--- a/Closures.thy Wed Sep 14 11:46:50 2011 +0000
+++ b/Closures.thy Wed Sep 14 13:00:44 2011 +0000
@@ -253,29 +253,34 @@
definition
"length_test s a b \<equiv> length (filter (op= a) s) = length (filter (op= b) s)"
-lemma length_test:
- "x = y \<Longrightarrow> length_test x a b = length_test y a b"
-by simp
-
lemma an_bn_not_regular:
shows "\<not> regular (\<Union>n. {CHR ''a'' ^^^ n @ CHR ''b'' ^^^ n})"
proof
def A\<equiv>"\<Union>n. {CHR ''a'' ^^^ n @ CHR ''b'' ^^^ n}"
def B\<equiv>"\<Union>n. {CHR ''a'' ^^^ n}"
-
assume as: "regular A"
def B\<equiv>"\<Union>n. {CHR ''a'' ^^^ n}"
+
+ have length_test: "\<And>s. s \<in> A \<Longrightarrow> length_test s (CHR ''a'') (CHR ''b'')"
+ unfolding A_def length_test_def by auto
+
have b: "infinite B"
unfolding infinite_iff_countable_subset
unfolding inj_on_def B_def
by (rule_tac x="\<lambda>n. CHR ''a'' ^^^ n" in exI) (auto)
moreover
- have "\<forall>x \<in> B. \<forall>y \<in> B. x \<noteq> y \<longrightarrow> \<not> (x \<approx>A y)"
- apply(auto simp add: B_def A_def)
- apply(auto simp add: str_eq_def)
- apply(drule_tac x="CHR ''b'' ^^^ aa" in spec)
+ have "\<forall>x \<in> B. \<forall>y \<in> B. x \<noteq> y \<longrightarrow> \<not> (x \<approx>A y)"
+ apply(auto)
+ unfolding B_def
apply(auto)
- apply(drule_tac a="CHR ''a''" and b="CHR ''b''" in length_test)
+ apply(simp add: str_eq_def)
+ apply(drule_tac x="CHR ''b'' ^^^ n" in spec)
+ apply(subgoal_tac "CHR ''a'' ^^^ na @ CHR ''b'' ^^^ n \<notin> A")
+ apply(subgoal_tac "CHR ''a'' ^^^ n @ CHR ''b'' ^^^ n \<in> A")
+ apply(blast)
+ apply(auto simp add: A_def)[1]
+ apply(rule notI)
+ apply(drule length_test)
apply(simp add: length_test_def)
done
ultimately
--- a/Journal/Paper.thy Wed Sep 14 11:46:50 2011 +0000
+++ b/Journal/Paper.thy Wed Sep 14 13:00:44 2011 +0000
@@ -2297,15 +2297,16 @@
\end{lmm}
\begin{proof}
- After unfolding the definitions, we need to establish that for @{term "i \<noteq> j"},
- the equality \mbox{@{text "a\<^sup>i @ b\<^sup>j = a\<^sup>n @ b\<^sup>n"}} leads to a contradiction. This is clearly the case
- if we test that the two strings have the same amount of @{text a}'s and @{text b}'s;
- the string on the right-hand side satisfies this property, but not the one on
- the left-hand side. Therefore the strings cannot be equal and we have a contradiction.
+ After unfolding the definition of @{text "B"}, we need to establish that given @{term "i \<noteq> j"},
+ the strings @{text "a\<^sup>i"} and @{text "a\<^sup>j"} are not Myhill-Nerode related by @{text "A"}.
+ That means we have to show that \mbox{@{text "\<forall>z. a\<^sup>i @ z \<in> A = a\<^sup>j @ z \<in> A"}} leads to
+ a contradiction. Let us take @{text "b\<^sup>i"} for @{text "z"}. Then we know @{text "a\<^sup>i @ b\<^sup>i \<in> A"}.
+ But since @{term "i \<noteq> j"}, @{text "a\<^sup>j @ b\<^sup>i \<notin> A"}. Therefore @{text "a\<^sup>i"} and @{text "a\<^sup>j"}
+ cannot be Myhill-Nerode related by @{text "A"} and we are done.
\end{proof}
\noindent
- To conclude the proof on non-regularity of language @{text A}, the
+ To conclude the proof of non-regularity for the language @{text A}, the
Continuation Lemma and the lemma above lead to a contradiction assuming
@{text A} is regular. Therefore the language @{text A} is not regular, as we
wanted to show.