Dynamic2static.thy
changeset 64 0753309adfc7
parent 63 051b0ee98852
child 65 6f9a588bcfc4
equal deleted inserted replaced
63:051b0ee98852 64:0753309adfc7
     1 theory Dynamic2static
       
     2 imports Main Flask Static Init_prop Valid_prop Tainted_prop Delete_prop Co2sobj_prop S2ss_prop S2ss_prop2
       
     3 begin
       
     4 
       
     5 context tainting_s begin
       
     6 
       
     7 lemma many_sq_imp_sms:
       
     8   "\<lbrakk>S_msgq (Create, sec, sms) \<in> ss; ss \<in> static\<rbrakk> \<Longrightarrow> \<forall> sm \<in> (set sms). is_many_smsg sm"
       
     9 sorry
       
    10 
       
    11 definition init_ss_eq:: "t_static_state \<Rightarrow> t_static_state \<Rightarrow> bool" (infix "\<doteq>" 100)
       
    12 where
       
    13   "ss \<doteq> ss' \<equiv> ss \<subseteq> ss' \<and> {sobj. is_init_sobj sobj \<and> sobj \<in> ss'} \<subseteq> ss"
       
    14 
       
    15 lemma [simp]: "ss \<doteq> ss"
       
    16 by (auto simp:init_ss_eq_def)
       
    17 
       
    18 definition init_ss_in:: "t_static_state \<Rightarrow> t_static_state set \<Rightarrow> bool" (infix "\<propto>" 101)
       
    19 where
       
    20   "ss \<propto> sss \<equiv> \<exists> ss' \<in> sss. ss \<doteq> ss'"
       
    21 
       
    22 lemma s2ss_included_sobj:
       
    23   "\<lbrakk>alive s obj; co2sobj s obj= Some sobj\<rbrakk> \<Longrightarrow> sobj \<in> (s2ss s)"
       
    24 by (simp add:s2ss_def, rule_tac x = obj in exI, simp)
       
    25 
       
    26 lemma init_ss_in_prop:
       
    27   "\<lbrakk>s2ss s \<propto> static; co2sobj s obj = Some sobj; alive s obj; init_obj_related sobj obj\<rbrakk>
       
    28    \<Longrightarrow> \<exists> ss \<in> static. sobj \<in> ss"
       
    29 apply (simp add:init_ss_in_def init_ss_eq_def)
       
    30 apply (erule bexE, erule conjE)
       
    31 apply (rule_tac x = ss' in bexI, auto dest!:s2ss_included_sobj)
       
    32 done
       
    33 
       
    34 
       
    35 
       
    36 
       
    37 
       
    38 
       
    39 lemma d2s_main_execve:
       
    40   "valid (Execve p f fds # s) \<Longrightarrow> s2ss (Execve p f fds # s) \<in> static"
       
    41 apply (frule vd_cons, frule vt_grant_os, clarsimp simp:s2ss_execve)
       
    42 sorry
       
    43 
       
    44 lemma d2s_main:
       
    45   "valid s \<Longrightarrow> s2ss s \<propto> static"
       
    46 apply (induct s, simp add:s2ss_nil_prop init_ss_in_def)
       
    47 apply (rule_tac x = "init_static_state" in bexI, simp, simp add:s_init)
       
    48 apply (frule vd_cons, frule vt_grant_os, simp)
       
    49 apply (case_tac a) 
       
    50 apply (clarsimp simp add:s2ss_execve)
       
    51 apply (rule conjI, rule impI)
       
    52 
       
    53 
       
    54 
       
    55 sorry
       
    56 
       
    57 definition enrich:: "t_state \<Rightarrow> t_object set \<Rightarrow> t_state \<Rightarrow> bool"
       
    58 where
       
    59   "enrich s objs s' \<equiv> \<forall> obj \<in> objs. \<exists> obj'. obj' \<notin> objs \<and> alive s' obj \<and> co2sobj s' obj' = co2sobj s' obj"
       
    60 
       
    61 definition reserve:: "t_state \<Rightarrow> t_object set \<Rightarrow> t_state \<Rightarrow> bool"
       
    62 where
       
    63   "reserve s objs s' \<equiv> \<forall> obj. alive s obj \<longrightarrow> alive s' obj \<and> co2sobj s' obj = co2sobj s obj"
       
    64 
       
    65 definition enrichable :: "t_state \<Rightarrow> t_object set \<Rightarrow> bool"
       
    66 where
       
    67   "enrichable s objs \<equiv> \<exists> s'. valid s' \<and> s2ss s' = s2ss s \<and> enrich s objs s' \<and> reserve s objs s'"
       
    68 
       
    69 definition is_created :: "t_state \<Rightarrow> t_object \<Rightarrow> bool"
       
    70 where
       
    71   "is_created s obj \<equiv> init_alive obj \<longrightarrow> deleted obj s"
       
    72 
       
    73 definition is_inited :: "t_state \<Rightarrow> t_object \<Rightarrow> bool"
       
    74 where
       
    75   "is_inited s obj \<equiv> init_alive obj \<and> \<not> deleted obj s"
       
    76 
       
    77 lemma is_inited_eq_not_created:
       
    78   "is_inited s obj = (\<not> is_created s obj)"
       
    79 by (auto simp:is_created_def is_inited_def)
       
    80 
       
    81 (* recorded in our static world *)
       
    82 fun recorded :: "t_object \<Rightarrow> bool"
       
    83 where
       
    84   "recorded (O_proc p)     = True"
       
    85 | "recorded (O_file f)     = True"
       
    86 | "recorded (O_dir  f)     = True"
       
    87 | "recorded (O_node n)     = False" (* cause socket is temperary not considered *)
       
    88 | "recorded (O_shm  h)     = True"
       
    89 | "recorded (O_msgq q)     = True"
       
    90 | "recorded _              = False"
       
    91 
       
    92 lemma enrichability: 
       
    93   "\<lbrakk>valid s; \<forall> obj \<in> objs. alive s obj \<and> is_created s obj \<and> recorded obj\<rbrakk>
       
    94    \<Longrightarrow> enrichable s objs"
       
    95 proof (induct s arbitrary:objs)
       
    96   case Nil
       
    97   hence "objs = {}" 
       
    98     apply (auto simp:is_created_def)
       
    99     apply (erule_tac x = x in ballE)
       
   100     apply (auto simp:init_alive_prop)
       
   101     done
       
   102   thus ?case using Nil unfolding enrichable_def enrich_def reserve_def
       
   103     by (rule_tac x = "[]" in exI, auto)
       
   104 next
       
   105   case (Cons e s)
       
   106   hence p1: "\<And> objs. \<forall> obj \<in> objs. alive s obj \<and> is_created s obj \<and> recorded obj \<Longrightarrow> enrichable s objs"
       
   107     and p2: "valid (e # s)" and p3: "\<forall>obj\<in>objs. alive (e # s) obj \<and> is_created (e # s) obj \<and> recorded obj"
       
   108     and os: "os_grant s e" and se: "grant s e" and vd: "valid s"
       
   109     by (auto dest:vt_grant_os vd_cons vt_grant)
       
   110   show ?case
       
   111   proof (cases e)
       
   112     case (Execve p f fds)
       
   113     hence p4: "e = Execve p f fds" by simp
       
   114     from p3 have p5: "is_inited s (O_proc p) \<Longrightarrow> (O_proc p) \<notin> objs"
       
   115       by (auto simp:is_created_def is_inited_def p4 elim!:ballE[where x = "O_proc p"])
       
   116     show "enrichable (e # s) objs"
       
   117     proof (case "is_inited s (O_proc p)")
       
   118       apply (simp add:enrichable_def p4)
       
   119 
       
   120       
       
   121   
       
   122     apply auto
       
   123     apply (auto simp:enrichable_def)
       
   124 apply (induct s)
       
   125 
       
   126 
       
   127 
       
   128 done
       
   129 
       
   130 
       
   131 (* for the object set, there exists another trace which keeps this objects but also add new identical objects
       
   132  * that have the same static-signature
       
   133  *)
       
   134 
       
   135 definition potential_trace:: "t_state \<Rightarrow> bool"
       
   136 where
       
   137   "potential_trace s \<equiv> \<forall> obj. alive s obj \<and> is_created s obj \<longrightarrow> 
       
