--- a/Dynamic2static.thy Thu Oct 24 09:41:33 2013 +0800
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,393 +0,0 @@
-theory Dynamic2static
-imports Main Flask Static Init_prop Valid_prop Tainted_prop Delete_prop Co2sobj_prop S2ss_prop S2ss_prop2
-begin
-
-context tainting_s begin
-
-lemma many_sq_imp_sms:
- "\<lbrakk>S_msgq (Create, sec, sms) \<in> ss; ss \<in> static\<rbrakk> \<Longrightarrow> \<forall> sm \<in> (set sms). is_many_smsg sm"
-sorry
-
-definition init_ss_eq:: "t_static_state \<Rightarrow> t_static_state \<Rightarrow> bool" (infix "\<doteq>" 100)
-where
- "ss \<doteq> ss' \<equiv> ss \<subseteq> ss' \<and> {sobj. is_init_sobj sobj \<and> sobj \<in> ss'} \<subseteq> ss"
-
-lemma [simp]: "ss \<doteq> ss"
-by (auto simp:init_ss_eq_def)
-
-definition init_ss_in:: "t_static_state \<Rightarrow> t_static_state set \<Rightarrow> bool" (infix "\<propto>" 101)
-where
- "ss \<propto> sss \<equiv> \<exists> ss' \<in> sss. ss \<doteq> ss'"
-
-lemma s2ss_included_sobj:
- "\<lbrakk>alive s obj; co2sobj s obj= Some sobj\<rbrakk> \<Longrightarrow> sobj \<in> (s2ss s)"
-by (simp add:s2ss_def, rule_tac x = obj in exI, simp)
-
-lemma init_ss_in_prop:
- "\<lbrakk>s2ss s \<propto> static; co2sobj s obj = Some sobj; alive s obj; init_obj_related sobj obj\<rbrakk>
- \<Longrightarrow> \<exists> ss \<in> static. sobj \<in> ss"
-apply (simp add:init_ss_in_def init_ss_eq_def)
-apply (erule bexE, erule conjE)
-apply (rule_tac x = ss' in bexI, auto dest!:s2ss_included_sobj)
-done
-
-
-
-
-
-
-lemma d2s_main_execve:
- "valid (Execve p f fds # s) \<Longrightarrow> s2ss (Execve p f fds # s) \<in> static"
-apply (frule vd_cons, frule vt_grant_os, clarsimp simp:s2ss_execve)
-sorry
-
-lemma d2s_main:
- "valid s \<Longrightarrow> s2ss s \<propto> static"
-apply (induct s, simp add:s2ss_nil_prop init_ss_in_def)
-apply (rule_tac x = "init_static_state" in bexI, simp, simp add:s_init)
-apply (frule vd_cons, frule vt_grant_os, simp)
-apply (case_tac a)
-apply (clarsimp simp add:s2ss_execve)
-apply (rule conjI, rule impI)
-
-
-
-sorry
-
-definition enrich:: "t_state \<Rightarrow> t_object set \<Rightarrow> t_state \<Rightarrow> bool"
-where
- "enrich s objs s' \<equiv> \<forall> obj \<in> objs. \<exists> obj'. obj' \<notin> objs \<and> alive s' obj \<and> co2sobj s' obj' = co2sobj s' obj"
-
-definition reserve:: "t_state \<Rightarrow> t_object set \<Rightarrow> t_state \<Rightarrow> bool"
-where
- "reserve s objs s' \<equiv> \<forall> obj. alive s obj \<longrightarrow> alive s' obj \<and> co2sobj s' obj = co2sobj s obj"
-
-definition enrichable :: "t_state \<Rightarrow> t_object set \<Rightarrow> bool"
-where
- "enrichable s objs \<equiv> \<exists> s'. valid s' \<and> s2ss s' = s2ss s \<and> enrich s objs s' \<and> reserve s objs s'"
-
-definition is_created :: "t_state \<Rightarrow> t_object \<Rightarrow> bool"
-where
- "is_created s obj \<equiv> init_alive obj \<longrightarrow> deleted obj s"
-
-definition is_inited :: "t_state \<Rightarrow> t_object \<Rightarrow> bool"
-where
- "is_inited s obj \<equiv> init_alive obj \<and> \<not> deleted obj s"
-
-lemma is_inited_eq_not_created:
- "is_inited s obj = (\<not> is_created s obj)"
