diff -r e8071a3f13b2 -r bcdcdb422813 hw06.tex --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/hw06.tex Thu Nov 01 20:15:02 2012 +0000 @@ -0,0 +1,101 @@ +\documentclass{article} +\usepackage{charter} +\usepackage{hyperref} +\usepackage{amssymb} + +\begin{document} + +\section*{Homework 6} + +\begin{enumerate} +\item Access-control logic includes formulas of the form +\begin{center} +$P\;\textit{says}\;F$ +\end{center} + +where $P$ is a principal and $F$ a formula. Give two inference rules +of access-control logic involving $\textit{says}$. + +\item +The informal meaning of the formula $P\;\textit{controls}\;F$ is `$P$ is entitled +to do $F$'. Give a definition for this formula in terms of $\textit{says}$. + +\item +Assume an access control logic with security levels, say top secret ({\it TS}), +secret ({\it S}) and public ({\it P}), with +\begin{center} +$slev(\textit{P}) < slev(\textit{S}) < slev(\textit{TS})$ +\end{center} + +(a) Modify the formula +\begin{center} +\begin{tabular}{l} +$P\;\textit{controls}\;\textit{Permitted}(O, \textit{write})$\\ +\end{tabular} +\end{center} +using security levels so that it satisfies the {\it write rule} from the {\it +Bell-LaPadula} access policy. Do the same again, but satisfy the {\it write rule} +from the {\it Biba} access policy. + +(b)Modify the formula +\begin{center} +\begin{tabular}{l} +$P\;\textit{controls}\;\textit{Permitted}(O, \textit{read})$\\ +\end{tabular} +\end{center} +using security levels so that it satisfies the {\it read rule} from the {\it +Bell-LaPadula} access policy. Do the same again, but satisfy the {\it read rule} +from the {\it Biba} access policy. + +\item Assume two security levels $\textit{S}$ and $\textit{TS}$, which are ordered so that $slev(\textit{S}) < slev(\textit{TS})$. +Assume further the substitution rules +\begin{center} +\begin{tabular}{c} +$\Gamma \vdash slev(P) = l_1$ \hspace{4mm} $\Gamma \vdash slev(Q) = l_2$ +\hspace{4mm} $\Gamma \vdash l_1 < l_2$\\\hline +$\Gamma \vdash slev(P) < slev(Q)$ +\end{tabular} +\end{center} + +\begin{center} +\begin{tabular}{c} +$\Gamma \vdash slev(P) = l$ \hspace{4mm} $\Gamma \vdash slev(Q) = l$\\\hline +$\Gamma \vdash slev(P) = slev(Q)$ +\end{tabular} +\end{center} + +Let $\Gamma$ be the set containing the following six formulas +\begin{center} +\begin{tabular}{l} +\\ +$slev(\textit{S}) < slev(\textit{TS})$\smallskip\\ +$slev(\textit{Agent}) = \textit{TS}$\smallskip\\ +$slev(\textit{File}_1) = \textit{S}$\smallskip\\ +$slev(\textit{File}_2) = \textit{TS}$\smallskip\\ +$\forall O.\;slev(O) < slev(\textit{Agent}) \Rightarrow +(\textit{Agent}\;\textit{controls}\;\textit{Permitted}(O, \textit{read}))$\smallskip\\ +$\forall O.\;slev(O) = slev(\textit{Agent}) \Rightarrow +(\textit{Agent}\;\textit{controls}\;\textit{Permitted}(O, \textit{read}))$\\ +\\ +\end{tabular} +\end{center} +Using the inference rules of access-control logic and the substitution rules shown above, +give proofs for the two judgements +\begin{center} +\begin{tabular}{l} +$\Gamma \vdash +(\textit{Agent}\;\textit{says}\;\textit{Permitted}(\textit{File}_1, +\textit{read})) \Rightarrow \textit{Permitted}(\textit{File}_1, \textit{read})$\smallskip\\ +$\Gamma \vdash +(\textit{Agent}\;\textit{says}\;\textit{Permitted}(\textit{File}_2, +\textit{read})) \Rightarrow \textit{Permitted}(\textit{File}_2, \textit{read})$\\ +\end{tabular} +\end{center} + +\end{enumerate} +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: t +%%% End: