--- a/Paper/Paper.thy Tue Feb 08 18:04:54 2011 +0000
+++ b/Paper/Paper.thy Tue Feb 08 19:54:23 2011 +0000
@@ -400,14 +400,14 @@
we can prove for @{text "X\<^isub>2\<^isub>.\<^isub>.\<^isub>n"} that the following equations
%
\begin{equation}\label{inv1}
- @{text "X\<^isub>i = L(Y\<^isub>i\<^isub>1, CHAR c\<^isub>i\<^isub>1) \<union> \<dots> \<union> L(Y\<^isub>i\<^isub>q, CHAR c\<^isub>i\<^isub>q)"}.
+ @{text "X\<^isub>i = \<calL>(Y\<^isub>i\<^isub>1, CHAR c\<^isub>i\<^isub>1) \<union> \<dots> \<union> \<calL>(Y\<^isub>i\<^isub>q, CHAR c\<^isub>i\<^isub>q)"}.
\end{equation}
\noindent
hold. Similarly for @{text "X\<^isub>1"} we can show the following equation
%
\begin{equation}\label{inv2}
- @{text "X\<^isub>1 = L(Y\<^isub>i\<^isub>1, CHAR c\<^isub>i\<^isub>1) \<union> \<dots> \<union> L(Y\<^isub>i\<^isub>p, CHAR c\<^isub>i\<^isub>p) \<union> L(\<lambda>(EMPTY))"}.
+ @{text "X\<^isub>1 = \<calL>(Y\<^isub>i\<^isub>1, CHAR c\<^isub>i\<^isub>1) \<union> \<dots> \<union> \<calL>(Y\<^isub>i\<^isub>p, CHAR c\<^isub>i\<^isub>p) \<union> \<calL>(\<lambda>(EMPTY))"}.
\end{equation}
\noindent
--- a/Paper/document/root.tex Tue Feb 08 18:04:54 2011 +0000
+++ b/Paper/document/root.tex Tue Feb 08 19:54:23 2011 +0000
@@ -22,7 +22,7 @@
\renewcommand{\isasymemptyset}{$\varnothing$}
\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}}
-
+\newcommand{\isasymcalL}{\ensuremath{\cal{L}}}
\begin{document}
\title{A Formalisation of the Myhill-Nerode Theorem\\ based on Regular