Dynamic2static.thy
changeset 1 7d9c0ed02b56
child 19 ced0fcfbcf8e
equal deleted inserted replaced
0:34d01e9a772e 1:7d9c0ed02b56
       
     1 theory Dynamic2static
       
     2 imports Main Flask Static Init_prop Valid_prop
       
     3 begin
       
     4 
       
     5 context tainting_s begin
       
     6 
       
     7 lemma d2s_main:
       
     8   "valid s \<Longrightarrow> s2ss s \<in> static"
       
     9 apply (induct s, simp add:s2ss_nil_prop s_init)
       
    10 apply (frule vd_cons, simp)
       
    11 apply (case_tac a, simp_all) 
       
    12 (*
       
    13 apply 
       
    14 induct s, case tac e, every event analysis
       
    15 *)
       
    16 sorry
       
    17 
       
    18 lemma is_file_has_sfile: "is_file s f \<Longrightarrow> \<exists> sf. cf2sfile s f True = Some sf"
       
    19 sorry
       
    20 
       
    21 lemma is_dir_has_sfile: "is_dir s f \<Longrightarrow> \<exists> sf. cf2sfile s f False = Some sf"
       
    22 sorry
       
    23 
       
    24 lemma is_file_imp_alive: "is_file s f \<Longrightarrow> alive s (O_file f)"
       
    25 sorry
       
    26 
       
    27 
       
    28 lemma d2s_main':
       
    29   "\<lbrakk>alive s obj; co2sobj s obj= Some sobj\<rbrakk> \<Longrightarrow> sobj \<in> (s2ss s)"
       
    30 apply (induct s)
       
    31 apply (simp add:s2ss_def)
       
    32 apply (rule_tac x = obj in exI, simp)
       
    33 sorry
       
    34 
       
    35 lemma tainted_prop1:
       
    36   "obj \<in> tainted s \<Longrightarrow> alive s obj"
       
    37 sorry
       
    38 
       
    39 lemma tainted_prop2:
       
    40   "obj \<in> tainted s \<Longrightarrow> valid s"
       
    41 sorry
       
    42 
       
    43 lemma alive_has_sobj:
       
    44   "\<lbrakk>alive s obj; valid s\<rbrakk> \<Longrightarrow> \<exists> sobj. co2sobj s obj = Some sobj"
       
    45 sorry
       
    46 
       
    47 lemma t2ts:
       
    48   "obj \<in> tainted s \<Longrightarrow> co2sobj s obj = Some sobj \<Longrightarrow> tainted_s (s2ss s) sobj"
       
    49 apply (frule tainted_prop1, frule tainted_prop2)
       
    50 apply (simp add:s2ss_def)
       
    51 apply (case_tac sobj, simp_all)
       
    52 apply (case_tac [!] obj, simp_all split:option.splits)
       
    53 apply (rule_tac x = "O_proc nat" in exI, simp)
       
    54 apply (rule_tac x = "O_file list" in exI, simp)
       
    55 defer defer defer
       
    56 apply (case_tac prod1, simp, case_tac prod2, clarsimp)
       
    57 apply (rule conjI)
       
    58 apply (rule_tac x = "O_msgq nat1" in exI, simp)
       
    59 sorry (* doable, need properties about cm2smsg and cq2smsgq *)
       
    60 
       
    61 lemma delq_imp_delqm:
       
    62   "deleted (O_msgq q) s \<Longrightarrow> deleted (O_msg q m) s"
       
    63 apply (induct s, simp)
       
    64 by (case_tac a, auto)
       
    65 
       
    66 lemma undel_init_file_remains:
       
    67   "\<lbrakk>is_init_file f; \<not> deleted (O_file f) s\<rbrakk> \<Longrightarrow> is_file s f"
       
    68 sorry
       
    69 
       
    70 
       
    71 theorem static_complete: 
       
    72   assumes undel: "undeletable obj" and tbl: "taintable obj"
       
    73   shows "taintable_s obj"
       
    74 proof-
       
    75   from tbl obtain s where tainted: "obj \<in> tainted s"
       
    76     by (auto simp:taintable_def)
       
    77   hence vs: "valid s" by (simp add:tainted_prop2)
       
    78   hence static: "s2ss s \<in> static" using d2s_main by auto
       
    79   from tainted have alive: "alive s obj" 
       
    80     using tainted_prop1 by auto
       
    81   then obtain sobj where sobj: "co2sobj s obj = Some sobj"
       
    82     using vs alive_has_sobj by blast
       
    83   from undel vs have "\<not> deleted obj s" and init_alive: "init_alive obj" 
       
    84     by (auto simp:undeletable_def)
       
    85   with vs sobj have "init_obj_related sobj obj"
       
    86     apply (case_tac obj, case_tac [!] sobj)
       
    87     apply (auto split:option.splits if_splits simp:cp2sproc_def ch2sshm_def cq2smsgq_def cm2smsg_def)
       
    88     apply (frule undel_init_file_remains, simp, drule is_file_has_sfile, erule exE)
       
    89     apply (rule_tac x = sf in bexI)
       
    90     apply (case_tac list, auto split:option.splits simp:is_init_file_props)[1]
       
    91     apply (simp add:same_inode_files_def cfs2sfiles_def)
       
    92     apply (rule_tac x = list in exI, simp)
       
    93     apply (case_tac list, auto split:option.splits simp:is_init_dir_props delq_imp_delqm)
       
    94     done
       
    95   with tainted t2ts init_alive sobj static
       
    96   show ?thesis unfolding taintable_s_def
       
    97     apply (rule_tac x = "s2ss s" in bexI, simp)
       
    98     apply (rule_tac x = "sobj" in exI, auto)
       
    99     done
       
   100 qed
       
   101 
       
   102 lemma init_deled_imp_deled_s: 
       
   103   "\<lbrakk>deleted obj s; init_alive obj; sobj \<in> (s2ss s); valid s\<rbrakk> \<Longrightarrow> \<not> init_obj_related sobj obj"
       
   104 apply (induct s, simp)
       
   105 apply (frule vd_cons)
       
   106 apply (case_tac a, auto)
       
   107 (* need simpset for s2ss *)
       
   108 sorry
       
   109 
       
   110 lemma deleted_imp_deletable_s:
       
   111   "\<lbrakk>deleted obj s; init_alive obj; valid s\<rbrakk> \<Longrightarrow> deletable_s obj"
       
   112 apply (simp add:deletable_s_def)
       
   113 apply (rule_tac x = "s2ss s" in bexI)
       
   114 apply (clarify, simp add:init_deled_imp_deled_s)
       
   115 apply (erule d2s_main)
       
   116 done
       
   117 
       
   118 theorem undeletable_s_complete:
       
   119   assumes undel_s: "undeletable_s obj"
       
   120   shows "undeletable obj"
       
   121 proof-
       
   122   from undel_s have init_alive: "init_alive obj"
       
   123     and alive_s: "\<forall> ss \<in> static. \<exists> sobj \<in> ss. init_obj_related sobj obj" 
       
   124     using undeletable_s_def by auto
       
   125   have "\<not> (\<exists> s. valid s \<and> deleted obj s)" 
       
   126   proof
       
   127     assume "\<exists> s. valid s \<and> deleted obj s"
       
   128     then obtain s where vs: "valid s" and del: "deleted obj s" by auto
       
   129     from vs have vss: "s2ss s \<in> static" by (rule d2s_main) 
       
   130     with alive_s obtain sobj where in_ss: "sobj \<in> (s2ss s)" 
       
   131       and related: "init_obj_related sobj obj" by auto
       
   132     from init_alive del vs have "deletable_s obj" 
       
   133       by (auto elim:deleted_imp_deletable_s)
       
   134     with alive_s
       
   135     show False by (auto simp:deletable_s_def)
       
   136   qed
       
   137   with init_alive show ?thesis 
       
   138     by (simp add:undeletable_def)
       
   139 qed
       
   140 
       
   141 theorem final_offer:
       
   142   "\<lbrakk>undeletable_s obj; \<not> taintable_s obj; init_alive obj\<rbrakk> \<Longrightarrow> \<not> taintable obj"
       
   143 apply (erule swap)
       
   144 by (simp add:static_complete undeletable_s_complete)
       
   145 
       
   146 
       
   147 
       
   148 (************** static \<rightarrow> dynamic ***************)
       
   149 
       
   150 lemma created_can_have_many:
       
   151   "\<lbrakk>valid s; alive s obj; \<not> init_alive obj\<rbrakk> \<Longrightarrow> \<exists> s'. valid s' \<and> alive s' obj \<and> alive s' obj' \<and> s2ss s = s2ss s'"
       
   152 sorry
       
   153 
       
   154 lemma s2d_main:
       
   155   "ss \<in> static \<Longrightarrow> \<exists> s. valid s \<and> s2ss s = ss"
       
   156 apply (erule static.induct)
       
   157 apply (rule_tac x = "[]" in exI, simp add:s2ss_nil_prop valid.intros)
       
   158 
       
   159 apply (erule exE|erule conjE)+
       
   160 
       
   161 apply (erule exE, erule conjE)+
       
   162 
       
   163 sorry
       
   164 
       
   165 
       
   166 
       
   167 lemma tainted_s_imp_tainted:
       
   168   "\<lbrakk>tainted_s ss sobj; ss \<in> static\<rbrakk> \<Longrightarrow> \<exists> obj s. s2ss s = ss \<and> valid s \<and> co2sobj s obj = Some sobj \<and> obj \<in> tainted s"
       
   169 sorry
       
   170 
       
   171 
       
   172 theorem static_sound:
       
   173   assumes tbl_s: "taintable_s obj"
       
   174   shows "taintable obj"
       
   175 proof-
       
   176   from tbl_s obtain ss sobj where static: "ss \<in> static"
       
   177     and sobj: "tainted_s ss sobj" and related: "init_obj_related sobj obj"
       
   178     and init_alive: "init_alive obj" by (auto simp:taintable_s_def)
       
   179   from static sobj tainted_s_imp_tainted 
       
   180   obtain s obj' where s2ss: "s2ss s = ss" and co2sobj: "co2sobj s obj' = Some sobj"
       
   181     and tainted: "obj' \<in> tainted s" and vs: "valid s" by blast
       
   182   
       
   183   from co2sobj related
       
   184   have eq:"obj = obj'"
       
   185     apply (case_tac obj', case_tac [!] obj, case_tac [!] sobj)
       
   186     apply auto
       
   187     apply (auto split:option.splits if_splits)
       
   188     apply (case_tac a, simp+)
       
   189     apply (simp add:cp2sproc_def split:option.splits if_splits)
       
   190     apply simp
       
   191     sorry
       
   192   with tainted vs init_alive
       
   193   show ?thesis by (auto simp:taintable_def)
       
   194 qed
       
   195 
       
   196 
       
   197 
       
   198 lemma ts2t:
       
   199   "obj \<in> tainted_s ss \<Longrightarrow> \<exists> s. obj \<in> tainted s"
       
   200   "obj \<in> tainted_s ss \<Longrightarrow> \<exists> so. so True \<in> ss \<Longrightarrow> so True \<in> ss \<Longrightarrow> \<exists> s. valid s \<and> s2ss s = ss \<Longrightarrow> so True \<in> s2ss s \<Longrightarrow> tainted s obj. "
       
   201 
       
   202 
       
   203 
       
   204 
       
   205 end