   138       (\<exists> s' obj'. valid s' \<and> s2ss s' = ss \<and> obj' \<noteq> obj \<and> co2sobj s' obj = co2sobj s' obj)
       
   139      "
       
   140 
       
   141 lemma s2d_main_general:
       
   142   "ss \<in> static \<Longrightarrow> \<exists> s. valid s \<and> s2ss s = ss \<and> (\<forall> obj \<in> objs. alive s obj \<and> is_created s obj \<longrightarrow> (\<exists> s'. valid s' \<and> s2ss s' = ss \<and> (\<exists> obj'. obj' \<noteq> obj \<and> co2sobj s' obj = co2sobj s' obj')))"
       
   143 apply (erule static.induct)
       
   144 apply (rule_tac x = "[]" in exI, simp add:s2ss_nil_prop valid.intros) defer
       
   145 
       
   146 apply (erule exE|erule conjE)+
       
   147 
       
   148 apply (simp add:update_ss_def)
       
   149 
       
   150 sorry
       
   151 
       
   152 lemma s2d_main:
       
   153   "ss \<in> static \<Longrightarrow> \<exists> s. valid s \<and> s2ss s = ss"
       
   154 apply (erule static.induct)
       
   155 apply (rule_tac x = "[]" in exI, simp add:s2ss_nil_prop valid.intros)
       
   156 
       
   157 apply (erule exE|erule conjE)+
       
   158 
       
   159 apply (simp add:update_ss_def)
       
   160 
       
   161 sorry
       
   162 
       
   163 
       
   164 lemma t2ts:
       
   165   "obj \<in> tainted s \<Longrightarrow> co2sobj s obj = Some sobj \<Longrightarrow> tainted_s (s2ss s) sobj"
       
   166 apply (frule tainted_in_current, frule tainted_is_valid)
       
   167 apply (frule s2ss_included_sobj, simp)
       
   168 apply (case_tac sobj, simp_all)
       
   169 apply (case_tac [!] obj, simp_all add:co2sobj.simps split:option.splits if_splits)
       
   170 apply (drule dir_not_tainted, simp)
       
   171 apply (drule msgq_not_tainted, simp)
       
   172 apply (drule shm_not_tainted, simp)
       
   173 done
       
   174 
       
   175 lemma delq_imp_delqm:
       
   176   "deleted (O_msgq q) s \<Longrightarrow> deleted (O_msg q m) s"
       
   177 apply (induct s, simp)
       
   178 by (case_tac a, auto)
       
   179 
       
   180 lemma tainted_s_subset_prop:
       
   181   "\<lbrakk>tainted_s ss sobj; ss \<subseteq> ss'\<rbrakk> \<Longrightarrow> tainted_s ss' sobj"
       
   182 apply (case_tac sobj)
       
   183 apply auto
       
   184 done
       
   185 
       
   186 theorem static_complete: 
       
   187   assumes undel: "undeletable obj" and tbl: "taintable obj"
       
   188   shows "taintable_s obj"
       
   189 proof-
       
   190   from tbl obtain s where tainted: "obj \<in> tainted s"
       
   191     by (auto simp:taintable_def)
       
   192   hence vs: "valid s" by (simp add:tainted_is_valid)
       
   193   hence static: "s2ss s \<propto> static" using d2s_main by auto
       
   194   from tainted tbl vs obtain sobj where sobj: "co2sobj s obj = Some sobj" 
       
   195     apply (clarsimp simp add:taintable_def)
       
   196     apply (frule tainted_in_current)
       
   197     apply (case_tac obj, simp_all add:co2sobj.simps)
       
   198     apply (frule current_proc_has_sp, simp, auto)
       
   199     done
       
   200   from undel vs have "\<not> deleted obj s" and init_alive: "init_alive obj" 
       
   201     by (auto simp:undeletable_def)
       
   202   with vs sobj have "init_obj_related sobj obj"
       
   203     apply (case_tac obj, case_tac [!] sobj)
       
   204     apply (auto split:option.splits if_splits simp:co2sobj.simps cp2sproc_def ch2sshm_def cq2smsgq_def cm2smsg_def delq_imp_delqm)
       
   205     apply (frule not_deleted_init_file, simp+) 
       
