1
|
1 |
theory Dynamic2static
|
|
2 |
imports Main Flask Static Init_prop Valid_prop
|
|
3 |
begin
|
|
4 |
|
|
5 |
context tainting_s begin
|
|
6 |
|
|
7 |
lemma d2s_main:
|
|
8 |
"valid s \<Longrightarrow> s2ss s \<in> static"
|
|
9 |
apply (induct s, simp add:s2ss_nil_prop s_init)
|
|
10 |
apply (frule vd_cons, simp)
|
|
11 |
apply (case_tac a, simp_all)
|
|
12 |
(*
|
|
13 |
apply
|
|
14 |
induct s, case tac e, every event analysis
|
|
15 |
*)
|
|
16 |
sorry
|
|
17 |
|
|
18 |
lemma is_file_has_sfile: "is_file s f \<Longrightarrow> \<exists> sf. cf2sfile s f True = Some sf"
|
|
19 |
sorry
|
|
20 |
|
|
21 |
lemma is_dir_has_sfile: "is_dir s f \<Longrightarrow> \<exists> sf. cf2sfile s f False = Some sf"
|
|
22 |
sorry
|
|
23 |
|
|
24 |
lemma is_file_imp_alive: "is_file s f \<Longrightarrow> alive s (O_file f)"
|
|
25 |
sorry
|
|
26 |
|
|
27 |
|
|
28 |
lemma d2s_main':
|
|
29 |
"\<lbrakk>alive s obj; co2sobj s obj= Some sobj\<rbrakk> \<Longrightarrow> sobj \<in> (s2ss s)"
|
|
30 |
apply (induct s)
|
|
31 |
apply (simp add:s2ss_def)
|
|
32 |
apply (rule_tac x = obj in exI, simp)
|
|
33 |
sorry
|
|
34 |
|
|
35 |
lemma tainted_prop1:
|
|
36 |
"obj \<in> tainted s \<Longrightarrow> alive s obj"
|
|
37 |
sorry
|
|
38 |
|
|
39 |
lemma tainted_prop2:
|
|
40 |
"obj \<in> tainted s \<Longrightarrow> valid s"
|
|
41 |
sorry
|
|
42 |
|
|
43 |
lemma alive_has_sobj:
|
|
44 |
"\<lbrakk>alive s obj; valid s\<rbrakk> \<Longrightarrow> \<exists> sobj. co2sobj s obj = Some sobj"
|
|
45 |
sorry
|
|
46 |
|
|
47 |
lemma t2ts:
|
|
48 |
"obj \<in> tainted s \<Longrightarrow> co2sobj s obj = Some sobj \<Longrightarrow> tainted_s (s2ss s) sobj"
|
|
49 |
apply (frule tainted_prop1, frule tainted_prop2)
|
|
50 |
apply (simp add:s2ss_def)
|
|
51 |
apply (case_tac sobj, simp_all)
|
|
52 |
apply (case_tac [!] obj, simp_all split:option.splits)
|
|
53 |
apply (rule_tac x = "O_proc nat" in exI, simp)
|
|
54 |
apply (rule_tac x = "O_file list" in exI, simp)
|
|
55 |
defer defer defer
|
|
56 |
apply (case_tac prod1, simp, case_tac prod2, clarsimp)
|
|
57 |
apply (rule conjI)
|
|
58 |
apply (rule_tac x = "O_msgq nat1" in exI, simp)
|
|
59 |
sorry (* doable, need properties about cm2smsg and cq2smsgq *)
|
|
60 |
|
|
61 |
lemma delq_imp_delqm:
|
|
62 |
"deleted (O_msgq q) s \<Longrightarrow> deleted (O_msg q m) s"
|
|
63 |
apply (induct s, simp)
|
|
64 |
by (case_tac a, auto)
|
|
65 |
|
|
66 |
lemma undel_init_file_remains:
|
|
67 |
"\<lbrakk>is_init_file f; \<not> deleted (O_file f) s\<rbrakk> \<Longrightarrow> is_file s f"
|
|
68 |
sorry
|
|
69 |
|
|
70 |
|
|
71 |
theorem static_complete:
|
|
72 |
assumes undel: "undeletable obj" and tbl: "taintable obj"
|
|
73 |
shows "taintable_s obj"
|
|
74 |
proof-
|
|
75 |
from tbl obtain s where tainted: "obj \<in> tainted s"
|
|
76 |
by (auto simp:taintable_def)
|
|
77 |
hence vs: "valid s" by (simp add:tainted_prop2)
