Paper/Paper.thy
changeset 83 f438f4dbaada
parent 82 14b12b5de6d3
child 86 6457e668dee5
equal deleted inserted replaced
82:14b12b5de6d3 83:f438f4dbaada
   398 
   398 
   399   \noindent
   399   \noindent
   400   we can prove for @{text "X\<^isub>2\<^isub>.\<^isub>.\<^isub>n"} that the following equations
   400   we can prove for @{text "X\<^isub>2\<^isub>.\<^isub>.\<^isub>n"} that the following equations
   401   %
   401   %
   402   \begin{equation}\label{inv1}
   402   \begin{equation}\label{inv1}
   403   @{text "X\<^isub>i = L(Y\<^isub>i\<^isub>1, CHAR c\<^isub>i\<^isub>1) \<union> \<dots> \<union> L(Y\<^isub>i\<^isub>q, CHAR c\<^isub>i\<^isub>q)"}.
   403   @{text "X\<^isub>i = \<calL>(Y\<^isub>i\<^isub>1, CHAR c\<^isub>i\<^isub>1) \<union> \<dots> \<union> \<calL>(Y\<^isub>i\<^isub>q, CHAR c\<^isub>i\<^isub>q)"}.
   404   \end{equation}
   404   \end{equation}
   405 
   405 
   406   \noindent
   406   \noindent
   407   hold. Similarly for @{text "X\<^isub>1"} we can show the following equation
   407   hold. Similarly for @{text "X\<^isub>1"} we can show the following equation
   408   %
   408   %
   409   \begin{equation}\label{inv2}
   409   \begin{equation}\label{inv2}
   410   @{text "X\<^isub>1 = L(Y\<^isub>i\<^isub>1, CHAR c\<^isub>i\<^isub>1) \<union> \<dots> \<union> L(Y\<^isub>i\<^isub>p, CHAR c\<^isub>i\<^isub>p) \<union> L(\<lambda>(EMPTY))"}.
   410   @{text "X\<^isub>1 = \<calL>(Y\<^isub>i\<^isub>1, CHAR c\<^isub>i\<^isub>1) \<union> \<dots> \<union> \<calL>(Y\<^isub>i\<^isub>p, CHAR c\<^isub>i\<^isub>p) \<union> \<calL>(\<lambda>(EMPTY))"}.
   411   \end{equation}
   411   \end{equation}
   412 
   412 
   413   \noindent
   413   \noindent
   414   The reason for adding the @{text \<lambda>}-marker to our equational system is 
   414   The reason for adding the @{text \<lambda>}-marker to our equational system is 
   415   to obtain this equation, which only holds in this form since none of 
   415   to obtain this equation, which only holds in this form since none of