   206     apply (drule is_file_has_sfile', simp, erule exE)
       
   207     apply (rule_tac x = sf in bexI)
       
   208     apply (case_tac list, auto split:option.splits simp:is_init_file_props)[1]
       
   209     apply (drule root_is_init_dir', simp)
       
   210     apply (frule not_deleted_init_file, simp, simp)
       
   211     apply (simp add:cf2sfile_def split:option.splits if_splits)
       
   212     apply (simp add:cf2sfiles_def)
       
   213     apply (rule_tac x = list in bexI, simp, simp add:same_inode_files_def not_deleted_init_file)
       
   214 
       
   215     apply (frule not_deleted_init_dir, simp+)
       
   216     apply (simp add:cf2sfile_def split:option.splits if_splits)
       
   217     apply (case_tac list, simp add:sroot_def, simp)
       
   218     apply (drule file_dir_conflict, simp+)
       
   219     done
       
   220   with tainted t2ts init_alive sobj static
       
   221   show ?thesis unfolding taintable_s_def 
       
   222     apply (simp add:init_ss_in_def)
       
   223     apply (erule bexE)
       
   224     apply (simp add:init_ss_eq_def)
       
   225     apply (rule_tac x = "ss'" in bexI)
       
   226     apply (rule_tac x = "sobj" in exI)
       
   227     by (auto intro:tainted_s_subset_prop)
       
   228 qed
       
   229 
       
   230 lemma cp2sproc_pi:
       
   231   "\<lbrakk>cp2sproc s p = Some (Init p', sec, fds, shms); valid s\<rbrakk> \<Longrightarrow> p = p' \<and> \<not> deleted (O_proc p) s \<and> p \<in> init_procs"
       
   232 by (simp add:cp2sproc_def split:option.splits if_splits)
       
   233 
       
   234 lemma cq2smsgq_qi:
       
   235   "\<lbrakk>cq2smsgq s q = Some (Init q', sec, sms); valid s\<rbrakk> \<Longrightarrow> q = q' \<and> \<not> deleted (O_msgq q) s \<and> q \<in> init_msgqs"
       
   236 by (simp add:cq2smsgq_def split:option.splits if_splits)
       
   237 
       
   238 lemma cm2smsg_mi:
       
   239   "\<lbrakk>cm2smsg s q m = Some (Init m', sec, ttag); q \<in> init_msgqs; valid s\<rbrakk> 
       
   240    \<Longrightarrow> m = m' \<and> \<not> deleted (O_msg q m) s \<and> m \<in> set (init_msgs_of_queue q) \<and> q \<in> init_msgqs"
       
   241 by (clarsimp simp add:cm2smsg_def split:if_splits option.splits)
       
   242 
       
   243 lemma ch2sshm_hi:
       
   244   "\<lbrakk>ch2sshm s h = Some (Init h', sec); valid s\<rbrakk> \<Longrightarrow> h = h' \<and> \<not> deleted (O_shm h) s \<and> h \<in> init_shms"
       
   245 by (clarsimp simp:ch2sshm_def split:if_splits option.splits)
       
   246 
       
   247 lemma root_not_deleted:
       
   248   "\<lbrakk>deleted (O_dir []) s; valid s\<rbrakk> \<Longrightarrow> False"
       
   249 apply (induct s, simp)
       
   250 apply (frule vd_cons, frule vt_grant_os, case_tac a, auto)
       
   251 done
       
   252 
       
   253 lemma cf2sfile_fi:
       
   254   "\<lbrakk>cf2sfile s f = Some (Init f', sec, psecopt, asecs); valid s\<rbrakk> \<Longrightarrow> f = f' \<and> 
       
   255      (if (is_file s f) then \<not> deleted (O_file f) s \<and> is_init_file f 
       
   256       else \<not> deleted (O_dir f) s \<and> is_init_dir f)"
       
   257 apply (case_tac f)
       
   258 by (auto simp:sroot_def cf2sfile_def root_is_init_dir dest!:root_is_dir' root_not_deleted
       
   259         split:if_splits option.splits) 
       
   260 
       
   261 lemma init_deled_imp_deled_s: 
       
   262   "\<lbrakk>deleted obj s; init_alive obj; sobj \<in> (s2ss s); valid s\<rbrakk> \<Longrightarrow> \<not> init_obj_related sobj obj"
       
   263 apply (rule notI)
       
   264 apply (clarsimp simp:s2ss_def)
       
   265 apply (case_tac obj, case_tac [!] obja, case_tac sobj)
       
   266 apply (auto split:option.splits if_splits dest!:cp2sproc_pi cq2smsgq_qi ch2sshm_hi cm2smsg_mi cf2sfile_fi simp:co2sobj.simps)
       
   267 apply (auto simp:cf2sfiles_def same_inode_files_def has_same_inode_prop1' is_file_def is_dir_def co2sobj.simps
       
   268            split:option.splits t_inode_tag.splits dest!:cf2sfile_fi)
       
   269 done
       
   270 
       
   271 lemma deleted_imp_deletable_s:
       
   272   "\<lbrakk>deleted obj s; init_alive obj; valid s\<rbrakk> \<Longrightarrow> deletable_s obj"
       
   273 apply (simp add:deletable_s_def)
       
   274 apply (frule d2s_main)
       
   275 apply (simp add:init_ss_in_def)
       
   276 apply (erule bexE)
       
   277 apply (rule_tac x = ss' in bexI)
       
   278 apply (auto simp add: init_ss_eq_def dest!:init_deled_imp_deled_s)
       
   279 apply (case_tac obj, case_tac [!] sobj)
       
   280 apply auto
       
   281 apply (erule set_mp)
       
   282 apply (simp)
       
   283 apply auto
       
   284 apply (rule_tac x = "(Init list, (aa, ab, b), ac, ba)" in bexI)
       
   285 apply auto
       
   286 done
       
   287 
       
   288 lemma init_related_imp_init_sobj:
       
   289   "init_obj_related sobj obj \<Longrightarrow> is_init_sobj sobj"
       
   290 apply (case_tac sobj, case_tac [!] obj, auto)
       
   291 apply (rule_tac x = "(Init list, (aa, ab, b), ac, ba)" in bexI, auto)
       
   292 done
       
   293 
       
   294 theorem undeletable_s_complete:
       
   295   assumes undel_s: "undeletable_s obj"
       
   296   shows "undeletable obj"
       
   297 proof-
       
   298   from undel_s have init_alive: "init_alive obj"
       
   299     and alive_s: "\<forall> ss \<in> static. \<exists> sobj \<in> ss. init_obj_related sobj obj" 
       
   300     using undeletable_s_def by auto
       
   301   have "\<not> (\<exists> s. valid s \<and> deleted obj s)" 
       
   302   proof
       
   303     assume "\<exists> s. valid s \<and> deleted obj s"
       
   304     then obtain s where vs: "valid s" and del: "deleted obj s" by auto
       
   305     from vs have vss: "s2ss s \<propto> static" by (rule d2s_main) 
       
   306     with alive_s obtain sobj where in_ss: "sobj \<in> (s2ss s)" 
       
   307       and related: "init_obj_related sobj obj" 
       
   308       apply (simp add:init_ss_in_def init_ss_eq_def)
       
   309       apply (erule bexE, erule_tac x= ss' in ballE)
       
   310       apply (auto dest:init_related_imp_init_sobj)
       
   311       done
       
   312     from init_alive del vs have "deletable_s obj" 
       
   313       by (auto elim:deleted_imp_deletable_s)
       
   314     with alive_s
       
   315     show False by (auto simp:deletable_s_def)
       
   316   qed
       
   317   with init_alive show ?thesis 
       
   318     by (simp add:undeletable_def)
       
   319 qed
       
   320 
       
   321 theorem final_offer:
       
   322   "\<lbrakk>undeletable_s obj; \<not> taintable_s obj; init_alive obj\<rbrakk> \<Longrightarrow> \<not> taintable obj"
       
   323 apply (erule swap)
       
   324 by (simp add:static_complete undeletable_s_complete)
       
   325 
       
   326 (************** static \<rightarrow> dynamic ***************)
       
   327 
       
   328 
       
   329 lemma set_eq_D:
       
   330   "\<lbrakk>x \<in> S; {x. P x} = S\<rbrakk> \<Longrightarrow> P x"
       
   331 by auto
       
   332 
       
   333 lemma cqm2sms_prop1:
       
   334   "\<lbrakk>cqm2sms s q queue = Some sms; sm \<in> set sms\<rbrakk> \<Longrightarrow> \<exists> m. cm2smsg s q m = Some sm"
       
   335 apply (induct queue arbitrary:sms)
       
   336 apply (auto simp:cqm2sms.simps split:option.splits)
       
   337 done
       
   338 
       
   339 lemma sq_sm_prop:
       
   340   "\<lbrakk>sm \<in> set sms; cq2smsgq s q = Some (qi, qsec, sms); valid s\<rbrakk>
       
   341    \<Longrightarrow> \<exists> m. cm2smsg s q m = Some sm"
       
   342 by (auto simp:cq2smsgq_def split: option.splits intro:cqm2sms_prop1)
       
   343 
       
   344 declare co2sobj.simps [simp add]
       
   345 
       
   346 lemma tainted_s_imp_tainted:
       
   347   "\<lbrakk>tainted_s ss sobj; ss \<in> static\<rbrakk> \<Longrightarrow> \<exists> s obj. valid s \<and> co2sobj s obj = Some sobj \<and> obj \<in> tainted s"
       
   348 apply (drule s2d_main)
       
   349 apply (erule exE, erule conjE, simp add:s2ss_def)
       
   350 apply (rule_tac x = s in exI, simp)
       
   351 apply (case_tac sobj, simp_all)
       
   352 apply (erule conjE, drule_tac S = ss in set_eq_D, simp, (erule exE|erule conjE)+) 
       
   353 apply (rule_tac x = obj in exI, simp)
       
   354 apply (case_tac obj, (simp split:option.splits if_splits)+)
       
   355 
       
   356 apply (erule conjE, drule_tac S = ss in set_eq_D, simp, (erule exE|erule conjE)+) 
       
   357 apply (rule_tac x = obj in exI, simp)
       
   358 apply (case_tac obj, (simp split:option.splits if_splits)+)
       
   359 done
       
   360 
       
   361 lemma has_same_inode_prop3:
       
   362   "has_same_inode s f f' \<Longrightarrow> has_same_inode s f' f"
       
   363 by (auto simp:has_same_inode_def)
       
   364 
       
   365 theorem static_sound:
       
   366   assumes tbl_s: "taintable_s obj"
       
   367   shows "taintable obj"
       
   368 proof-
       
   369   from tbl_s obtain ss sobj where static: "ss \<in> static"
       
   370     and sobj: "tainted_s ss sobj" and related: "init_obj_related sobj obj"
       
   371     and init_alive: "init_alive obj" by (auto simp:taintable_s_def)
       
   372   from static sobj tainted_s_imp_tainted 
       
   373   obtain s obj' where co2sobj: "co2sobj s obj' = Some sobj"
       
   374     and tainted': "obj' \<in> tainted s" and vs: "valid s" by blast
       
   375   
       
   376   from co2sobj related vs
       
   377   have eq:"obj = obj' \<or> (\<exists> f f'. obj = O_file f \<and> obj' = O_file f' \<and> has_same_inode s f f')"
       
   378     apply (case_tac obj', case_tac [!] obj)
       
   379     apply (auto split:option.splits if_splits dest!:cp2sproc_pi cq2smsgq_qi ch2sshm_hi cm2smsg_mi cf2sfile_fi)
       
   380     apply (auto simp:cf2sfiles_def same_inode_files_def has_same_inode_def is_file_def is_dir_def
       
   381                split:option.splits t_inode_tag.splits dest!:cf2sfile_fi)
       
   382     done
       
   383   with tainted' vs have tainted: "obj \<in> tainted s"
       
   384     by (auto dest:has_same_inode_prop3 intro:has_same_inode_tainted)
       
   385   from sobj related init_alive have "appropriate obj"
       
   386     by (case_tac obj, case_tac [!] sobj, auto)
       
   387   with vs init_alive tainted
       
   388   show ?thesis by (auto simp:taintable_def)
       
   389 qed
       
   390 
       
   391 end
       
   392 
       
   393 end