theory Dynamic2static
imports Main Flask Static Init_prop Valid_prop
begin
context tainting_s begin
lemma d2s_main:
"valid s \<Longrightarrow> s2ss s \<in> static"
apply (induct s, simp add:s2ss_nil_prop s_init)
apply (frule vd_cons, simp)
apply (case_tac a, simp_all)
(*
apply
induct s, case tac e, every event analysis
*)
sorry
lemma is_file_has_sfile: "is_file s f \<Longrightarrow> \<exists> sf. cf2sfile s f True = Some sf"
sorry
lemma is_dir_has_sfile: "is_dir s f \<Longrightarrow> \<exists> sf. cf2sfile s f False = Some sf"
sorry
lemma is_file_imp_alive: "is_file s f \<Longrightarrow> alive s (O_file f)"
sorry
lemma d2s_main':
"\<lbrakk>alive s obj; co2sobj s obj= Some sobj\<rbrakk> \<Longrightarrow> sobj \<in> (s2ss s)"
apply (induct s)
apply (simp add:s2ss_def)
apply (rule_tac x = obj in exI, simp)
sorry
lemma tainted_prop1:
"obj \<in> tainted s \<Longrightarrow> alive s obj"
sorry
lemma tainted_prop2:
"obj \<in> tainted s \<Longrightarrow> valid s"
sorry
lemma alive_has_sobj:
"\<lbrakk>alive s obj; valid s\<rbrakk> \<Longrightarrow> \<exists> sobj. co2sobj s obj = Some sobj"
sorry
lemma t2ts:
"obj \<in> tainted s \<Longrightarrow> co2sobj s obj = Some sobj \<Longrightarrow> tainted_s (s2ss s) sobj"
apply (frule tainted_prop1, frule tainted_prop2)
apply (simp add:s2ss_def)
apply (case_tac sobj, simp_all)
apply (case_tac [!] obj, simp_all split:option.splits)
apply (rule_tac x = "O_proc nat" in exI, simp)
apply (rule_tac x = "O_file list" in exI, simp)
defer defer defer
apply (case_tac prod1, simp, case_tac prod2, clarsimp)
apply (rule conjI)
apply (rule_tac x = "O_msgq nat1" in exI, simp)
sorry (* doable, need properties about cm2smsg and cq2smsgq *)
lemma delq_imp_delqm:
"deleted (O_msgq q) s \<Longrightarrow> deleted (O_msg q m) s"
apply (induct s, simp)
by (case_tac a, auto)
lemma undel_init_file_remains:
"\<lbrakk>is_init_file f; \<not> deleted (O_file f) s\<rbrakk> \<Longrightarrow> is_file s f"
sorry
theorem static_complete:
assumes undel: "undeletable obj" and tbl: "taintable obj"
shows "taintable_s obj"
proof-
from tbl obtain s where tainted: "obj \<in> tainted s"
by (auto simp:taintable_def)
hence vs: "valid s" by (simp add:tainted_prop2)
hence static: "s2ss s \<in> static" using d2s_main by auto
from tainted have alive: "alive s obj"
using tainted_prop1 by auto
then obtain sobj where sobj: "co2sobj s obj = Some sobj"
using vs alive_has_sobj by blast
from undel vs have "\<not> deleted obj s" and init_alive: "init_alive obj"
by (auto simp:undeletable_def)
with vs sobj have "init_obj_related sobj obj"
apply (case_tac obj, case_tac [!] sobj)
apply (auto split:option.splits if_splits simp:cp2sproc_def ch2sshm_def cq2smsgq_def cm2smsg_def)
apply (frule undel_init_file_remains, simp, drule is_file_has_sfile, erule exE)
apply (rule_tac x = sf in bexI)
apply (case_tac list, auto split:option.splits simp:is_init_file_props)[1]
apply (simp add:same_inode_files_def cfs2sfiles_def)
apply (rule_tac x = list in exI, simp)
apply (case_tac list, auto split:option.splits simp:is_init_dir_props delq_imp_delqm)
done
with tainted t2ts init_alive sobj static
show ?thesis unfolding taintable_s_def
apply (rule_tac x = "s2ss s" in bexI, simp)
apply (rule_tac x = "sobj" in exI, auto)
done
qed
lemma init_deled_imp_deled_s:
"\<lbrakk>deleted obj s; init_alive obj; sobj \<in> (s2ss s); valid s\<rbrakk> \<Longrightarrow> \<not> init_obj_related sobj obj"
apply (induct s, simp)
apply (frule vd_cons)
apply (case_tac a, auto)
(* need simpset for s2ss *)
sorry
lemma deleted_imp_deletable_s:
"\<lbrakk>deleted obj s; init_alive obj; valid s\<rbrakk> \<Longrightarrow> deletable_s obj"
apply (simp add:deletable_s_def)
apply (rule_tac x = "s2ss s" in bexI)
apply (clarify, simp add:init_deled_imp_deled_s)
apply (erule d2s_main)
done
theorem undeletable_s_complete:
assumes undel_s: "undeletable_s obj"
shows "undeletable obj"
proof-
from undel_s have init_alive: "init_alive obj"
and alive_s: "\<forall> ss \<in> static. \<exists> sobj \<in> ss. init_obj_related sobj obj"
using undeletable_s_def by auto
have "\<not> (\<exists> s. valid s \<and> deleted obj s)"
proof
assume "\<exists> s. valid s \<and> deleted obj s"
then obtain s where vs: "valid s" and del: "deleted obj s" by auto
from vs have vss: "s2ss s \<in> static" by (rule d2s_main)
with alive_s obtain sobj where in_ss: "sobj \<in> (s2ss s)"
and related: "init_obj_related sobj obj" by auto
from init_alive del vs have "deletable_s obj"
by (auto elim:deleted_imp_deletable_s)
with alive_s
show False by (auto simp:deletable_s_def)
qed
with init_alive show ?thesis
by (simp add:undeletable_def)
qed
theorem final_offer:
"\<lbrakk>undeletable_s obj; \<not> taintable_s obj; init_alive obj\<rbrakk> \<Longrightarrow> \<not> taintable obj"
apply (erule swap)
by (simp add:static_complete undeletable_s_complete)
(************** static \<rightarrow> dynamic ***************)
lemma created_can_have_many:
"\<lbrakk>valid s; alive s obj; \<not> init_alive obj\<rbrakk> \<Longrightarrow> \<exists> s'. valid s' \<and> alive s' obj \<and> alive s' obj' \<and> s2ss s = s2ss s'"
sorry
lemma s2d_main:
"ss \<in> static \<Longrightarrow> \<exists> s. valid s \<and> s2ss s = ss"
apply (erule static.induct)
apply (rule_tac x = "[]" in exI, simp add:s2ss_nil_prop valid.intros)
apply (erule exE|erule conjE)+
apply (erule exE, erule conjE)+
sorry
lemma tainted_s_imp_tainted:
"\<lbrakk>tainted_s ss sobj; ss \<in> static\<rbrakk> \<Longrightarrow> \<exists> obj s. s2ss s = ss \<and> valid s \<and> co2sobj s obj = Some sobj \<and> obj \<in> tainted s"
sorry
theorem static_sound:
assumes tbl_s: "taintable_s obj"
shows "taintable obj"
proof-
from tbl_s obtain ss sobj where static: "ss \<in> static"
and sobj: "tainted_s ss sobj" and related: "init_obj_related sobj obj"
and init_alive: "init_alive obj" by (auto simp:taintable_s_def)
from static sobj tainted_s_imp_tainted
obtain s obj' where s2ss: "s2ss s = ss" and co2sobj: "co2sobj s obj' = Some sobj"
and tainted: "obj' \<in> tainted s" and vs: "valid s" by blast
from co2sobj related
have eq:"obj = obj'"
apply (case_tac obj', case_tac [!] obj, case_tac [!] sobj)
apply auto
apply (auto split:option.splits if_splits)
apply (case_tac a, simp+)
apply (simp add:cp2sproc_def split:option.splits if_splits)
apply simp
sorry
with tainted vs init_alive
show ?thesis by (auto simp:taintable_def)
qed
lemma ts2t:
"obj \<in> tainted_s ss \<Longrightarrow> \<exists> s. obj \<in> tainted s"
"obj \<in> tainted_s ss \<Longrightarrow> \<exists> so. so True \<in> ss \<Longrightarrow> so True \<in> ss \<Longrightarrow> \<exists> s. valid s \<and> s2ss s = ss \<Longrightarrow> so True \<in> s2ss s \<Longrightarrow> tainted s obj. "
end