-by (auto simp:is_created_def is_inited_def)
-
-(* recorded in our static world *)
-fun recorded :: "t_object \<Rightarrow> bool"
-where
- "recorded (O_proc p) = True"
-| "recorded (O_file f) = True"
-| "recorded (O_dir f) = True"
-| "recorded (O_node n) = False" (* cause socket is temperary not considered *)
-| "recorded (O_shm h) = True"
-| "recorded (O_msgq q) = True"
-| "recorded _ = False"
-
-lemma enrichability:
- "\<lbrakk>valid s; \<forall> obj \<in> objs. alive s obj \<and> is_created s obj \<and> recorded obj\<rbrakk>
- \<Longrightarrow> enrichable s objs"
-proof (induct s arbitrary:objs)
- case Nil
- hence "objs = {}"
- apply (auto simp:is_created_def)
- apply (erule_tac x = x in ballE)
- apply (auto simp:init_alive_prop)
- done
- thus ?case using Nil unfolding enrichable_def enrich_def reserve_def
- by (rule_tac x = "[]" in exI, auto)
-next
- case (Cons e s)
- hence p1: "\<And> objs. \<forall> obj \<in> objs. alive s obj \<and> is_created s obj \<and> recorded obj \<Longrightarrow> enrichable s objs"
- and p2: "valid (e # s)" and p3: "\<forall>obj\<in>objs. alive (e # s) obj \<and> is_created (e # s) obj \<and> recorded obj"
- and os: "os_grant s e" and se: "grant s e" and vd: "valid s"
- by (auto dest:vt_grant_os vd_cons vt_grant)
- show ?case
- proof (cases e)
- case (Execve p f fds)
- hence p4: "e = Execve p f fds" by simp
- from p3 have p5: "is_inited s (O_proc p) \<Longrightarrow> (O_proc p) \<notin> objs"
- by (auto simp:is_created_def is_inited_def p4 elim!:ballE[where x = "O_proc p"])
- show "enrichable (e # s) objs"
- proof (case "is_inited s (O_proc p)")
- apply (simp add:enrichable_def p4)
-
-
-
- apply auto
- apply (auto simp:enrichable_def)
-apply (induct s)
-
-
-
-done
-
-
-(* for the object set, there exists another trace which keeps this objects but also add new identical objects
- * that have the same static-signature
- *)
-
-definition potential_trace:: "t_state \<Rightarrow> bool"
-where
- "potential_trace s \<equiv> \<forall> obj. alive s obj \<and> is_created s obj \<longrightarrow>
- (\<exists> s' obj'. valid s' \<and> s2ss s' = ss \<and> obj' \<noteq> obj \<and> co2sobj s' obj = co2sobj s' obj)
- "
-
-lemma s2d_main_general:
- "ss \<in> static \<Longrightarrow> \<exists> s. valid s \<and> s2ss s = ss \<and> (\<forall> obj \<in> objs. alive s obj \<and> is_created s obj \<longrightarrow> (\<exists> s'. valid s' \<and> s2ss s' = ss \<and> (\<exists> obj'. obj' \<noteq> obj \<and> co2sobj s' obj = co2sobj s' obj')))"
-apply (erule static.induct)
-apply (rule_tac x = "[]" in exI, simp add:s2ss_nil_prop valid.intros) defer
-
-apply (erule exE|erule conjE)+
-
-apply (simp add:update_ss_def)
-
-sorry
-
-lemma s2d_main:
- "ss \<in> static \<Longrightarrow> \<exists> s. valid s \<and> s2ss s = ss"
-apply (erule static.induct)
-apply (rule_tac x = "[]" in exI, simp add:s2ss_nil_prop valid.intros)
-
-apply (erule exE|erule conjE)+
-
-apply (simp add:update_ss_def)
-
-sorry
-
-
-lemma t2ts:
- "obj \<in> tainted s \<Longrightarrow> co2sobj s obj = Some sobj \<Longrightarrow> tainted_s (s2ss s) sobj"
-apply (frule tainted_in_current, frule tainted_is_valid)
-apply (frule s2ss_included_sobj, simp)
-apply (case_tac sobj, simp_all)
-apply (case_tac [!] obj, simp_all add:co2sobj.simps split:option.splits if_splits)
-apply (drule dir_not_tainted, simp)
-apply (drule msgq_not_tainted, simp)
-apply (drule shm_not_tainted, simp)
-done
-
-lemma delq_imp_delqm:
- "deleted (O_msgq q) s \<Longrightarrow> deleted (O_msg q m) s"
-apply (induct s, simp)
-by (case_tac a, auto)
-
-lemma tainted_s_subset_prop:
- "\<lbrakk>tainted_s ss sobj; ss \<subseteq> ss'\<rbrakk> \<Longrightarrow> tainted_s ss' sobj"
-apply (case_tac sobj)
-apply auto
-done
-
-theorem static_complete:
- assumes undel: "undeletable obj" and tbl: "taintable obj"
- shows "taintable_s obj"
-proof-
- from tbl obtain s where tainted: "obj \<in> tainted s"
- by (auto simp:taintable_def)
- hence vs: "valid s" by (simp add:tainted_is_valid)
- hence static: "s2ss s \<propto> static" using d2s_main by auto
- from tainted tbl vs obtain sobj where sobj: "co2sobj s obj = Some sobj"
- apply (clarsimp simp add:taintable_def)
- apply (frule tainted_in_current)
- apply (case_tac obj, simp_all add:co2sobj.simps)
- apply (frule current_proc_has_sp, simp, auto)
- done
- from undel vs have "\<not> deleted obj s" and init_alive: "init_alive obj"
- by (auto simp:undeletable_def)
- with vs sobj have "init_obj_related sobj obj"
- apply (case_tac obj, case_tac [!] sobj)
- apply (auto split:option.splits if_splits simp:co2sobj.simps cp2sproc_def ch2sshm_def cq2smsgq_def cm2smsg_def delq_imp_delqm)
- apply (frule not_deleted_init_file, simp+)
- apply (drule is_file_has_sfile', simp, erule exE)
- apply (rule_tac x = sf in bexI)
- apply (case_tac list, auto split:option.splits simp:is_init_file_props)[1]
- apply (drule root_is_init_dir', simp)
- apply (frule not_deleted_init_file, simp, simp)
- apply (simp add:cf2sfile_def split:option.splits if_splits)
- apply (simp add:cf2sfiles_def)
- apply (rule_tac x = list in bexI, simp, simp add:same_inode_files_def not_deleted_init_file)
-
- apply (frule not_deleted_init_dir, simp+)
- apply (simp add:cf2sfile_def split:option.splits if_splits)
- apply (case_tac list, simp add:sroot_def, simp)
- apply (drule file_dir_conflict, simp+)
- done
- with tainted t2ts init_alive sobj static
- show ?thesis unfolding taintable_s_def
- apply (simp add:init_ss_in_def)
- apply (erule bexE)
- apply (simp add:init_ss_eq_def)
- apply (rule_tac x = "ss'" in bexI)
- apply (rule_tac x = "sobj" in exI)
- by (auto intro:tainted_s_subset_prop)
-qed
-
-lemma cp2sproc_pi:
- "\<lbrakk>cp2sproc s p = Some (Init p', sec, fds, shms); valid s\<rbrakk> \<Longrightarrow> p = p' \<and> \<not> deleted (O_proc p) s \<and> p \<in> init_procs"
-by (simp add:cp2sproc_def split:option.splits if_splits)
-
-lemma cq2smsgq_qi:
- "\<lbrakk>cq2smsgq s q = Some (Init q', sec, sms); valid s\<rbrakk> \<Longrightarrow> q = q' \<and> \<not> deleted (O_msgq q) s \<and> q \<in> init_msgqs"
-by (simp add:cq2smsgq_def split:option.splits if_splits)
-
-lemma cm2smsg_mi:
- "\<lbrakk>cm2smsg s q m = Some (Init m', sec, ttag); q \<in> init_msgqs; valid s\<rbrakk>
- \<Longrightarrow> m = m' \<and> \<not> deleted (O_msg q m) s \<and> m \<in> set (init_msgs_of_queue q) \<and> q \<in> init_msgqs"
-by (clarsimp simp add:cm2smsg_def split:if_splits option.splits)
-
-lemma ch2sshm_hi:
- "\<lbrakk>ch2sshm s h = Some (Init h', sec); valid s\<rbrakk> \<Longrightarrow> h = h' \<and> \<not> deleted (O_shm h) s \<and> h \<in> init_shms"
-by (clarsimp simp:ch2sshm_def split:if_splits option.splits)
-
-lemma root_not_deleted:
- "\<lbrakk>deleted (O_dir []) s; valid s\<rbrakk> \<Longrightarrow> False"
-apply (induct s, simp)
-apply (frule vd_cons, frule vt_grant_os, case_tac a, auto)
-done
-
-lemma cf2sfile_fi:
- "\<lbrakk>cf2sfile s f = Some (Init f', sec, psecopt, asecs); valid s\<rbrakk> \<Longrightarrow> f = f' \<and>
- (if (is_file s f) then \<not> deleted (O_file f) s \<and> is_init_file f
- else \<not> deleted (O_dir f) s \<and> is_init_dir f)"
-apply (case_tac f)
-by (auto simp:sroot_def cf2sfile_def root_is_init_dir dest!:root_is_dir' root_not_deleted
- split:if_splits option.splits)
-
-lemma init_deled_imp_deled_s:
- "\<lbrakk>deleted obj s; init_alive obj; sobj \<in> (s2ss s); valid s\<rbrakk> \<Longrightarrow> \<not> init_obj_related sobj obj"
-apply (rule notI)
-apply (clarsimp simp:s2ss_def)
-apply (case_tac obj, case_tac [!] obja, case_tac sobj)
-apply (auto split:option.splits if_splits dest!:cp2sproc_pi cq2smsgq_qi ch2sshm_hi cm2smsg_mi cf2sfile_fi simp:co2sobj.simps)
-apply (auto simp:cf2sfiles_def same_inode_files_def has_same_inode_prop1' is_file_def is_dir_def co2sobj.simps
- split:option.splits t_inode_tag.splits dest!:cf2sfile_fi)
-done
-
-lemma deleted_imp_deletable_s:
- "\<lbrakk>deleted obj s; init_alive obj; valid s\<rbrakk> \<Longrightarrow> deletable_s obj"
-apply (simp add:deletable_s_def)
-apply (frule d2s_main)
-apply (simp add:init_ss_in_def)
-apply (erule bexE)
-apply (rule_tac x = ss' in bexI)
-apply (auto simp add: init_ss_eq_def dest!:init_deled_imp_deled_s)
-apply (case_tac obj, case_tac [!] sobj)
-apply auto
-apply (erule set_mp)
-apply (simp)
-apply auto
-apply (rule_tac x = "(Init list, (aa, ab, b), ac, ba)" in bexI)
-apply auto
-done
-
-lemma init_related_imp_init_sobj:
- "init_obj_related sobj obj \<Longrightarrow> is_init_sobj sobj"
-apply (case_tac sobj, case_tac [!] obj, auto)
-apply (rule_tac x = "(Init list, (aa, ab, b), ac, ba)" in bexI, auto)
-done
-
-theorem undeletable_s_complete:
- assumes undel_s: "undeletable_s obj"
- shows "undeletable obj"
-proof-
- from undel_s have init_alive: "init_alive obj"
- and alive_s: "\<forall> ss \<in> static. \<exists> sobj \<in> ss. init_obj_related sobj obj"
- using undeletable_s_def by auto
- have "\<not> (\<exists> s. valid s \<and> deleted obj s)"
- proof
- assume "\<exists> s. valid s \<and> deleted obj s"
- then obtain s where vs: "valid s" and del: "deleted obj s" by auto
- from vs have vss: "s2ss s \<propto> static" by (rule d2s_main)
- with alive_s obtain sobj where in_ss: "sobj \<in> (s2ss s)"
- and related: "init_obj_related sobj obj"
- apply (simp add:init_ss_in_def init_ss_eq_def)
- apply (erule bexE, erule_tac x= ss' in ballE)
- apply (auto dest:init_related_imp_init_sobj)
- done
- from init_alive del vs have "deletable_s obj"
- by (auto elim:deleted_imp_deletable_s)
- with alive_s
- show False by (auto simp:deletable_s_def)
- qed
- with init_alive show ?thesis
- by (simp add:undeletable_def)
-qed
-
-theorem final_offer:
- "\<lbrakk>undeletable_s obj; \<not> taintable_s obj; init_alive obj\<rbrakk> \<Longrightarrow> \<not> taintable obj"
-apply (erule swap)
-by (simp add:static_complete undeletable_s_complete)
-
-(************** static \<rightarrow> dynamic ***************)
-
-
-lemma set_eq_D:
- "\<lbrakk>x \<in> S; {x. P x} = S\<rbrakk> \<Longrightarrow> P x"
-by auto
-
-lemma cqm2sms_prop1:
- "\<lbrakk>cqm2sms s q queue = Some sms; sm \<in> set sms\<rbrakk> \<Longrightarrow> \<exists> m. cm2smsg s q m = Some sm"
-apply (induct queue arbitrary:sms)
-apply (auto simp:cqm2sms.simps split:option.splits)
-done
-
-lemma sq_sm_prop:
- "\<lbrakk>sm \<in> set sms; cq2smsgq s q = Some (qi, qsec, sms); valid s\<rbrakk>
- \<Longrightarrow> \<exists> m. cm2smsg s q m = Some sm"
-by (auto simp:cq2smsgq_def split: option.splits intro:cqm2sms_prop1)
-
-declare co2sobj.simps [simp add]
-
-lemma tainted_s_imp_tainted:
- "\<lbrakk>tainted_s ss sobj; ss \<in> static\<rbrakk> \<Longrightarrow> \<exists> s obj. valid s \<and> co2sobj s obj = Some sobj \<and> obj \<in> tainted s"
-apply (drule s2d_main)
-apply (erule exE, erule conjE, simp add:s2ss_def)
-apply (rule_tac x = s in exI, simp)
-apply (case_tac sobj, simp_all)
-apply (erule conjE, drule_tac S = ss in set_eq_D, simp, (erule exE|erule conjE)+)
-apply (rule_tac x = obj in exI, simp)
-apply (case_tac obj, (simp split:option.splits if_splits)+)
-
-apply (erule conjE, drule_tac S = ss in set_eq_D, simp, (erule exE|erule conjE)+)
-apply (rule_tac x = obj in exI, simp)
-apply (case_tac obj, (simp split:option.splits if_splits)+)
-done
-
-lemma has_same_inode_prop3:
- "has_same_inode s f f' \<Longrightarrow> has_same_inode s f' f"
-by (auto simp:has_same_inode_def)
-
-theorem static_sound:
- assumes tbl_s: "taintable_s obj"
- shows "taintable obj"
-proof-
- from tbl_s obtain ss sobj where static: "ss \<in> static"
- and sobj: "tainted_s ss sobj" and related: "init_obj_related sobj obj"
- and init_alive: "init_alive obj" by (auto simp:taintable_s_def)
- from static sobj tainted_s_imp_tainted
- obtain s obj' where co2sobj: "co2sobj s obj' = Some sobj"
- and tainted': "obj' \<in> tainted s" and vs: "valid s" by blast
-
- from co2sobj related vs
- have eq:"obj = obj' \<or> (\<exists> f f'. obj = O_file f \<and> obj' = O_file f' \<and> has_same_inode s f f')"
- apply (case_tac obj', case_tac [!] obj)
- apply (auto split:option.splits if_splits dest!:cp2sproc_pi cq2smsgq_qi ch2sshm_hi cm2smsg_mi cf2sfile_fi)
- apply (auto simp:cf2sfiles_def same_inode_files_def has_same_inode_def is_file_def is_dir_def
- split:option.splits t_inode_tag.splits dest!:cf2sfile_fi)
- done
- with tainted' vs have tainted: "obj \<in> tainted s"
- by (auto dest:has_same_inode_prop3 intro:has_same_inode_tainted)
- from sobj related init_alive have "appropriate obj"
- by (case_tac obj, case_tac [!] sobj, auto)
- with vs init_alive tainted
- show ?thesis by (auto simp:taintable_def)
-qed
-
-end
-
-end
\ No newline at end of file