--- a/thys/UF.thy Tue Feb 26 13:24:40 2013 +0000
+++ b/thys/UF.thy Tue Feb 26 17:38:37 2013 +0000
@@ -562,7 +562,7 @@
done
text {*
- Defintiion of @{text "Min[R]"} on page 77 of Boolos's book.
+ Definition of @{text "Min[R]"} on page 77 of Boolos's book.
*}
fun Minr :: "(nat list \<Rightarrow> bool) \<Rightarrow> nat list \<Rightarrow> nat \<Rightarrow> nat"
@@ -848,7 +848,7 @@
by(auto simp: rec_le_def rec_exec.simps)
text {*
- Defintiion of @{text "Max[Rr]"} on page 77 of Boolos's book.
+ Definition of @{text "Max[Rr]"} on page 77 of Boolos's book.
*}
fun Maxr :: "(nat list \<Rightarrow> bool) \<Rightarrow> nat list \<Rightarrow> nat \<Rightarrow> nat"
@@ -874,7 +874,6 @@
(vl - 1) @
[id (Suc (Suc vl)) ((Suc vl))])] in
let rf = Cn (Suc (Suc vl)) rec_disj [rf1, rf2] in
- let rq = rec_all rt rf in
let Qf = Cn (Suc vl) rec_not [rec_all rt rf]
in Cn vl (rec_sigma Qf) (get_fstn_args vl vl @
[id vl (vl - 1)]))"
@@ -2176,8 +2175,7 @@
fun rec_listsum2 :: "nat \<Rightarrow> nat \<Rightarrow> recf"
where
"rec_listsum2 vl 0 = Cn vl z [id vl 0]"
-| "rec_listsum2 vl (Suc n) = Cn vl rec_add
- [rec_listsum2 vl n, id vl (n)]"
+| "rec_listsum2 vl (Suc n) = Cn vl rec_add [rec_listsum2 vl n, id vl n]"
declare listsum2.simps[simp del] rec_listsum2.simps[simp del]
@@ -2223,7 +2221,7 @@
fun rec_map :: "recf \<Rightarrow> nat \<Rightarrow> recf list"
where
- "rec_map rf vl = map (\<lambda> i. Cn vl rf [id vl (i)]) [0..<vl]"
+ "rec_map rf vl = map (\<lambda> i. Cn vl rf [id vl i]) [0..<vl]"
text {*
@{text "rec_strt"} is the recursive function used to implement @{text "strt"}.