hw06.tex
changeset 63 bcdcdb422813
child 74 fb14a8e1b00d
equal deleted inserted replaced
62:e8071a3f13b2 63:bcdcdb422813
       
     1 \documentclass{article}
       
     2 \usepackage{charter}
       
     3 \usepackage{hyperref}
       
     4 \usepackage{amssymb}
       
     5 
       
     6 \begin{document}
       
     7 
       
     8 \section*{Homework 6}
       
     9 
       
    10 \begin{enumerate}
       
    11 \item Access-control logic includes formulas of the form
       
    12 \begin{center}
       
    13 $P\;\textit{says}\;F$
       
    14 \end{center}
       
    15 
       
    16 where $P$ is a principal and $F$ a formula. Give two inference rules
       
    17 of access-control logic involving $\textit{says}$.
       
    18 
       
    19 \item
       
    20 The informal meaning of the formula $P\;\textit{controls}\;F$ is `$P$ is entitled
       
    21 to do $F$'. Give a definition for this formula in terms of $\textit{says}$. 
       
    22 
       
    23 \item 
       
    24 Assume an access control logic with security levels, say top secret ({\it TS}),
       
    25 secret ({\it S}) and public ({\it P}), with
       
    26 \begin{center}
       
    27 $slev(\textit{P}) < slev(\textit{S}) < slev(\textit{TS})$
       
    28 \end{center}
       
    29 
       
    30 (a) Modify the formula
       
    31 \begin{center}
       
    32 \begin{tabular}{l}
       
    33 $P\;\textit{controls}\;\textit{Permitted}(O, \textit{write})$\\
       
    34 \end{tabular}
       
    35 \end{center}
       
    36 using security levels so that it satisfies the {\it write rule} from the {\it
       
    37 Bell-LaPadula} access policy. Do the same again, but satisfy the {\it write rule}
       
    38 from the {\it Biba} access policy.
       
    39 
       
    40 (b)Modify the formula
       
    41 \begin{center}
       
    42 \begin{tabular}{l}
       
    43 $P\;\textit{controls}\;\textit{Permitted}(O, \textit{read})$\\
       
    44 \end{tabular}
       
    45 \end{center}
       
    46 using security levels so that it satisfies the {\it read rule} from the {\it
       
    47 Bell-LaPadula} access policy. Do the same again, but satisfy the {\it read rule}
       
    48 from the {\it Biba} access policy.
       
    49 
       
    50 \item Assume two security levels $\textit{S}$ and $\textit{TS}$, which are ordered so that $slev(\textit{S}) < slev(\textit{TS})$. 
       
    51 Assume further the substitution rules
       
    52 \begin{center}
       
    53 \begin{tabular}{c}
       
    54 $\Gamma \vdash slev(P) = l_1$ \hspace{4mm} $\Gamma \vdash slev(Q) = l_2$
       
    55 \hspace{4mm} $\Gamma \vdash l_1 < l_2$\\\hline
       
    56 $\Gamma \vdash slev(P) < slev(Q)$
       
    57 \end{tabular}
       
    58 \end{center}
       
    59 
       
    60 \begin{center}
       
    61 \begin{tabular}{c}
       
    62 $\Gamma \vdash slev(P) = l$ \hspace{4mm} $\Gamma \vdash slev(Q) = l$\\\hline
       
    63 $\Gamma \vdash slev(P) = slev(Q)$
       
    64 \end{tabular}
       
    65 \end{center}
       
    66 
       
    67 Let $\Gamma$ be the set containing the following six formulas
       
    68 \begin{center}
       
    69 \begin{tabular}{l}
       
    70 \\
       
    71 $slev(\textit{S}) < slev(\textit{TS})$\smallskip\\
       
    72 $slev(\textit{Agent}) = \textit{TS}$\smallskip\\
       
    73 $slev(\textit{File}_1) = \textit{S}$\smallskip\\
       
    74 $slev(\textit{File}_2) = \textit{TS}$\smallskip\\
       
    75 $\forall O.\;slev(O) < slev(\textit{Agent}) \Rightarrow 
       
    76 (\textit{Agent}\;\textit{controls}\;\textit{Permitted}(O, \textit{read}))$\smallskip\\
       
    77 $\forall O.\;slev(O) = slev(\textit{Agent}) \Rightarrow 
       
    78 (\textit{Agent}\;\textit{controls}\;\textit{Permitted}(O, \textit{read}))$\\
       
    79 \\
       
    80 \end{tabular}
       
    81 \end{center}
       
    82 Using the inference rules of access-control logic and the substitution rules shown above,
       
    83 give proofs for the two judgements
       
    84 \begin{center}
       
    85 \begin{tabular}{l}
       
    86 $\Gamma \vdash
       
    87 (\textit{Agent}\;\textit{says}\;\textit{Permitted}(\textit{File}_1,
       
    88 \textit{read})) \Rightarrow \textit{Permitted}(\textit{File}_1, \textit{read})$\smallskip\\
       
    89 $\Gamma \vdash
       
    90 (\textit{Agent}\;\textit{says}\;\textit{Permitted}(\textit{File}_2,
       
    91 \textit{read})) \Rightarrow \textit{Permitted}(\textit{File}_2, \textit{read})$\\
       
    92 \end{tabular}
       
    93 \end{center}
       
    94 
       
    95 \end{enumerate}
       
    96 \end{document}
       
    97 
       
    98 %%% Local Variables: 
       
    99 %%% mode: latex
       
   100 %%% TeX-master: t
       
   101 %%% End: