Cn 1 rec_minus [Cn 1 rec_power 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2754
                                 [constn 2, Cn 1 rec_lg 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2755
                                    [Cn 1 rec_add        
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2756
                                     [rec_right, constn 1], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2757
                                            constn 2]], constn 1]]],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2758
               Cn 1 rec_eq [rec_right, constn 0]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2759
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2760
lemma NSTD_lemma1: "rec_exec rec_NSTD [c] = Suc 0 \<or>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2761
                   rec_exec rec_NSTD [c] = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2762
by(simp add: rec_exec.simps rec_NSTD_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2763
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2764
declare NSTD.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2765
lemma NSTD_lemma2': "(rec_exec rec_NSTD [c] = Suc 0) \<Longrightarrow> NSTD c"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2766
apply(simp add: rec_exec.simps rec_NSTD_def stat_lemma left_lemma 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2767
                lg_lemma right_lemma power_lemma NSTD.simps eq_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2768
apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2769
apply(case_tac "0 < left c", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2770
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2771
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2772
lemma NSTD_lemma2'': 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2773
  "NSTD c \<Longrightarrow> (rec_exec rec_NSTD [c] = Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2774
apply(simp add: rec_exec.simps rec_NSTD_def stat_lemma 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2775
         left_lemma lg_lemma right_lemma power_lemma NSTD.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2776
apply(auto split: if_splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2777
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2778
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2779
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2780
  The correctness of @{text "NSTD"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2781
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2782
lemma NSTD_lemma2: "(rec_exec rec_NSTD [c] = Suc 0) = NSTD c"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2783
using NSTD_lemma1
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2784
apply(auto intro: NSTD_lemma2' NSTD_lemma2'')
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2785
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2786
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2787
fun nstd :: "nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2788
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2789
  "nstd c = (if NSTD c then 1 else 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2790
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2791
lemma nstd_lemma: "rec_exec rec_NSTD [c] = nstd c"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2792
using NSTD_lemma1
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2793
apply(simp add: NSTD_lemma2, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2794
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2795
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2796
text{* 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2797
  @{text "nonstep m r t"} means afer @{text "t"} steps of execution, the TM coded by @{text "m"}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2798
  is not at a stardard final configuration.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2799
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2800
fun nonstop :: "nat \<Rightarrow> nat  \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2801
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2802
  "nonstop m r t = nstd (conf m r t)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2803
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2804
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2805
  @{text "rec_nonstop"} is the recursive function implementing @{text "nonstop"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2806
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2807
definition rec_nonstop :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2808
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2809
  "rec_nonstop = Cn 3 rec_NSTD [rec_conf]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2810
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2811
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2812
  The correctness of @{text "rec_nonstop"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2813
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2814
lemma nonstop_lemma: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2815
  "rec_exec rec_nonstop [m, r, t] = nonstop m r t"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2816
apply(simp add: rec_exec.simps rec_nonstop_def nstd_lemma conf_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2817
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2818
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2819
text{*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2820
  @{text "rec_halt"} is the recursive function calculating the steps a TM needs to execute before
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2821
  to reach a stardard final configuration. This recursive function is the only one
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2822
  using @{text "Mn"} combinator. So it is the only non-primitive recursive function 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2823
  needs to be used in the construction of the universal function @{text "F"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2824
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2825
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2826
definition rec_halt :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2827
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2828
  "rec_halt = Mn (Suc (Suc 0)) (rec_nonstop)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2829
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2830
declare nonstop.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2831
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2832
lemma primerec_not0: "primerec f n \<Longrightarrow> n > 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2833
by(induct f n rule: primerec.induct, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2834
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2835
lemma [elim]: "primerec f 0 \<Longrightarrow> RR"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2836
apply(drule_tac primerec_not0, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2837
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2838
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2839
lemma [simp]: "length xs = Suc n \<Longrightarrow> length (butlast xs) = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2840
apply(subgoal_tac "\<exists> y ys. xs = ys @ [y]", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2841
apply(rule_tac x = "last xs" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2842
apply(rule_tac x = "butlast xs" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2843
apply(case_tac "xs = []", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2844
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2845
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2846
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2847
  The lemma relates the interpreter of primitive fucntions with
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2848
  the calculation relation of general recursive functions. 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2849
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2850
        
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2851
declare numeral_2_eq_2[simp] numeral_3_eq_3[simp]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2852
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2853
lemma [intro]: "primerec rec_right (Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2854
apply(simp add: rec_right_def rec_lo_def Let_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2855
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2856
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2857
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2858
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2859
lemma [intro]:  "primerec rec_pi (Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2860
apply(simp add: rec_pi_def rec_dummy_pi_def 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2861
                rec_np_def rec_fac_def rec_prime_def
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2862
                rec_Minr.simps Let_def get_fstn_args.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2863
                arity.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2864
                rec_all.simps rec_sigma.simps rec_accum.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2865
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2866
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2867
apply(simp add: rec_dummyfac_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2868
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2869
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2870
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2871
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2872
lemma [intro]: "primerec rec_trpl (Suc (Suc (Suc 0)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2873
apply(simp add: rec_trpl_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2874
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2875
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2876
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2877
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2878
lemma [intro!]: "\<lbrakk>0 < vl; n \<le> vl\<rbrakk> \<Longrightarrow> primerec (rec_listsum2 vl n) vl"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2879
apply(induct n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2880
apply(simp_all add: rec_strt'.simps Let_def rec_listsum2.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2881
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2882
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2883
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2884
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2885
lemma [elim]: "\<lbrakk>0 < vl; n \<le> vl\<rbrakk> \<Longrightarrow> primerec (rec_strt' vl n) vl"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2886
apply(induct n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2887
apply(simp_all add: rec_strt'.simps Let_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2888
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2889
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2890
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2891
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2892
lemma [elim]: "vl > 0 \<Longrightarrow> primerec (rec_strt vl) vl"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2893
apply(simp add: rec_strt.simps rec_strt'.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2894
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2895
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2896
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2897
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2898
lemma [elim]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2899
  "i < vl \<Longrightarrow> primerec ((map (\<lambda>i. recf.id (Suc vl) (i)) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2900
        [Suc 0..<vl] @ [recf.id (Suc vl) (vl)]) ! i) (Suc vl)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2901
apply(induct i, auto simp: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2902
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2903
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2904
lemma [intro]: "primerec rec_newleft0 ((Suc (Suc 0)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2905
apply(simp add: rec_newleft_def rec_embranch.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2906
                Let_def arity.simps rec_newleft0_def
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2907
                rec_newleft1_def rec_newleft2_def rec_newleft3_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2908
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2909
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2910
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2911
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2912
lemma [intro]: "primerec rec_newleft1 ((Suc (Suc 0)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2913
apply(simp add: rec_newleft_def rec_embranch.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2914
                Let_def arity.simps rec_newleft0_def
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2915
                rec_newleft1_def rec_newleft2_def rec_newleft3_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2916
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2917
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2918
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2919
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2920
lemma [intro]: "primerec rec_newleft2 ((Suc (Suc 0)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2921
apply(simp add: rec_newleft_def rec_embranch.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2922
                Let_def arity.simps rec_newleft0_def
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2923
                rec_newleft1_def rec_newleft2_def rec_newleft3_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2924
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2925
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2926
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2927
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2928
lemma [intro]: "primerec rec_newleft3 ((Suc (Suc 0)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2929
apply(simp add: rec_newleft_def rec_embranch.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2930
                Let_def arity.simps rec_newleft0_def
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2931
                rec_newleft1_def rec_newleft2_def rec_newleft3_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2932
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2933
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2934
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2935
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2936
lemma [intro]: "primerec rec_newleft (Suc (Suc (Suc 0)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2937
apply(simp add: rec_newleft_def rec_embranch.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2938
                Let_def arity.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2939
apply(rule_tac prime_cn, auto+)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2940
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2941
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2942
lemma [intro]: "primerec rec_left (Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2943
apply(simp add: rec_left_def rec_lo_def rec_entry_def Let_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2944
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2945
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2946
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2947
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2948
lemma [intro]: "primerec rec_actn (Suc (Suc (Suc 0)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2949
apply(simp add: rec_left_def rec_lo_def rec_entry_def
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2950
                Let_def rec_actn_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2951
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2952
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2953
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2954
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2955
lemma [intro]: "primerec rec_stat (Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2956
apply(simp add: rec_left_def rec_lo_def rec_entry_def Let_def 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2957
                rec_actn_def rec_stat_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2958
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2959
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2960
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2961
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2962
lemma [intro]: "primerec rec_newstat (Suc (Suc (Suc 0)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2963
apply(simp add: rec_left_def rec_lo_def rec_entry_def 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2964
                Let_def rec_actn_def rec_stat_def rec_newstat_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2965
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2966
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2967
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2968
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2969
lemma [intro]: "primerec rec_newrght (Suc (Suc (Suc 0)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2970
apply(simp add: rec_newrght_def rec_embranch.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2971
                Let_def arity.simps rec_newrgt0_def 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2972
                rec_newrgt1_def rec_newrgt2_def rec_newrgt3_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2973
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2974
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2975
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2976
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2977
lemma [intro]: "primerec rec_newconf (Suc (Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2978
apply(simp add: rec_newconf_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2979
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2980
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2981
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2982
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2983
lemma [intro]: "0 < vl \<Longrightarrow> primerec (rec_inpt (Suc vl)) (Suc vl)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2984
apply(simp add: rec_inpt_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2985
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2986
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2987
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2988
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2989
lemma [intro]: "primerec rec_conf (Suc (Suc (Suc 0)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2990
apply(simp add: rec_conf_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2991
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2992
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2993
apply(auto simp: numeral_4_eq_4)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2994
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2995
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2996
lemma [intro]: "primerec rec_lg (Suc (Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2997
apply(simp add: rec_lg_def Let_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2998
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2999
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3000
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3001
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3002
lemma [intro]:  "primerec rec_nonstop (Suc (Suc (Suc 0)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3003
apply(simp add: rec_nonstop_def rec_NSTD_def rec_stat_def
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3004
     rec_lo_def Let_def rec_left_def rec_right_def rec_newconf_def
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3005
     rec_newstat_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3006
apply(tactic {* resolve_tac [@{thm prime_cn}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3007
    @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3008
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3009
229
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3010
lemma primerec_terminate: 
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3011
  "\<lbrakk>primerec f x; length xs = x\<rbrakk> \<Longrightarrow> terminate f xs"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3012
proof(induct arbitrary: xs rule: primerec.induct)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3013
  fix xs
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3014
  assume "length (xs::nat list) = Suc 0"  thus "terminate z xs"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3015
    by(case_tac xs, auto intro: termi_z)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3016
next
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3017
  fix xs
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3018
  assume "length (xs::nat list) = Suc 0" thus "terminate s xs"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3019
    by(case_tac xs, auto intro: termi_s)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3020
next
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3021
  fix n m xs
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3022
  assume "n < m" "length (xs::nat list) = m"  thus "terminate (id m n) xs"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3023
    by(erule_tac termi_id, simp)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3024
next
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3025
  fix f k gs m n xs
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3026
  assume ind: "\<forall>i<length gs. primerec (gs ! i) m \<and> (\<forall>x. length x = m \<longrightarrow> terminate (gs ! i) x)"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3027
  and ind2: "\<And> xs. length xs = k \<Longrightarrow> terminate f xs"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3028
  and h: "primerec f k"  "length gs = k" "m = n" "length (xs::nat list) = m"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3029
  have "terminate f (map (\<lambda>g. rec_exec g xs) gs)"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3030
    using ind2[of "(map (\<lambda>g. rec_exec g xs) gs)"] h
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3031
    by simp
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3032
  moreover have "\<forall>g\<in>set gs. terminate g xs"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3033
    using ind h
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3034
    by(auto simp: set_conv_nth)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3035
  ultimately show "terminate (Cn n f gs) xs"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3036
    using h
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3037
    by(rule_tac termi_cn, auto)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3038
next
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3039
  fix f n g m xs
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3040
  assume ind1: "\<And>xs. length xs = n \<Longrightarrow> terminate f xs"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3041
  and ind2: "\<And>xs. length xs = Suc (Suc n) \<Longrightarrow> terminate g xs"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3042
  and h: "primerec f n" " primerec g (Suc (Suc n))" " m = Suc n" "length (xs::nat list) = m"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3043
  have "\<forall>y<last xs. terminate g (butlast xs @ [y, rec_exec (Pr n f g) (butlast xs @ [y])])"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3044
    using h
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3045
    apply(auto) 
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3046
    by(rule_tac ind2, simp)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3047
  moreover have "terminate f (butlast xs)"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3048
    using ind1[of "butlast xs"] h
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3049
    by simp
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3050
 moreover have "length (butlast xs) = n"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3051
   using h by simp
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3052
 ultimately have "terminate (Pr n f g) (butlast xs @ [last xs])"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3053
   by(rule_tac termi_pr, simp_all)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3054
 thus "terminate (Pr n f g) xs"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3055
   using h
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3056
   by(case_tac "xs = []", auto)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3057
qed
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3058
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3059
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3060
  The following lemma gives the correctness of @{text "rec_halt"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3061
  It says: if @{text "rec_halt"} calculates that the TM coded by @{text "m"}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3062
  will reach a standard final configuration after @{text "t"} steps of execution, then it is indeed so.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3063
  *}
229
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3064
 
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3065
text {*F: universal machine*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3066
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3067
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3068
  @{text "valu r"} extracts computing result out of the right number @{text "r"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3069
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3070
fun valu :: "nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3071
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3072
  "valu r = (lg (r + 1) 2) - 1"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3073
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3074
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3075
  @{text "rec_valu"} is the recursive function implementing @{text "valu"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3076
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3077
definition rec_valu :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3078
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3079
  "rec_valu = Cn 1 rec_minus [Cn 1 rec_lg [s, constn 2], constn 1]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3080
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3081
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3082
  The correctness of @{text "rec_valu"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3083
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3084
lemma value_lemma: "rec_exec rec_valu [r] = valu r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3085
apply(simp add: rec_exec.simps rec_valu_def lg_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3086
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3087
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3088
lemma [intro]: "primerec rec_valu (Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3089
apply(simp add: rec_valu_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3090
apply(rule_tac k = "Suc (Suc 0)" in prime_cn)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3091
apply(auto simp: prime_s)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3092
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3093
  show "primerec rec_lg (Suc (Suc 0))" by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3094
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3095
  show "Suc (Suc 0) = Suc (Suc 0)" by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3096
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3097
  show "primerec (constn (Suc (Suc 0))) (Suc 0)" by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3098
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3099
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3100
declare valu.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3101
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3102
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3103
  The definition of the universal function @{text "rec_F"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3104
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3105
definition rec_F :: "recf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3106
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3107
  "rec_F = Cn (Suc (Suc 0)) rec_valu [Cn (Suc (Suc 0)) rec_right [Cn (Suc (Suc 0))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3108
 rec_conf ([id (Suc (Suc 0)) 0, id (Suc (Suc 0)) (Suc 0), rec_halt])]]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3109
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3110
lemma get_fstn_args_nth: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3111
  "k < n \<Longrightarrow> (get_fstn_args m n ! k) = id m (k)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3112
apply(induct n, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3113
apply(case_tac "k = n", simp_all add: get_fstn_args.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3114
                                      nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3115
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3116
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3117
lemma [simp]: 
229
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3118
  "\<lbrakk>ys \<noteq> [];
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3119
  k < length ys\<rbrakk> \<Longrightarrow>
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3120
  (get_fstn_args (length ys) (length ys) ! k) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3121
                                  id (length ys) (k)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3122
by(erule_tac get_fstn_args_nth)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3123
229
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3124
lemma terminate_halt_lemma: 
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3125
  "\<lbrakk>rec_exec rec_nonstop ([m, r] @ [t]) = 0; 
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3126
     \<forall>i<t. 0 < rec_exec rec_nonstop ([m, r] @ [i])\<rbrakk> \<Longrightarrow> terminate rec_halt [m, r]"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3127
apply(simp add: rec_halt_def)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3128
apply(rule_tac termi_mn, auto)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3129
apply(rule_tac [!] primerec_terminate, auto)
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3130
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3131
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3132
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3133
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3134
  The correctness of @{text "rec_F"}, halt case.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3135
  *}
229
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3136
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3137
lemma F_lemma: "rec_exec rec_halt [m, r] = t \<Longrightarrow> rec_exec rec_F [m, r] = (valu (rght (conf m r t)))"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3138
by(simp add: rec_F_def rec_exec.simps value_lemma right_lemma conf_lemma halt_lemma)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3139
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3140
lemma terminate_F_lemma: "terminate rec_halt [m, r] \<Longrightarrow> terminate rec_F [m, r]"
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3141
apply(simp add: rec_F_def)
229
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3142
apply(rule_tac termi_cn, auto)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3143
apply(rule_tac primerec_terminate, auto)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3144
apply(rule_tac termi_cn, auto)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3145
apply(rule_tac primerec_terminate, auto)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3146
apply(rule_tac termi_cn, auto)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3147
apply(rule_tac primerec_terminate, auto)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  3148
apply(rule_tac [!] termi_id, auto)
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3149
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3150
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3151
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3152
  The correctness of @{text "rec_F"}, nonhalt case.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3153
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3154
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3155
subsection {* Coding function of TMs *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3156
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3157
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3158
  The purpose of this section is to get the coding function of Turing Machine, which is 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3159
  going to be named @{text "code"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3160
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3161
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3162
fun bl2nat :: "cell list \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3163
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3164
  "bl2nat [] n = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3165
| "bl2nat (Bk#bl) n = bl2nat bl (Suc n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3166
| "bl2nat (Oc#bl) n = 2^n + bl2nat bl (Suc n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3167
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3168
fun bl2wc :: "cell list \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3169
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3170
  "bl2wc xs = bl2nat xs 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3171
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3172
fun trpl_code :: "config \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3173
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3174
  "trpl_code (st, l, r) = trpl (bl2wc l) st (bl2wc r)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3175
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3176
declare bl2nat.simps[simp del] bl2wc.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3177
        trpl_code.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3178
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3179
fun action_map :: "action \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3180
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3181
  "action_map W0 = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3182
| "action_map W1 = 1"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3183
| "action_map L = 2"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3184
| "action_map R = 3"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3185
| "action_map Nop = 4"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3186
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3187
fun action_map_iff :: "nat \<Rightarrow> action"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3188
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3189
  "action_map_iff (0::nat) = W0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3190
| "action_map_iff (Suc 0) = W1"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3191
| "action_map_iff (Suc (Suc 0)) = L"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3192
| "action_map_iff (Suc (Suc (Suc 0))) = R"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3193
| "action_map_iff n = Nop"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3194
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3195
fun block_map :: "cell \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3196
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3197
  "block_map Bk = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3198
| "block_map Oc = 1"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3199
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3200
fun godel_code' :: "nat list \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3201
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3202
  "godel_code' [] n = 1"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3203
| "godel_code' (x#xs) n = (Pi n)^x * godel_code' xs (Suc n) "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3204
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3205
fun godel_code :: "nat list \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3206
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3207
  "godel_code xs = (let lh = length xs in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3208
                   2^lh * (godel_code' xs (Suc 0)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3209
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3210
fun modify_tprog :: "instr list \<Rightarrow> nat list"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3211
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3212
  "modify_tprog [] =  []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3213
| "modify_tprog ((ac, ns)#nl) = action_map ac # ns # modify_tprog nl"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3214
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3215
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3216
  @{text "code tp"} gives the Godel coding of TM program @{text "tp"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3217
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3218
fun code :: "instr list \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3219
  where 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3220
  "code tp = (let nl = modify_tprog tp in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3221
              godel_code nl)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3222
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3223
subsection {* Relating interperter functions to the execution of TMs *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3224
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3225
lemma [simp]: "bl2wc [] = 0" by(simp add: bl2wc.simps bl2nat.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3226
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3227
lemma [simp]: "\<lbrakk>fetch tp 0 b = (nact, ns)\<rbrakk> \<Longrightarrow> action_map nact = 4"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3228
apply(simp add: fetch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3229
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3230
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3231
lemma Pi_gr_1[simp]: "Pi n > Suc 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3232
proof(induct n, auto simp: Pi.simps Np.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3233
  fix n
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3234
  let ?setx = "{y. y \<le> Suc (Pi n!) \<and> Pi n < y \<and> Prime y}"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3235
  have "finite ?setx" by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3236
  moreover have "?setx \<noteq> {}"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3237
    using prime_ex[of "Pi n"]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3238
    apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3239
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3240
  ultimately show "Suc 0 < Min ?setx"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3241
    apply(simp add: Min_gr_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3242
    apply(auto simp: Prime.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3243
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3244
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3245
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3246
lemma Pi_not_0[simp]: "Pi n > 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3247
using Pi_gr_1[of n]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3248
by arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3249
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3250
declare godel_code.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3251
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3252
lemma [simp]: "0 < godel_code' nl n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3253
apply(induct nl arbitrary: n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3254
apply(auto simp: godel_code'.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3255
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3256
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3257
lemma godel_code_great: "godel_code nl > 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3258
apply(simp add: godel_code.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3259
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3260
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3261
lemma godel_code_eq_1: "(godel_code nl = 1) = (nl = [])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3262
apply(auto simp: godel_code.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3263
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3264
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3265
lemma [elim]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3266
  "\<lbrakk>i < length nl; \<not> Suc 0 < godel_code nl\<rbrakk> \<Longrightarrow> nl ! i = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3267
using godel_code_great[of nl] godel_code_eq_1[of nl]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3268
apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3269
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3270
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3271
lemma prime_coprime: "\<lbrakk>Prime x; Prime y; x\<noteq>y\<rbrakk> \<Longrightarrow> coprime x y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3272
proof(simp only: Prime.simps coprime_nat, auto simp: dvd_def,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3273
      rule_tac classical, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3274
  fix d k ka
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3275
  assume case_ka: "\<forall>u<d * ka. \<forall>v<d * ka. u * v \<noteq> d * ka" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3276
    and case_k: "\<forall>u<d * k. \<forall>v<d * k. u * v \<noteq> d * k"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3277
    and h: "(0::nat) < d" "d \<noteq> Suc 0" "Suc 0 < d * ka" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3278
           "ka \<noteq> k" "Suc 0 < d * k"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3279
  from h have "k > Suc 0 \<or> ka >Suc 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3280
    apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3281
    apply(case_tac ka, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3282
    apply(case_tac k, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3283
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3284
  from this show "False"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3285
  proof(erule_tac disjE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3286
    assume  "(Suc 0::nat) < k"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3287
    hence "k < d*k \<and> d < d*k"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3288
      using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3289
      by(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3290
    thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3291
      using case_k
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3292
      apply(erule_tac x = d in allE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3293
      apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3294
      apply(erule_tac x = k in allE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3295
      apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3296
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3297
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3298
    assume "(Suc 0::nat) < ka"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3299
    hence "ka < d * ka \<and> d < d*ka"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3300
      using h by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3301
    thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3302
      using case_ka
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3303
      apply(erule_tac x = d in allE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3304
      apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3305
      apply(erule_tac x = ka in allE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3306
      apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3307
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3308
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3309
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3310
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3311
lemma Pi_inc: "Pi (Suc i) > Pi i"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3312
proof(simp add: Pi.simps Np.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3313
  let ?setx = "{y. y \<le> Suc (Pi i!) \<and> Pi i < y \<and> Prime y}"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3314
  have "finite ?setx" by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3315
  moreover have "?setx \<noteq> {}"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3316
    using prime_ex[of "Pi i"]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3317
    apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3318
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3319
  ultimately show "Pi i < Min ?setx"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3320
    apply(simp add: Min_gr_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3321
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3322
qed    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3323
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3324
lemma Pi_inc_gr: "i < j \<Longrightarrow> Pi i < Pi j"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3325
proof(induct j, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3326
  fix j
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3327
  assume ind: "i < j \<Longrightarrow> Pi i < Pi j"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3328
  and h: "i < Suc j"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3329
  from h show "Pi i < Pi (Suc j)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3330
  proof(cases "i < j")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3331
    case True thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3332
    proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3333
      assume "i < j"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3334
      hence "Pi i < Pi j" by(erule_tac ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3335
      moreover have "Pi j < Pi (Suc j)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3336
        apply(simp add: Pi_inc)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3337
        done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3338
      ultimately show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3339
        by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3340
    qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3341
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3342
    assume "i < Suc j" "\<not> i < j"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3343
    hence "i = j"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3344
      by arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3345
    thus "Pi i < Pi (Suc j)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3346
      apply(simp add: Pi_inc)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3347
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3348
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3349
qed      
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3350
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3351
lemma Pi_notEq: "i \<noteq> j \<Longrightarrow> Pi i \<noteq> Pi j"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3352
apply(case_tac "i < j")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3353
using Pi_inc_gr[of i j]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3354
apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3355
using Pi_inc_gr[of j i]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3356
apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3357
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3358
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3359
lemma [intro]: "Prime (Suc (Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3360
apply(auto simp: Prime.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3361
apply(case_tac u, simp, case_tac nat, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3362
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3363
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3364
lemma Prime_Pi[intro]: "Prime (Pi n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3365
proof(induct n, auto simp: Pi.simps Np.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3366
  fix n
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3367
  let ?setx = "{y. y \<le> Suc (Pi n!) \<and> Pi n < y \<and> Prime y}"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3368
  show "Prime (Min ?setx)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3369
  proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3370
    have "finite ?setx" by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3371
    moreover have "?setx \<noteq> {}" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3372
      using prime_ex[of "Pi n"]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3373
      apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3374
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3375
    ultimately show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3376
      apply(drule_tac Min_in, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3377
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3378
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3379
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3380
    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3381
lemma Pi_coprime: "i \<noteq> j \<Longrightarrow> coprime (Pi i) (Pi j)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3382
using Prime_Pi[of i]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3383
using Prime_Pi[of j]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3384
apply(rule_tac prime_coprime, simp_all add: Pi_notEq)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3385
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3386
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3387
lemma Pi_power_coprime: "i \<noteq> j \<Longrightarrow> coprime ((Pi i)^m) ((Pi j)^n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3388
by(rule_tac coprime_exp2_nat, erule_tac Pi_coprime)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3389
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3390
lemma coprime_dvd_mult_nat2: "\<lbrakk>coprime (k::nat) n; k dvd n * m\<rbrakk> \<Longrightarrow> k dvd m"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3391
apply(erule_tac coprime_dvd_mult_nat)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3392
apply(simp add: dvd_def, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3393
apply(rule_tac x = ka in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3394
apply(subgoal_tac "n * m = m * n", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3395
apply(simp add: nat_mult_commute)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3396
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3397
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3398
declare godel_code'.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3399
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3400
lemma godel_code'_butlast_last_id' :
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3401
  "godel_code' (ys @ [y]) (Suc j) = godel_code' ys (Suc j) * 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3402
                                Pi (Suc (length ys + j)) ^ y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3403
proof(induct ys arbitrary: j, simp_all add: godel_code'.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3404
qed  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3405
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3406
lemma godel_code'_butlast_last_id: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3407
"xs \<noteq> [] \<Longrightarrow> godel_code' xs (Suc j) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3408
  godel_code' (butlast xs) (Suc j) * Pi (length xs + j)^(last xs)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3409
apply(subgoal_tac "\<exists> ys y. xs = ys @ [y]")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3410
apply(erule_tac exE, erule_tac exE, simp add: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3411
                            godel_code'_butlast_last_id')
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3412
apply(rule_tac x = "butlast xs" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3413
apply(rule_tac x = "last xs" in exI, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3414
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3415
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3416
lemma godel_code'_not0: "godel_code' xs n \<noteq> 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3417
apply(induct xs, auto simp: godel_code'.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3418
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3419
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3420
lemma godel_code_append_cons: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3421
  "length xs = i \<Longrightarrow> godel_code' (xs@y#ys) (Suc 0)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3422
    = godel_code' xs (Suc 0) * Pi (Suc i)^y * godel_code' ys (i + 2)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3423
proof(induct "length xs" arbitrary: i y ys xs, simp add: godel_code'.simps,simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3424
  fix x xs i y ys
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3425
  assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3426
    "\<And>xs i y ys. \<lbrakk>x = i; length xs = i\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3427
       godel_code' (xs @ y # ys) (Suc 0) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3428
     = godel_code' xs (Suc 0) * Pi (Suc i) ^ y * 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3429
                             godel_code' ys (Suc (Suc i))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3430
  and h: "Suc x = i" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3431
         "length (xs::nat list) = i"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3432
  have 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3433
    "godel_code' (butlast xs @ last xs # ((y::nat)#ys)) (Suc 0) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3434
        godel_code' (butlast xs) (Suc 0) * Pi (Suc (i - 1))^(last xs) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3435
              * godel_code' (y#ys) (Suc (Suc (i - 1)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3436
    apply(rule_tac ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3437
    using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3438
    by(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3439
  moreover have 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3440
    "godel_code' xs (Suc 0)= godel_code' (butlast xs) (Suc 0) *
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3441
                                                  Pi (i)^(last xs)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3442
    using godel_code'_butlast_last_id[of xs] h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3443
    apply(case_tac "xs = []", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3444
    done 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3445
  moreover have "butlast xs @ last xs # y # ys = xs @ y # ys"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3446
    using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3447
    apply(case_tac xs, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3448
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3449
  ultimately show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3450
    "godel_code' (xs @ y # ys) (Suc 0) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3451
               godel_code' xs (Suc 0) * Pi (Suc i) ^ y *
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3452
                    godel_code' ys (Suc (Suc i))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3453
    using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3454
    apply(simp add: godel_code'_not0 Pi_not_0)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3455
    apply(simp add: godel_code'.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3456
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3457
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3458
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3459
lemma Pi_coprime_pre: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3460
  "length ps \<le> i \<Longrightarrow> coprime (Pi (Suc i)) (godel_code' ps (Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3461
proof(induct "length ps" arbitrary: ps, simp add: godel_code'.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3462
  fix x ps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3463
  assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3464
    "\<And>ps. \<lbrakk>x = length ps; length ps \<le> i\<rbrakk> \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3465
                  coprime (Pi (Suc i)) (godel_code' ps (Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3466
  and h: "Suc x = length ps"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3467
          "length (ps::nat list) \<le> i"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3468
  have g: "coprime (Pi (Suc i)) (godel_code' (butlast ps) (Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3469
    apply(rule_tac ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3470
    using h by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3471
  have k: "godel_code' ps (Suc 0) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3472
         godel_code' (butlast ps) (Suc 0) * Pi (length ps)^(last ps)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3473
    using godel_code'_butlast_last_id[of ps 0] h 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3474
    by(case_tac ps, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3475
  from g have 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3476
    "coprime (Pi (Suc i)) (godel_code' (butlast ps) (Suc 0) *
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3477
                                        Pi (length ps)^(last ps)) "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3478
  proof(rule_tac coprime_mult_nat, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3479
    show "coprime (Pi (Suc i)) (Pi (length ps) ^ last ps)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3480
      apply(rule_tac coprime_exp_nat, rule prime_coprime, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3481
      using Pi_notEq[of "Suc i" "length ps"] h by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3482
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3483
  from this and k show "coprime (Pi (Suc i)) (godel_code' ps (Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3484
    by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3485
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3486
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3487
lemma Pi_coprime_suf: "i < j \<Longrightarrow> coprime (Pi i) (godel_code' ps j)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3488
proof(induct "length ps" arbitrary: ps, simp add: godel_code'.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3489
  fix x ps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3490
  assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3491
    "\<And>ps. \<lbrakk>x = length ps; i < j\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3492
                    coprime (Pi i) (godel_code' ps j)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3493
  and h: "Suc x = length (ps::nat list)" "i < j"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3494
  have g: "coprime (Pi i) (godel_code' (butlast ps) j)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3495
    apply(rule ind) using h by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3496
  have k: "(godel_code' ps j) = godel_code' (butlast ps) j *
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3497
                                 Pi (length ps + j - 1)^last ps"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3498
    using h godel_code'_butlast_last_id[of ps "j - 1"]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3499
    apply(case_tac "ps = []", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3500
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3501
  from g have
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3502
    "coprime (Pi i) (godel_code' (butlast ps) j * 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3503
                          Pi (length ps + j - 1)^last ps)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3504
    apply(rule_tac coprime_mult_nat, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3505
    using  Pi_power_coprime[of i "length ps + j - 1" 1 "last ps"] h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3506
    apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3507
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3508
  from k and this show "coprime (Pi i) (godel_code' ps j)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3509
    by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3510
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3511
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3512
lemma godel_finite: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3513
  "finite {u. Pi (Suc i) ^ u dvd godel_code' nl (Suc 0)}"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3514
proof(rule_tac n = "godel_code' nl (Suc 0)" in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3515
                          bounded_nat_set_is_finite, auto, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3516
      case_tac "ia < godel_code' nl (Suc 0)", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3517
  fix ia 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3518
  assume g1: "Pi (Suc i) ^ ia dvd godel_code' nl (Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3519
    and g2: "\<not> ia < godel_code' nl (Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3520
  from g1 have "Pi (Suc i)^ia \<le> godel_code' nl (Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3521
    apply(erule_tac dvd_imp_le)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3522
    using  godel_code'_not0[of nl "Suc 0"] by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3523
  moreover have "ia < Pi (Suc i)^ia"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3524
    apply(rule x_less_exp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3525
    using Pi_gr_1 by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3526
  ultimately show "False"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3527
    using g2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3528
    by(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3529
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3530
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3531
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3532
lemma godel_code_in: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3533
  "i < length nl \<Longrightarrow>  nl ! i  \<in> {u. Pi (Suc i) ^ u dvd
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3534
                                     godel_code' nl (Suc 0)}"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3535
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3536
 assume h: "i<length nl"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3537
  hence "godel_code' (take i nl@(nl!i)#drop (Suc i) nl) (Suc 0)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3538
           = godel_code' (take i nl) (Suc 0) *  Pi (Suc i)^(nl!i) *
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3539
                               godel_code' (drop (Suc i) nl) (i + 2)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3540
    by(rule_tac godel_code_append_cons, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3541
  moreover from h have "take i nl @ (nl ! i) # drop (Suc i) nl = nl"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3542
    using upd_conv_take_nth_drop[of i nl "nl ! i"]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3543
    apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3544
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3545
  ultimately  show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3546
    "nl ! i \<in> {u. Pi (Suc i) ^ u dvd godel_code' nl (Suc 0)}"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3547
    by(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3548
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3549
     
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3550
lemma godel_code'_get_nth:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3551
  "i < length nl \<Longrightarrow> Max {u. Pi (Suc i) ^ u dvd 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3552
                          godel_code' nl (Suc 0)} = nl ! i"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3553
proof(rule_tac Max_eqI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3554
  let ?gc = "godel_code' nl (Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3555
  assume h: "i < length nl" thus "finite {u. Pi (Suc i) ^ u dvd ?gc}"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3556
    by (simp add: godel_finite)  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3557
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3558
  fix y
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3559
  let ?suf ="godel_code' (drop (Suc i) nl) (i + 2)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3560
  let ?pref = "godel_code' (take i nl) (Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3561
  assume h: "i < length nl" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3562
            "y \<in> {u. Pi (Suc i) ^ u dvd godel_code' nl (Suc 0)}"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3563
  moreover hence
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3564
    "godel_code' (take i nl@(nl!i)#drop (Suc i) nl) (Suc 0)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3565
    = ?pref * Pi (Suc i)^(nl!i) * ?suf"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3566
    by(rule_tac godel_code_append_cons, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3567
  moreover from h have "take i nl @ (nl!i) # drop (Suc i) nl = nl"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3568
    using upd_conv_take_nth_drop[of i nl "nl!i"]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3569
    by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3570
  ultimately show "y\<le>nl!i"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3571
  proof(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3572
    let ?suf' = "godel_code' (drop (Suc i) nl) (Suc (Suc i))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3573
    assume mult_dvd: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3574
      "Pi (Suc i) ^ y dvd ?pref *  Pi (Suc i) ^ nl ! i * ?suf'"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3575
    hence "Pi (Suc i) ^ y dvd ?pref * Pi (Suc i) ^ nl ! i"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3576
    proof(rule_tac coprime_dvd_mult_nat)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3577
      show "coprime (Pi (Suc i)^y) ?suf'"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3578
      proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3579
        have "coprime (Pi (Suc i) ^ y) (?suf'^(Suc 0))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3580
          apply(rule_tac coprime_exp2_nat)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3581
          apply(rule_tac  Pi_coprime_suf, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3582
          done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3583
        thus "?thesis" by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3584
      qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3585
    qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3586
    hence "Pi (Suc i) ^ y dvd Pi (Suc i) ^ nl ! i"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3587
    proof(rule_tac coprime_dvd_mult_nat2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3588
      show "coprime (Pi (Suc i) ^ y) ?pref"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3589
      proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3590
        have "coprime (Pi (Suc i)^y) (?pref^Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3591
          apply(rule_tac coprime_exp2_nat)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3592
          apply(rule_tac Pi_coprime_pre, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3593
          done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3594
        thus "?thesis" by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3595
      qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3596
    qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3597
    hence "Pi (Suc i) ^ y \<le>  Pi (Suc i) ^ nl ! i "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3598
      apply(rule_tac dvd_imp_le, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3599
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3600
    thus "y \<le> nl ! i"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3601
      apply(rule_tac power_le_imp_le_exp, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3602
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3603
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3604
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3605
  assume h: "i<length nl"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3606
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3607
  thus "nl ! i \<in> {u. Pi (Suc i) ^ u dvd godel_code' nl (Suc 0)}"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3608
    by(rule_tac godel_code_in, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3609
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3610
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3611
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3612
  "{u. Pi (Suc i) ^ u dvd (Suc (Suc 0)) ^ length nl * 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3613
                                     godel_code' nl (Suc 0)} = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3614
    {u. Pi (Suc i) ^ u dvd  godel_code' nl (Suc 0)}"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3615
apply(rule_tac Collect_cong, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3616
apply(rule_tac n = " (Suc (Suc 0)) ^ length nl" in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3617
                                 coprime_dvd_mult_nat2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3618
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3619
  fix u
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3620
  show "coprime (Pi (Suc i) ^ u) ((Suc (Suc 0)) ^ length nl)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3621
  proof(rule_tac coprime_exp2_nat)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3622
    have "Pi 0 = (2::nat)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3623
      apply(simp add: Pi.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3624
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3625
    moreover have "coprime (Pi (Suc i)) (Pi 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3626
      apply(rule_tac Pi_coprime, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3627
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3628
    ultimately show "coprime (Pi (Suc i)) (Suc (Suc 0))" by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3629
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3630
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3631
  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3632
lemma godel_code_get_nth: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3633
  "i < length nl \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3634
           Max {u. Pi (Suc i) ^ u dvd godel_code nl} = nl ! i"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3635
by(simp add: godel_code.simps godel_code'_get_nth)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3636
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3637
lemma "trpl l st r = godel_code' [l, st, r] 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3638
apply(simp add: trpl.simps godel_code'.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3639
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3640
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3641
lemma mod_dvd_simp: "(x mod y = (0::nat)) = (y dvd x)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3642
by(simp add: dvd_def, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3643
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3644
lemma dvd_power_le: "\<lbrakk>a > Suc 0; a ^ y dvd a ^ l\<rbrakk> \<Longrightarrow> y \<le> l"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3645
apply(case_tac "y \<le> l", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3646
apply(subgoal_tac "\<exists> d. y = l + d", auto simp: power_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3647
apply(rule_tac x = "y - l" in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3648
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3649
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3650
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3651
lemma [elim]: "Pi n = 0 \<Longrightarrow> RR"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3652
  using Pi_not_0[of n] by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3653
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3654
lemma [elim]: "Pi n = Suc 0 \<Longrightarrow> RR"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3655
  using Pi_gr_1[of n] by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3656
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3657
lemma finite_power_dvd:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3658
  "\<lbrakk>(a::nat) > Suc 0; y \<noteq> 0\<rbrakk> \<Longrightarrow> finite {u. a^u dvd y}"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3659
apply(auto simp: dvd_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3660
apply(rule_tac n = y in bounded_nat_set_is_finite, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3661
apply(case_tac k, simp,simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3662
apply(rule_tac trans_less_add1)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3663
apply(erule_tac x_less_exp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3664
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3665
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3666
lemma conf_decode1: "\<lbrakk>m \<noteq> n; m \<noteq> k; k \<noteq> n\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3667
  Max {u. Pi m ^ u dvd Pi m ^ l * Pi n ^ st * Pi k ^ r} = l"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3668
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3669
  let ?setx = "{u. Pi m ^ u dvd Pi m ^ l * Pi n ^ st * Pi k ^ r}"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3670
  assume g: "m \<noteq> n" "m \<noteq> k" "k \<noteq> n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3671
  show "Max ?setx = l"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3672
  proof(rule_tac Max_eqI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3673
    show "finite ?setx"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3674
      apply(rule_tac finite_power_dvd, auto simp: Pi_gr_1)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3675
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3676
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3677
    fix y
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3678
    assume h: "y \<in> ?setx"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3679
    have "Pi m ^ y dvd Pi m ^ l"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3680
    proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3681
      have "Pi m ^ y dvd Pi m ^ l * Pi n ^ st"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3682
        using h g
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3683
        apply(rule_tac n = "Pi k^r" in coprime_dvd_mult_nat)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3684
        apply(rule Pi_power_coprime, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3685
        done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3686
      thus "Pi m^y dvd Pi m^l"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3687
        apply(rule_tac n = " Pi n ^ st" in coprime_dvd_mult_nat)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3688
        using g
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3689
        apply(rule_tac Pi_power_coprime, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3690
        done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3691
    qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3692
    thus "y \<le> (l::nat)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3693
      apply(rule_tac a = "Pi m" in power_le_imp_le_exp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3694
      apply(simp_all add: Pi_gr_1)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3695
      apply(rule_tac dvd_power_le, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3696
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3697
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3698
    show "l \<in> ?setx" by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3699
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3700
qed  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3701
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3702
lemma conf_decode2: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3703
  "\<lbrakk>m \<noteq> n; m \<noteq> k; n \<noteq> k; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3704
  \<not> Suc 0 < Pi m ^ l * Pi n ^ st * Pi k ^ r\<rbrakk> \<Longrightarrow> l = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3705
apply(case_tac "Pi m ^ l * Pi n ^ st * Pi k ^ r", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3706
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3707
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3708
lemma [simp]: "left (trpl l st r) = l"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3709
apply(simp add: left.simps trpl.simps lo.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3710
              loR.simps mod_dvd_simp, auto simp: conf_decode1)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3711
apply(case_tac "Pi 0 ^ l * Pi (Suc 0) ^ st * Pi (Suc (Suc 0)) ^ r",
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3712
      auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3713
apply(erule_tac x = l in allE, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3714
done   
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3715
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3716
lemma [simp]: "stat (trpl l st r) = st"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3717
apply(simp add: stat.simps trpl.simps lo.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3718
                loR.simps mod_dvd_simp, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3719
apply(subgoal_tac "Pi 0 ^ l * Pi (Suc 0) ^ st * Pi (Suc (Suc 0)) ^ r
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3720
               = Pi (Suc 0)^st * Pi 0 ^ l *  Pi (Suc (Suc 0)) ^ r")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3721
apply(simp (no_asm_simp) add: conf_decode1, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3722
apply(case_tac "Pi 0 ^ l * Pi (Suc 0) ^ st * 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3723
                                  Pi (Suc (Suc 0)) ^ r", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3724
apply(erule_tac x = st in allE, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3725
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3726
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3727
lemma [simp]: "rght (trpl l st r) = r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3728
apply(simp add: rght.simps trpl.simps lo.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3729
                loR.simps mod_dvd_simp, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3730
apply(subgoal_tac "Pi 0 ^ l * Pi (Suc 0) ^ st * Pi (Suc (Suc 0)) ^ r
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3731
               = Pi (Suc (Suc 0))^r * Pi 0 ^ l *  Pi (Suc 0) ^ st")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3732
apply(simp (no_asm_simp) add: conf_decode1, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3733
apply(case_tac "Pi 0 ^ l * Pi (Suc 0) ^ st * Pi (Suc (Suc 0)) ^ r",
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3734
       auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3735
apply(erule_tac x = r in allE, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3736
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3737
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3738
lemma max_lor:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3739
  "i < length nl \<Longrightarrow> Max {u. loR [godel_code nl, Pi (Suc i), u]} 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3740
                   = nl ! i"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3741
apply(simp add: loR.simps godel_code_get_nth mod_dvd_simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3742
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3743
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3744
lemma godel_decode: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3745
  "i < length nl \<Longrightarrow> Entry (godel_code nl) i = nl ! i"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3746
apply(auto simp: Entry.simps lo.simps max_lor)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3747
apply(erule_tac x = "nl!i" in allE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3748
using max_lor[of i nl] godel_finite[of i nl]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3749
apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3750
apply(drule_tac Max_in, auto simp: loR.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3751
                   godel_code.simps mod_dvd_simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3752
using godel_code_in[of i nl]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3753
apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3754
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3755
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3756
lemma Four_Suc: "4 = Suc (Suc (Suc (Suc 0)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3757
by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3758
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3759
declare numeral_2_eq_2[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3760
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3761
lemma modify_tprog_fetch_even: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3762
  "\<lbrakk>st \<le> length tp div 2; st > 0\<rbrakk> \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3763
  modify_tprog tp ! (4 * (st - Suc 0) ) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3764
  action_map (fst (tp ! (2 * (st - Suc 0))))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3765
proof(induct st arbitrary: tp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3766
  fix tp st
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3767
  assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3768
    "\<And>tp. \<lbrakk>st \<le> length tp div 2; 0 < st\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3769
     modify_tprog tp ! (4 * (st - Suc 0)) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3770
               action_map (fst ((tp::instr list) ! (2 * (st - Suc 0))))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3771
  and h: "Suc st \<le> length (tp::instr list) div 2" "0 < Suc st"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3772
  thus "modify_tprog tp ! (4 * (Suc st - Suc 0)) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3773
          action_map (fst (tp ! (2 * (Suc st - Suc 0))))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3774
  proof(cases "st = 0")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3775
    case True thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3776
      using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3777
      apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3778
      apply(cases tp, simp, case_tac a, simp add: modify_tprog.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3779
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3780
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3781
    case False
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3782
    assume g: "st \<noteq> 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3783
    hence "\<exists> aa ab ba bb tp'. tp = (aa, ab) # (ba, bb) # tp'"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3784
      using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3785
      apply(case_tac tp, simp, case_tac list, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3786
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3787
    from this obtain aa ab ba bb tp' where g1: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3788
      "tp = (aa, ab) # (ba, bb) # tp'" by blast
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3789
    hence g2: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3790
      "modify_tprog tp' ! (4 * (st - Suc 0)) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3791
      action_map (fst ((tp'::instr list) ! (2 * (st - Suc 0))))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3792
      apply(rule_tac ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3793
      using h g by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3794
    thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3795
      using g1 g
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3796
      apply(case_tac st, simp, simp add: Four_Suc)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3797
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3798
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3799
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3800
      
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3801
lemma modify_tprog_fetch_odd: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3802
  "\<lbrakk>st \<le> length tp div 2; st > 0\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3803
       modify_tprog tp ! (Suc (Suc (4 * (st - Suc 0)))) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3804
       action_map (fst (tp ! (Suc (2 * (st - Suc 0)))))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3805
proof(induct st arbitrary: tp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3806
  fix tp st
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3807
  assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3808
    "\<And>tp. \<lbrakk>st \<le> length tp div 2; 0 < st\<rbrakk> \<Longrightarrow>  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3809
       modify_tprog tp ! Suc (Suc (4 * (st - Suc 0))) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3810
          action_map (fst (tp ! Suc (2 * (st - Suc 0))))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3811
  and h: "Suc st \<le> length (tp::instr list) div 2" "0 < Suc st"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3812
  thus "modify_tprog tp ! Suc (Suc (4 * (Suc st - Suc 0))) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3813
     = action_map (fst (tp ! Suc (2 * (Suc st - Suc 0))))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3814
  proof(cases "st = 0")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3815
    case True thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3816
      using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3817
      apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3818
      apply(cases tp, simp, case_tac a, simp add: modify_tprog.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3819
      apply(case_tac list, simp, case_tac ab,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3820
             simp add: modify_tprog.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3821
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3822
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3823
    case False
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3824
    assume g: "st \<noteq> 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3825
    hence "\<exists> aa ab ba bb tp'. tp = (aa, ab) # (ba, bb) # tp'"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3826
      using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3827
      apply(case_tac tp, simp, case_tac list, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3828
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3829
    from this obtain aa ab ba bb tp' where g1: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3830
      "tp = (aa, ab) # (ba, bb) # tp'" by blast
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3831
    hence g2: "modify_tprog tp' ! Suc (Suc (4 * (st  - Suc 0))) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3832
          action_map (fst (tp' ! Suc (2 * (st - Suc 0))))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3833
      apply(rule_tac ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3834
      using h g by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3835
    thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3836
      using g1 g
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3837
      apply(case_tac st, simp, simp add: Four_Suc)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3838
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3839
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3840
qed    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3841
         
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3842
lemma modify_tprog_fetch_action:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3843
  "\<lbrakk>st \<le> length tp div 2; st > 0; b = 1 \<or> b = 0\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3844
      modify_tprog tp ! (4 * (st - Suc 0) + 2* b) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3845
      action_map (fst (tp ! ((2 * (st - Suc 0)) + b)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3846
apply(erule_tac disjE, auto elim: modify_tprog_fetch_odd
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3847
                                   modify_tprog_fetch_even)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3848
done 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3849
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3850
lemma length_modify: "length (modify_tprog tp) = 2 * length tp"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3851
apply(induct tp, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3852
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3853
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3854
declare fetch.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3855
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3856
lemma fetch_action_eq: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3857
  "\<lbrakk>block_map b = scan r; fetch tp st b = (nact, ns);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3858
   st \<le> length tp div 2\<rbrakk> \<Longrightarrow> actn (code tp) st r = action_map nact"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3859
proof(simp add: actn.simps, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3860
  let ?i = "4 * (st - Suc 0) + 2 * (r mod 2)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3861
  assume h: "block_map b = r mod 2" "fetch tp st b = (nact, ns)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3862
            "st \<le> length tp div 2" "0 < st"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3863
  have "?i < length (modify_tprog tp)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3864
  proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3865
    have "length (modify_tprog tp) = 2 * length tp"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3866
      by(simp add: length_modify)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3867
    thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3868
      using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3869
      by(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3870
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3871
  hence 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3872
    "Entry (godel_code (modify_tprog tp))?i = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3873
                                   (modify_tprog tp) ! ?i"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3874
    by(erule_tac godel_decode)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3875
   moreover have 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3876
    "modify_tprog tp ! ?i = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3877
            action_map (fst (tp ! (2 * (st - Suc 0) + r mod 2)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3878
    apply(rule_tac  modify_tprog_fetch_action)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3879
    using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3880
    by(auto)    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3881
  moreover have "(fst (tp ! (2 * (st - Suc 0) + r mod 2))) = nact"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3882
    using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3883
    apply(case_tac st, simp_all add: fetch.simps nth_of.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3884
    apply(case_tac b, auto simp: block_map.simps nth_of.simps fetch.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3885
                    split: if_splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3886
    apply(case_tac "r mod 2", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3887
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3888
  ultimately show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3889
    "Entry (godel_code (modify_tprog tp))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3890
                      (4 * (st - Suc 0) + 2 * (r mod 2))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3891
           = action_map nact" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3892
    by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3893
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3894
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3895
lemma [simp]: "fetch tp 0 b = (nact, ns) \<Longrightarrow> ns = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3896
by(simp add: fetch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3897
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3898
lemma Five_Suc: "5 = Suc 4" by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3899
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3900
lemma modify_tprog_fetch_state:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3901
  "\<lbrakk>st \<le> length tp div 2; st > 0; b = 1 \<or> b = 0\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3902
     modify_tprog tp ! Suc (4 * (st - Suc 0) + 2 * b) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3903
  (snd (tp ! (2 * (st - Suc 0) + b)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3904
proof(induct st arbitrary: tp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3905
  fix st tp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3906
  assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3907
    "\<And>tp. \<lbrakk>st \<le> length tp div 2; 0 < st; b = 1 \<or> b = 0\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3908
    modify_tprog tp ! Suc (4 * (st - Suc 0) + 2 * b) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3909
                             snd (tp ! (2 * (st - Suc 0) + b))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3910
  and h:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3911
    "Suc st \<le> length (tp::instr list) div 2" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3912
    "0 < Suc st" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3913
    "b = 1 \<or> b = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3914
  show "modify_tprog tp ! Suc (4 * (Suc st - Suc 0) + 2 * b) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3915
                             snd (tp ! (2 * (Suc st - Suc 0) + b))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3916
  proof(cases "st = 0")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3917
    case True
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3918
    thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3919
      using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3920
      apply(cases tp, simp, case_tac a, simp add: modify_tprog.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3921
      apply(case_tac list, simp, case_tac ab, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3922
                         simp add: modify_tprog.simps, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3923
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3924
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3925
    case False
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3926
    assume g: "st \<noteq> 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3927
    hence "\<exists> aa ab ba bb tp'. tp = (aa, ab) # (ba, bb) # tp'"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3928
      using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3929
      apply(case_tac tp, simp, case_tac list, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3930
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3931
    from this obtain aa ab ba bb tp' where g1:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3932
      "tp = (aa, ab) # (ba, bb) # tp'" by blast
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3933
    hence g2: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3934
      "modify_tprog tp' ! Suc (4 * (st - Suc 0) + 2 * b) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3935
                              snd (tp' ! (2 * (st - Suc 0) + b))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3936
      apply(rule_tac ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3937
      using h g by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3938
    thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3939
      using g1 g
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3940
      apply(case_tac st, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3941
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3942
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3943
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3944
  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3945
lemma fetch_state_eq:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3946
  "\<lbrakk>block_map b = scan r; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3947
  fetch tp st b = (nact, ns);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3948
  st \<le> length tp div 2\<rbrakk> \<Longrightarrow> newstat (code tp) st r = ns"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3949
proof(simp add: newstat.simps, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3950
  let ?i = "Suc (4 * (st - Suc 0) + 2 * (r mod 2))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3951
  assume h: "block_map b = r mod 2" "fetch tp st b =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3952
             (nact, ns)" "st \<le> length tp div 2" "0 < st"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3953
  have "?i < length (modify_tprog tp)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3954
  proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3955
    have "length (modify_tprog tp) = 2 * length tp"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3956
      apply(simp add: length_modify)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3957
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3958
    thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3959
      using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3960
      by(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3961
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3962
  hence "Entry (godel_code (modify_tprog tp)) (?i) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3963
                                  (modify_tprog tp) ! ?i"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3964
    by(erule_tac godel_decode)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3965
   moreover have 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3966
    "modify_tprog tp ! ?i =  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3967
               (snd (tp ! (2 * (st - Suc 0) + r mod 2)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3968
    apply(rule_tac  modify_tprog_fetch_state)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3969
    using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3970
    by(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3971
  moreover have "(snd (tp ! (2 * (st - Suc 0) + r mod 2))) = ns"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3972
    using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3973
    apply(case_tac st, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3974
    apply(case_tac b, auto simp: block_map.simps nth_of.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3975
                                 fetch.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3976
                                 split: if_splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3977
    apply(subgoal_tac "(2 * (Suc nat - r mod 2) + r mod 2) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3978
                       (2 * nat + r mod 2)", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3979
    by (metis diff_Suc_Suc minus_nat.diff_0)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3980
  ultimately show "Entry (godel_code (modify_tprog tp)) (?i)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3981
           = ns" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3982
    by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3983
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3984
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3985
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3986
lemma [intro!]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3987
  "\<lbrakk>a = a'; b = b'; c = c'\<rbrakk> \<Longrightarrow> trpl a b c = trpl a' b' c'"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3988
by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3989
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3990
lemma [simp]: "bl2wc [Bk] = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3991
by(simp add: bl2wc.simps bl2nat.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3992
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3993
lemma bl2nat_double: "bl2nat xs (Suc n) = 2 * bl2nat xs n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3994
proof(induct xs arbitrary: n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3995
  case Nil thus "?case"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3996
    by(simp add: bl2nat.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3997
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3998
  case (Cons x xs) thus "?case"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3999
  proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4000
    assume ind: "\<And>n. bl2nat xs (Suc n) = 2 * bl2nat xs n "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4001
    show "bl2nat (x # xs) (Suc n) = 2 * bl2nat (x # xs) n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4002
    proof(cases x)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4003
      case Bk thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4004
        apply(simp add: bl2nat.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4005
        using ind[of "Suc n"] by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4006
    next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4007
      case Oc thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4008
        apply(simp add: bl2nat.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4009
        using ind[of "Suc n"] by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4010
    qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4011
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4012
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4013
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4014
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4015
lemma [simp]: "2 * bl2wc (tl c) = bl2wc c - bl2wc c mod 2 "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4016
apply(case_tac c, simp, case_tac a)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4017
apply(auto simp: bl2wc.simps bl2nat.simps bl2nat_double)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4018
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4019
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4020
lemma [simp]:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4021
  "bl2wc (Oc # tl c) = Suc (bl2wc c) - bl2wc c mod 2 "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4022
apply(case_tac c, case_tac [2] a, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4023
apply(auto simp: bl2wc.simps bl2nat.simps bl2nat_double)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4024
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4025
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4026
lemma [simp]: "bl2wc (Bk # c) = 2*bl2wc (c)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4027
apply(simp add: bl2wc.simps bl2nat.simps bl2nat_double)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4028
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4029
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4030
lemma [simp]: "bl2wc [Oc] = Suc 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4031
 by(simp add: bl2wc.simps bl2nat.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4032
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4033
lemma [simp]: "b \<noteq> [] \<Longrightarrow> bl2wc (tl b) = bl2wc b div 2"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4034
apply(case_tac b, simp, case_tac a)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4035
apply(auto simp: bl2wc.simps bl2nat.simps bl2nat_double)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4036
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4037
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4038
lemma [simp]: "b \<noteq> [] \<Longrightarrow> bl2wc ([hd b]) = bl2wc b mod 2"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4039
apply(case_tac b, simp, case_tac a)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4040
apply(auto simp: bl2wc.simps bl2nat.simps bl2nat_double)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4041
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4042
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4043
lemma [simp]: "\<lbrakk>b \<noteq> []\<rbrakk> \<Longrightarrow> bl2wc (hd b # c) = 2 * bl2wc c + bl2wc b mod 2"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4044
apply(case_tac b, simp, case_tac a)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4045
apply(auto simp: bl2wc.simps bl2nat.simps bl2nat_double)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4046
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4047
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4048
lemma [simp]: " 2 * (bl2wc c div 2) = bl2wc c - bl2wc c mod 2" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4049
  by(simp add: mult_div_cancel)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4050
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4051
lemma [simp]: "bl2wc (Oc # list) mod 2 = Suc 0" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4052
  by(simp add: bl2wc.simps bl2nat.simps bl2nat_double)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4053
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4054
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4055
declare code.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4056
declare nth_of.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4057
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4058
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4059
  The lemma relates the one step execution of TMs with the interpreter function @{text "rec_newconf"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4060
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4061
lemma rec_t_eq_step: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4062
  "(\<lambda> (s, l, r). s \<le> length tp div 2) c \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4063
  trpl_code (step0 c tp) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4064
  rec_exec rec_newconf [code tp, trpl_code c]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4065
  apply(cases c, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4066
proof(case_tac "fetch tp a (read ca)",
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4067
    simp add: newconf.simps trpl_code.simps step.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4068
  fix a b ca aa ba
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4069
  assume h: "(a::nat) \<le> length tp div 2" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4070
    "fetch tp a (read ca) = (aa, ba)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4071
  moreover hence "actn (code tp) a (bl2wc ca) = action_map aa"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4072
    apply(rule_tac b = "read ca" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4073
          in fetch_action_eq, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4074
    apply(case_tac "hd ca", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4075
    apply(case_tac [!] ca, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4076
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4077
  moreover from h have "(newstat (code tp) a (bl2wc ca)) = ba"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4078
    apply(rule_tac b = "read ca" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4079
          in fetch_state_eq, auto split: list.splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4080
    apply(case_tac "hd ca", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4081
    apply(case_tac [!] ca, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4082
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4083
  ultimately show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4084
    "trpl_code (ba, update aa (b, ca)) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4085
          trpl (newleft (bl2wc b) (bl2wc ca) (actn (code tp) a (bl2wc ca))) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4086
    (newstat (code tp) a (bl2wc ca)) (newrght (bl2wc b) (bl2wc ca) (actn (code tp) a (bl2wc ca)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4087
    apply(case_tac aa)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4088
    apply(auto simp: trpl_code.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4089
         newleft.simps newrght.simps split: action.splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4090
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4091
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4092
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4093
lemma [simp]: "bl2nat (Oc # Oc\<up>x) 0 = (2 * 2 ^ x - Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4094
apply(induct x)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4095
apply(simp add: bl2nat.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4096
apply(simp add: bl2nat.simps bl2nat_double exp_ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4097
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4098
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4099
lemma [simp]: "bl2nat (Oc\<up>y) 0 = 2^y - Suc 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4100
apply(induct y, auto simp: bl2nat.simps bl2nat_double)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4101
apply(case_tac "(2::nat)^y", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4102
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4103
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4104
lemma [simp]: "bl2nat (Bk\<up>l) n = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4105
apply(induct l, auto simp: bl2nat.simps bl2nat_double exp_ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4106
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4107
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4108
lemma bl2nat_cons_bk: "bl2nat (ks @ [Bk]) 0 = bl2nat ks 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4109
apply(induct ks, auto simp: bl2nat.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4110
apply(case_tac a, auto simp: bl2nat.simps bl2nat_double)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4111
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4112
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4113
lemma bl2nat_cons_oc:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4114
  "bl2nat (ks @ [Oc]) 0 =  bl2nat ks 0 + 2 ^ length ks"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4115
apply(induct ks, auto simp: bl2nat.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4116
apply(case_tac a, auto simp: bl2nat.simps bl2nat_double)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4117
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4118
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4119
lemma bl2nat_append: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4120
  "bl2nat (xs @ ys) 0 = bl2nat xs 0 + bl2nat ys (length xs) "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4121
proof(induct "length xs" arbitrary: xs ys, simp add: bl2nat.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4122
  fix x xs ys
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4123
  assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4124
    "\<And>xs ys. x = length xs \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4125
             bl2nat (xs @ ys) 0 = bl2nat xs 0 + bl2nat ys (length xs)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4126
  and h: "Suc x = length (xs::cell list)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4127
  have "\<exists> ks k. xs = ks @ [k]" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4128
    apply(rule_tac x = "butlast xs" in exI,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4129
      rule_tac x = "last xs" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4130
    using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4131
    apply(case_tac xs, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4132
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4133
  from this obtain ks k where "xs = ks @ [k]" by blast
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4134
  moreover hence 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4135
    "bl2nat (ks @ (k # ys)) 0 = bl2nat ks 0 +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4136
                               bl2nat (k # ys) (length ks)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4137
    apply(rule_tac ind) using h by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4138
  ultimately show "bl2nat (xs @ ys) 0 = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4139
                  bl2nat xs 0 + bl2nat ys (length xs)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4140
    apply(case_tac k, simp_all add: bl2nat.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4141
    apply(simp_all only: bl2nat_cons_bk bl2nat_cons_oc)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4142
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4143
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4144
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4145
lemma bl2nat_exp:  "n \<noteq> 0 \<Longrightarrow> bl2nat bl n = 2^n * bl2nat bl 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4146
apply(induct bl)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4147
apply(auto simp: bl2nat.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4148
apply(case_tac a, auto simp: bl2nat.simps bl2nat_double)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4149
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4150
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4151
lemma nat_minus_eq: "\<lbrakk>a = b; c = d\<rbrakk> \<Longrightarrow> a - c = b - d"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4152
by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4153
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4154
lemma tape_of_nat_list_butlast_last:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4155
  "ys \<noteq> [] \<Longrightarrow> <ys @ [y]> = <ys> @ Bk # Oc\<up>Suc y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4156
apply(induct ys, simp, simp)
101
06db15939b7c theories
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4157
apply(case_tac "ys = []", simp add: tape_of_nl_abv tape_of_nat_abv
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4158
                                    tape_of_nat_list.simps)
101
06db15939b7c theories