|
|
78 |
hence static: "s2ss s \<in> static" using d2s_main by auto
|
|
79 |
from tainted have alive: "alive s obj"
|
|
80 |
using tainted_prop1 by auto
|
|
81 |
then obtain sobj where sobj: "co2sobj s obj = Some sobj"
|
|
82 |
using vs alive_has_sobj by blast
|
|
83 |
from undel vs have "\<not> deleted obj s" and init_alive: "init_alive obj"
|
|
84 |
by (auto simp:undeletable_def)
|
|
85 |
with vs sobj have "init_obj_related sobj obj"
|
|
86 |
apply (case_tac obj, case_tac [!] sobj)
|
|
87 |
apply (auto split:option.splits if_splits simp:cp2sproc_def ch2sshm_def cq2smsgq_def cm2smsg_def)
|
|
88 |
apply (frule undel_init_file_remains, simp, drule is_file_has_sfile, erule exE)
|
|
89 |
apply (rule_tac x = sf in bexI)
|
|
90 |
apply (case_tac list, auto split:option.splits simp:is_init_file_props)[1]
|
|
91 |
apply (simp add:same_inode_files_def cfs2sfiles_def)
|
|
92 |
apply (rule_tac x = list in exI, simp)
|
|
93 |
apply (case_tac list, auto split:option.splits simp:is_init_dir_props delq_imp_delqm)
|
|
94 |
done
|
|
95 |
with tainted t2ts init_alive sobj static
|
|
96 |
show ?thesis unfolding taintable_s_def
|
|
97 |
apply (rule_tac x = "s2ss s" in bexI, simp)
|
|
98 |
apply (rule_tac x = "sobj" in exI, auto)
|
|
99 |
done
|
|
100 |
qed
|
|
101 |
|
|
102 |
lemma init_deled_imp_deled_s:
|
|
103 |
"\<lbrakk>deleted obj s; init_alive obj; sobj \<in> (s2ss s); valid s\<rbrakk> \<Longrightarrow> \<not> init_obj_related sobj obj"
|
|
104 |
apply (induct s, simp)
|
|
105 |
apply (frule vd_cons)
|
|
106 |
apply (case_tac a, auto)
|
|
107 |
(* need simpset for s2ss *)
|
|
108 |
sorry
|
|
109 |
|
|
110 |
lemma deleted_imp_deletable_s:
|
|
111 |
"\<lbrakk>deleted obj s; init_alive obj; valid s\<rbrakk> \<Longrightarrow> deletable_s obj"
|
|
112 |
apply (simp add:deletable_s_def)
|
|
113 |
apply (rule_tac x = "s2ss s" in bexI)
|
|
114 |
apply (clarify, simp add:init_deled_imp_deled_s)
|
|
115 |
apply (erule d2s_main)
|
|
116 |
done
|
|
117 |
|
|
118 |
theorem undeletable_s_complete:
|
|
119 |
assumes undel_s: "undeletable_s obj"
|
|
120 |
shows "undeletable obj"
|
|
121 |
proof-
|
|
122 |
from undel_s have init_alive: "init_alive obj"
|
|
123 |
and alive_s: "\<forall> ss \<in> static. \<exists> sobj \<in> ss. init_obj_related sobj obj"
|
|
124 |
using undeletable_s_def by auto
|
|
125 |
have "\<not> (\<exists> s. valid s \<and> deleted obj s)"
|
|
126 |
proof
|
|
127 |
assume "\<exists> s. valid s \<and> deleted obj s"
|
|
128 |
then obtain s where vs: "valid s" and del: "deleted obj s" by auto
|
|
129 |
from vs have vss: "s2ss s \<in> static" by (rule d2s_main)
|
|
130 |
with alive_s obtain sobj where in_ss: "sobj \<in> (s2ss s)"
|
|
131 |
and related: "init_obj_related sobj obj" by auto
|
|
132 |
from init_alive del vs have "deletable_s obj"
|
|
133 |
by (auto elim:deleted_imp_deletable_s)
|
|
134 |
with alive_s
|
|
135 |
show False by (auto simp:deletable_s_def)
|
|
136 |
qed
|
|
137 |
with init_alive show ?thesis
|
|
138 |
by (simp add:undeletable_def)
|
|
139 |
qed
|
|
140 |
|
|
141 |
theorem final_offer:
|
|
142 |
"\<lbrakk>undeletable_s obj; \<not> taintable_s obj; init_alive obj\<rbrakk> \<Longrightarrow> \<not> taintable obj"
|
|
143 |
apply (erule swap)
|
|
144 |
by (simp add:static_complete undeletable_s_complete)
|
|
145 |
|
|
146 |
|
|
147 |
|
|
148 |
(************** static \<rightarrow> dynamic ***************)
|
|
149 |
|
|
150 |
lemma created_can_have_many:
|
|
151 |
"\<lbrakk>valid s; alive s obj; \<not> init_alive obj\<rbrakk> \<Longrightarrow> \<exists> s'. valid s' \<and> alive s' obj \<and> alive s' obj' \<and> s2ss s = s2ss s'"
|
|
152 |
sorry
|
|
153 |
|
|
154 |
lemma s2d_main:
|
|
155 |
"ss \<in> static \<Longrightarrow> \<exists> s. valid s \<and> s2ss s = ss"
|
|
156 |
apply (erule static.induct)
|
|
157 |
apply (rule_tac x = "[]" in exI, simp add:s2ss_nil_prop valid.intros)
|
|
158 |
|
|
159 |
apply (erule exE|erule conjE)+
|
|
160 |
|
|
161 |
apply (erule exE, erule conjE)+
|
|
162 |
|
|
163 |
sorry
|
|
164 |
|
|
165 |
|
|
166 |
|
|
167 |
lemma tainted_s_imp_tainted:
|
|
168 |
"\<lbrakk>tainted_s ss sobj; ss \<in> static\<rbrakk> \<Longrightarrow> \<exists> obj s. s2ss s = ss \<and> valid s \<and> co2sobj s obj = Some sobj \<and> obj \<in> tainted s"
|
|
169 |
sorry
|
|
170 |
|
|
171 |
|
|
172 |
theorem static_sound:
|
|
173 |
assumes tbl_s: "taintable_s obj"
|
|
174 |
shows "taintable obj"
|
|
175 |
proof-
|
|
176 |
from tbl_s obtain ss sobj where static: "ss \<in> static"
|
|
177 |
and sobj: "tainted_s ss sobj" and related: "init_obj_related sobj obj"
|
|
178 |
and init_alive: "init_alive obj" by (auto simp:taintable_s_def)
|
|
179 |
from static sobj tainted_s_imp_tainted
|
|
180 |
obtain s obj' where s2ss: "s2ss s = ss" and co2sobj: "co2sobj s obj' = Some sobj"
|
|
181 |
and tainted: "obj' \<in> tainted s" and vs: "valid s" by blast
|
|
182 |
|
|
183 |
from co2sobj related
|
|
184 |
have eq:"obj = obj'"
|
|
185 |
apply (case_tac obj', case_tac [!] obj, case_tac [!] sobj)
|
|
186 |
apply auto
|
|
187 |
apply (auto split:option.splits if_splits)
|
|
188 |
apply (case_tac a, simp+)
|
|
189 |
apply (simp add:cp2sproc_def split:option.splits if_splits)
|
|
190 |
apply simp
|
|
191 |
sorry
|
|
192 |
with tainted vs init_alive
|
|
193 |
show ?thesis by (auto simp:taintable_def)
|
|
194 |
qed
|
|
195 |
|
|
196 |
|
|
197 |
|
|
198 |
lemma ts2t:
|
|
199 |
"obj \<in> tainted_s ss \<Longrightarrow> \<exists> s. obj \<in> tainted s"
|
|
200 |
"obj \<in> tainted_s ss \<Longrightarrow> \<exists> so. so True \<in> ss \<Longrightarrow> so True \<in> ss \<Longrightarrow> \<exists> s. valid s \<and> s2ss s = ss \<Longrightarrow> so True \<in> s2ss s \<Longrightarrow> tainted s obj. "
|
|
201 |
|
|
202 |
|
|
203 |
|
|
204 |
|
|
205 |
end |