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4159
apply(simp add: tape_of_nl_cons tape_of_nat_abv)
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4160
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4161
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4162
lemma listsum2_append:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4163
  "\<lbrakk>n \<le> length xs\<rbrakk> \<Longrightarrow> listsum2 (xs @ ys) n = listsum2 xs n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4164
apply(induct n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4165
apply(auto simp: listsum2.simps nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4166
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4167
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4168
lemma strt'_append:  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4169
  "\<lbrakk>n \<le> length xs\<rbrakk> \<Longrightarrow> strt' xs n = strt' (xs @ ys) n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4170
proof(induct n arbitrary: xs ys)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4171
  fix xs ys
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4172
  show "strt' xs 0 = strt' (xs @ ys) 0" by(simp add: strt'.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4173
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4174
  fix n xs ys
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4175
  assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4176
    "\<And> xs ys. n \<le> length xs \<Longrightarrow> strt' xs n = strt' (xs @ ys) n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4177
    and h: "Suc n \<le> length (xs::nat list)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4178
  show "strt' xs (Suc n) = strt' (xs @ ys) (Suc n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4179
    using ind[of xs ys] h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4180
    apply(simp add: strt'.simps nth_append listsum2_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4181
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4182
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4183
    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4184
lemma length_listsum2_eq: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4185
  "\<lbrakk>length (ys::nat list) = k\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4186
       \<Longrightarrow> length (<ys>) = listsum2 (map Suc ys) k + k - 1"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4187
apply(induct k arbitrary: ys, simp_all add: listsum2.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4188
apply(subgoal_tac "\<exists> xs x. ys = xs @ [x]", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4189
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4190
  fix xs x
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4191
  assume ind: "\<And>ys. length ys = length xs \<Longrightarrow> length (<ys>) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4192
    = listsum2 (map Suc ys) (length xs) + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4193
      length (xs::nat list) - Suc 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4194
  have "length (<xs>) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4195
    = listsum2 (map Suc xs) (length xs) + length xs - Suc 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4196
    apply(rule_tac ind, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4197
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4198
  thus "length (<xs @ [x]>) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4199
    Suc (listsum2 (map Suc xs @ [Suc x]) (length xs) + x + length xs)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4200
    apply(case_tac "xs = []")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4201
    apply(simp add: tape_of_nl_abv listsum2.simps 
101
06db15939b7c theories
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4202
      tape_of_nat_list.simps tape_of_nat_abv)
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4203
    apply(simp add: tape_of_nat_list_butlast_last)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4204
    using listsum2_append[of "length xs" "map Suc xs" "[Suc x]"]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4205
    apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4206
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4207
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4208
  fix k ys
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4209
  assume "length ys = Suc k" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4210
  thus "\<exists>xs x. ys = xs @ [x]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4211
    apply(rule_tac x = "butlast ys" in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4212
          rule_tac x = "last ys" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4213
    apply(case_tac ys, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4214
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4215
qed  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4216
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4217
lemma tape_of_nat_list_length: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4218
      "length (<(ys::nat list)>) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4219
              listsum2 (map Suc ys) (length ys) + length ys - 1"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4220
  using length_listsum2_eq[of ys "length ys"]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4221
  apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4222
  done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4223
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4224
lemma [simp]:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4225
 "trpl_code (steps0 (Suc 0, Bk\<up>l, <lm>) tp 0) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4226
    rec_exec rec_conf [code tp, bl2wc (<lm>), 0]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4227
apply(simp add: steps.simps rec_exec.simps conf_lemma  conf.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4228
                inpt.simps trpl_code.simps bl2wc.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4229
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4230
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4231
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4232
  The following lemma relates the multi-step interpreter function @{text "rec_conf"}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4233
  with the multi-step execution of TMs.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4234
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4235
lemma state_in_range_step
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4236
  : "\<lbrakk>a \<le> length A div 2; step0 (a, b, c) A = (st, l, r); tm_wf (A,0)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4237
  \<Longrightarrow> st \<le> length A div 2"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4238
apply(simp add: step.simps fetch.simps tm_wf.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4239
  split: if_splits list.splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4240
apply(case_tac [!] a, auto simp: list_all_length 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4241
  fetch.simps nth_of.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4242
apply(erule_tac x = "A ! (2*nat) " in ballE, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4243
apply(case_tac "hd c", auto simp: fetch.simps nth_of.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4244
apply(erule_tac x = "A !(2 * nat)" in ballE, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4245
apply(erule_tac x = "A !Suc (2 * nat)" in ballE, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4246
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4247
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4248
lemma state_in_range: "\<lbrakk>steps0 (Suc 0, tp) A stp = (st, l, r); tm_wf (A, 0)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4249
  \<Longrightarrow> st \<le> length A div 2"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4250
proof(induct stp arbitrary: st l r)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4251
  case 0 thus "?case" by(auto simp: tm_wf.simps steps.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4252
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4253
  fix stp st l r
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4254
  assume ind: "\<And>st l r. \<lbrakk>steps0 (Suc 0, tp) A stp = (st, l, r); tm_wf (A, 0)\<rbrakk> \<Longrightarrow> st \<le> length A div 2"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4255
  and h1: "steps0 (Suc 0, tp) A (Suc stp) = (st, l, r)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4256
  and h2: "tm_wf (A,0::nat)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4257
  from h1 h2 show "st \<le> length A div 2"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4258
  proof(simp add: step_red, cases "(steps0 (Suc 0, tp) A stp)", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4259
    fix a b c 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4260
    assume h3: "step0 (a, b, c) A = (st, l, r)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4261
    and h4: "steps0 (Suc 0, tp) A stp = (a, b, c)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4262
    have "a \<le> length A div 2"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4263
      using h2 h4
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4264
      by(rule_tac l = b and r = c in ind, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4265
    thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4266
      using h3 h2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4267
      apply(erule_tac state_in_range_step, simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4268
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4269
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4270
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4271
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4272
lemma rec_t_eq_steps:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4273
  "tm_wf (tp,0) \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4274
  trpl_code (steps0 (Suc 0, Bk\<up>l, <lm>) tp stp) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4275
  rec_exec rec_conf [code tp, bl2wc (<lm>), stp]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4276
proof(induct stp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4277
  case 0 thus "?case" by(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4278
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4279
  case (Suc n) thus "?case"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4280
  proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4281
    assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4282
      "tm_wf (tp,0) \<Longrightarrow> trpl_code (steps0 (Suc 0, Bk\<up> l, <lm>) tp n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4283
      = rec_exec rec_conf [code tp, bl2wc (<lm>), n]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4284
      and h: "tm_wf (tp, 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4285
    show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4286
      "trpl_code (steps0 (Suc 0, Bk\<up> l, <lm>) tp (Suc n)) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4287
      rec_exec rec_conf [code tp, bl2wc (<lm>), Suc n]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4288
    proof(case_tac "steps0 (Suc 0, Bk\<up> l, <lm>) tp  n", 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4289
        simp only: step_red conf_lemma conf.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4290
      fix a b c
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4291
      assume g: "steps0 (Suc 0, Bk\<up> l, <lm>) tp n = (a, b, c) "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4292
      hence "conf (code tp) (bl2wc (<lm>)) n= trpl_code (a, b, c)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4293
        using ind h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4294
        apply(simp add: conf_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4295
        done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4296
      moreover hence 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4297
        "trpl_code (step0 (a, b, c) tp) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4298
        rec_exec rec_newconf [code tp, trpl_code (a, b, c)]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4299
        apply(rule_tac rec_t_eq_step)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4300
        using h g
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4301
        apply(simp add: state_in_range)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4302
        done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4303
      ultimately show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4304
        "trpl_code (step0 (a, b, c) tp) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4305
            newconf (code tp) (conf (code tp) (bl2wc (<lm>)) n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4306
        by(simp add: newconf_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4307
    qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4308
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4309
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4310
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4311
lemma [simp]: "bl2wc (Bk\<up> m) = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4312
apply(induct m)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4313
apply(simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4314
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4315
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4316
lemma [simp]: "bl2wc (Oc\<up> rs@Bk\<up> n) = bl2wc (Oc\<up> rs)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4317
apply(induct rs, simp, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4318
  simp add: bl2wc.simps bl2nat.simps bl2nat_double)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4319
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4320
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4321
lemma lg_power: "x > Suc 0 \<Longrightarrow> lg (x ^ rs) x = rs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4322
proof(simp add: lg.simps, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4323
  fix xa
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4324
  assume h: "Suc 0 < x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4325
  show "Max {ya. ya \<le> x ^ rs \<and> lgR [x ^ rs, x, ya]} = rs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4326
    apply(rule_tac Max_eqI, simp_all add: lgR.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4327
    apply(simp add: h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4328
    using x_less_exp[of x rs] h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4329
    apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4330
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4331
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4332
  assume "\<not> Suc 0 < x ^ rs" "Suc 0 < x" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4333
  thus "rs = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4334
    apply(case_tac "x ^ rs", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4335
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4336
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4337
  assume "Suc 0 < x" "\<forall>xa. \<not> lgR [x ^ rs, x, xa]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4338
  thus "rs = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4339
    apply(simp only:lgR.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4340
    apply(erule_tac x = rs in allE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4341
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4342
qed    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4343
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4344
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4345
  The following lemma relates execution of TMs with 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4346
  the multi-step interpreter function @{text "rec_nonstop"}. Note,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4347
  @{text "rec_nonstop"} is constructed using @{text "rec_conf"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4348
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4349
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4350
declare tm_wf.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4351
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4352
lemma nonstop_t_eq: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4353
  "\<lbrakk>steps0 (Suc 0, Bk\<up>l, <lm>) tp stp = (0, Bk\<up> m, Oc\<up> rs @ Bk\<up> n); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4354
   tm_wf (tp, 0); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4355
  rs > 0\<rbrakk> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4356
  \<Longrightarrow> rec_exec rec_nonstop [code tp, bl2wc (<lm>), stp] = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4357
proof(simp add: nonstop_lemma nonstop.simps nstd.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4358
  assume h: "steps0 (Suc 0, Bk\<up>l, <lm>) tp stp = (0, Bk\<up> m, Oc\<up> rs @ Bk\<up> n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4359
  and tc_t: "tm_wf (tp, 0)" "rs > 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4360
  have g: "rec_exec rec_conf [code tp,  bl2wc (<lm>), stp] =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4361
                                        trpl_code (0, Bk\<up> m, Oc\<up> rs@Bk\<up> n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4362
    using rec_t_eq_steps[of tp l lm stp] tc_t h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4363
    by(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4364
  thus "\<not> NSTD (conf (code tp) (bl2wc (<lm>)) stp)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4365
  proof(auto simp: NSTD.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4366
    show "stat (conf (code tp) (bl2wc (<lm>)) stp) = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4367
      using g
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4368
      by(auto simp: conf_lemma trpl_code.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4369
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4370
    show "left (conf (code tp) (bl2wc (<lm>)) stp) = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4371
      using g
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4372
      by(simp add: conf_lemma trpl_code.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4373
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4374
    show "rght (conf (code tp) (bl2wc (<lm>)) stp) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4375
           2 ^ lg (Suc (rght (conf (code tp) (bl2wc (<lm>)) stp))) 2 - Suc 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4376
    using g h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4377
    proof(simp add: conf_lemma trpl_code.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4378
      have "2 ^ lg (Suc (bl2wc (Oc\<up> rs))) 2 = Suc (bl2wc (Oc\<up> rs))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4379
        apply(simp add: bl2wc.simps lg_power)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4380
        done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4381
      thus "bl2wc (Oc\<up> rs) = 2 ^ lg (Suc (bl2wc (Oc\<up> rs))) 2 - Suc 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4382
        apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4383
        done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4384
    qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4385
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4386
    show "0 < rght (conf (code tp) (bl2wc (<lm>)) stp)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4387
      using g h tc_t
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4388
      apply(simp add: conf_lemma trpl_code.simps bl2wc.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4389
                      bl2nat.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4390
      apply(case_tac rs, simp, simp add: bl2nat.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4391
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4392
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4393
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4394
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4395
lemma [simp]: "actn m 0 r = 4"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4396
by(simp add: actn.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4397
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4398
lemma [simp]: "newstat m 0 r = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4399
by(simp add: newstat.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4400
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4401
declare step_red[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4402
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4403
lemma halt_least_step: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4404
  "\<lbrakk>steps0 (Suc 0, Bk\<up>l, <lm>) tp stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4405
       (0, Bk\<up> m, Oc\<up>rs @ Bk\<up>n); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4406
    tm_wf (tp, 0); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4407
    0<rs\<rbrakk> \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4408
    \<exists> stp. (nonstop (code tp) (bl2wc (<lm>)) stp = 0 \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4409
       (\<forall> stp'. nonstop (code tp) (bl2wc (<lm>)) stp' = 0 \<longrightarrow> stp \<le> stp'))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4410
proof(induct stp, simp add: steps.simps, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4411
  fix stp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4412
  assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4413
    "steps0 (Suc 0, Bk\<up> l, <lm>) tp stp = (0, Bk\<up> m, Oc\<up> rs @ Bk\<up> n) \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4414
    \<exists>stp. nonstop (code tp) (bl2wc (<lm>)) stp = 0 \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4415
          (\<forall>stp'. nonstop (code tp) (bl2wc (<lm>)) stp' = 0 \<longrightarrow> stp \<le> stp')"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4416
  and h: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4417
    "steps0 (Suc 0, Bk\<up> l, <lm>) tp (Suc stp) = (0, Bk\<up> m, Oc\<up> rs @ Bk\<up> n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4418
    "tm_wf (tp, 0::nat)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4419
    "0 < rs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4420
  from h show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4421
    "\<exists>stp. nonstop (code tp) (bl2wc (<lm>)) stp = 0 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4422
    \<and> (\<forall>stp'. nonstop (code tp) (bl2wc (<lm>)) stp' = 0 \<longrightarrow> stp \<le> stp')"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4423
  proof(simp add: step_red, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4424
      case_tac "steps0 (Suc 0, Bk\<up> l, <lm>) tp stp", simp, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4425
       case_tac a, simp add: step_0)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4426
    assume "steps0 (Suc 0, Bk\<up> l, <lm>) tp stp = (0, Bk\<up> m, Oc\<up> rs @ Bk\<up> n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4427
    thus "\<exists>stp. nonstop (code tp) (bl2wc (<lm>)) stp = 0 \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4428
      (\<forall>stp'. nonstop (code tp) (bl2wc (<lm>)) stp' = 0 \<longrightarrow> stp \<le> stp')"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4429
      apply(erule_tac ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4430
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4431
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4432
    fix a b c nat
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4433
    assume "steps0 (Suc 0, Bk\<up> l, <lm>) tp stp = (a, b, c)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4434
      "a = Suc nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4435
    thus "\<exists>stp. nonstop (code tp) (bl2wc (<lm>)) stp = 0 \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4436
      (\<forall>stp'. nonstop (code tp) (bl2wc (<lm>)) stp' = 0 \<longrightarrow> stp \<le> stp')"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4437
      using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4438
      apply(rule_tac x = "Suc stp" in exI, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4439
      apply(drule_tac  nonstop_t_eq, simp_all add: nonstop_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4440
    proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4441
      fix stp'
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4442
      assume g:"steps0 (Suc 0, Bk\<up> l, <lm>) tp stp = (Suc nat, b, c)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4443
        "nonstop (code tp) (bl2wc (<lm>)) stp' = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4444
      thus  "Suc stp \<le> stp'"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4445
      proof(case_tac "Suc stp \<le> stp'", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4446
        assume "\<not> Suc stp \<le> stp'"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4447
        hence "stp' \<le> stp" by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4448
        hence "\<not> is_final (steps0 (Suc 0, Bk\<up> l, <lm>) tp stp')"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4449
          using g
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4450
          apply(case_tac "steps0 (Suc 0, Bk\<up> l, <lm>) tp stp'",auto, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4451
          apply(subgoal_tac "\<exists> n. stp = stp' + n", auto simp: steps_add steps_0)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4452
          apply(case_tac a, simp_all add: steps.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4453
          apply(rule_tac x = "stp - stp'"  in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4454
          done         
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4455
        hence "nonstop (code tp) (bl2wc (<lm>)) stp' = 1"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4456
        proof(case_tac "steps0 (Suc 0, Bk\<up> l, <lm>) tp stp'",
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4457
            simp add: nonstop.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4458
          fix a b c
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4459
          assume k: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4460
            "0 < a" "steps0 (Suc 0, Bk\<up> l, <lm>) tp stp' = (a, b, c)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4461
          thus " NSTD (conf (code tp) (bl2wc (<lm>)) stp')"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4462
            using rec_t_eq_steps[of tp l lm stp'] h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4463
          proof(simp add: conf_lemma) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4464
            assume "trpl_code (a, b, c) = conf (code tp) (bl2wc (<lm>)) stp'"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4465
            moreover have "NSTD (trpl_code (a, b, c))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4466
              using k
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4467
              apply(auto simp: trpl_code.simps NSTD.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4468
              done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4469
            ultimately show "NSTD (conf (code tp) (bl2wc (<lm>)) stp')" by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4470
          qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4471
        qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4472
        thus "False" using g by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4473
      qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4474
    qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4475
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4476
qed    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4477
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4478
lemma conf_trpl_ex: "\<exists> p q r. conf m (bl2wc (<lm>)) stp = trpl p q r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4479
apply(induct stp, auto simp: conf.simps inpt.simps trpl.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4480
  newconf.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4481
apply(rule_tac x = 0 in exI, rule_tac x = 1 in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4482
  rule_tac x = "bl2wc (<lm>)" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4483
apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4484
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4485
  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4486
lemma nonstop_rgt_ex: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4487
  "nonstop m (bl2wc (<lm>)) stpa = 0 \<Longrightarrow> \<exists> r. conf m (bl2wc (<lm>)) stpa = trpl 0 0 r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4488
apply(auto simp: nonstop.simps NSTD.simps split: if_splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4489
using conf_trpl_ex[of m lm stpa]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4490
apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4491
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4492
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4493
lemma [elim]: "x > Suc 0 \<Longrightarrow> Max {u. x ^ u dvd x ^ r} = r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4494
proof(rule_tac Max_eqI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4495
  assume "x > Suc 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4496
  thus "finite {u. x ^ u dvd x ^ r}"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4497
    apply(rule_tac finite_power_dvd, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4498
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4499
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4500
  fix y 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4501
  assume "Suc 0 < x" "y \<in> {u. x ^ u dvd x ^ r}"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4502
  thus "y \<le> r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4503
    apply(case_tac "y\<le> r", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4504
    apply(subgoal_tac "\<exists> d. y = r + d")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4505
    apply(auto simp: power_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4506
    apply(rule_tac x = "y - r" in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4507
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4508
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4509
  show "r \<in> {u. x ^ u dvd x ^ r}" by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4510
qed  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4511
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4512
lemma lo_power: "x > Suc 0 \<Longrightarrow> lo (x ^ r) x = r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4513
apply(auto simp: lo.simps loR.simps mod_dvd_simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4514
apply(case_tac "x^r", simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4515
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4516
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4517
lemma lo_rgt: "lo (trpl 0 0 r) (Pi 2) = r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4518
apply(simp add: trpl.simps lo_power)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4519
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4520
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4521
lemma conf_keep: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4522
  "conf m lm stp = trpl 0 0 r  \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4523
  conf m lm (stp + n) = trpl 0 0 r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4524
apply(induct n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4525
apply(auto simp: conf.simps  newconf.simps newleft.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4526
  newrght.simps rght.simps lo_rgt)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4527
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4528
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4529
lemma halt_state_keep_steps_add:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4530
  "\<lbrakk>nonstop m (bl2wc (<lm>)) stpa = 0\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4531
  conf m (bl2wc (<lm>)) stpa = conf m (bl2wc (<lm>)) (stpa + n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4532
apply(drule_tac nonstop_rgt_ex, auto simp: conf_keep)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4533
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4534
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4535
lemma halt_state_keep: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4536
  "\<lbrakk>nonstop m (bl2wc (<lm>)) stpa = 0; nonstop m (bl2wc (<lm>)) stpb = 0\<rbrakk> \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4537
  conf m (bl2wc (<lm>)) stpa = conf m (bl2wc (<lm>)) stpb"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4538
apply(case_tac "stpa > stpb")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4539
using halt_state_keep_steps_add[of m lm stpb "stpa - stpb"] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4540
apply simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4541
using halt_state_keep_steps_add[of m lm stpa "stpb - stpa"]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4542
apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4543
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4544
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4545
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4546
  The correntess of @{text "rec_F"} which relates the interpreter function @{text "rec_F"} with the
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4547
  execution of of TMs.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4548
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4549
229
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4550
lemma terminate_halt: 
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4551
  "\<lbrakk>steps0 (Suc 0, Bk\<up>l, <lm>) tp stp = (0, Bk\<up>m, Oc\<up>rs@Bk\<up>n); 
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4552
    tm_wf (tp,0); 0<rs\<rbrakk> \<Longrightarrow> terminate rec_halt [code tp, (bl2wc (<lm>))]"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4553
apply(frule_tac halt_least_step, auto)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4554
thm terminate_halt_lemma
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4555
apply(rule_tac t = stpa in terminate_halt_lemma)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4556
apply(simp_all add: nonstop_lemma, auto)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4557
done
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4558
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4559
lemma terminate_F: 
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4560
  "\<lbrakk>steps0 (Suc 0, Bk\<up>l, <lm>) tp stp = (0, Bk\<up>m, Oc\<up>rs@Bk\<up>n); 
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4561
    tm_wf (tp,0); 0<rs\<rbrakk> \<Longrightarrow> terminate rec_F [code tp, (bl2wc (<lm>))]"
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4562
apply(drule_tac terminate_halt, simp_all)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4563
apply(erule_tac terminate_F_lemma)
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4564
done
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4565
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4566
lemma F_correct: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4567
  "\<lbrakk>steps0 (Suc 0, Bk\<up>l, <lm>) tp stp = (0, Bk\<up>m, Oc\<up>rs@Bk\<up>n); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4568
    tm_wf (tp,0); 0<rs\<rbrakk>
229
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4569
   \<Longrightarrow> rec_exec rec_F [code tp, (bl2wc (<lm>))] = (rs - Suc 0)"
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4570
apply(frule_tac halt_least_step, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4571
apply(frule_tac  nonstop_t_eq, auto simp: nonstop_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4572
using rec_t_eq_steps[of tp l lm stp]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4573
apply(simp add: conf_lemma)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4574
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4575
  fix stpa
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4576
  assume h: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4577
    "nonstop (code tp) (bl2wc (<lm>)) stpa = 0" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4578
    "\<forall>stp'. nonstop (code tp) (bl2wc (<lm>)) stp' = 0 \<longrightarrow> stpa \<le> stp'" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4579
    "nonstop (code tp) (bl2wc (<lm>)) stp = 0" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4580
    "trpl_code (0, Bk\<up> m, Oc\<up> rs @ Bk\<up> n) = conf (code tp) (bl2wc (<lm>)) stp"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4581
    "steps0 (Suc 0, Bk\<up> l, <lm>) tp stp = (0, Bk\<up> m, Oc\<up> rs @ Bk\<up> n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4582
  hence g1: "conf (code tp) (bl2wc (<lm>)) stpa = trpl_code (0, Bk\<up> m, Oc\<up> rs @ Bk\<up>n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4583
    using halt_state_keep[of "code tp" lm stpa stp]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4584
    by(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4585
  moreover have g2:
229
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4586
    "rec_exec rec_halt [code tp, (bl2wc (<lm>))] = stpa"
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4587
    using h
229
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4588
    by(auto simp: rec_exec.simps rec_halt_def nonstop_lemma intro!: Least_equality)
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4589
  show  
229
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4590
    "rec_exec rec_F [code tp, (bl2wc (<lm>))] = (rs - Suc 0)"
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4591
  proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4592
    have 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4593
      "valu (rght (conf (code tp) (bl2wc (<lm>)) stpa)) = rs - Suc 0" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4594
      using g1 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4595
      apply(simp add: valu.simps trpl_code.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4596
        bl2wc.simps  bl2nat_append lg_power)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4597
      done
229
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4598
    thus "?thesis" 
d8e6f0798e23 much simplified version of Recursive.thy
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 199
diff changeset
  4599
      by(simp add: rec_exec.simps F_lemma g2)
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4600
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4601
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4602
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4603
end