more one the paper
authorurbanc
Thu, 28 Jul 2011 01:12:02 +0000
changeset 177 50cc1a39c990
parent 176 6969de1eb96b
child 178 c6ebfe052109
more one the paper
Journal/Paper.thy
--- a/Journal/Paper.thy	Wed Jul 27 15:29:39 2011 +0000
+++ b/Journal/Paper.thy	Thu Jul 28 01:12:02 2011 +0000
@@ -295,21 +295,21 @@
   larger formalisations of automata theory are carried out in Nuprl
   \cite{Constable00} and in Coq \cite{Filliatre97}.
 
-  Also one might consider automata theory as well-worn stock material where
+  Also one might consider automata theory as a well-worn stock subject where
   everything is crystal clear. However, paper proofs about automata often
   involve subtle side-conditions which are easily overlooked, but which make
   formal reasoning rather painful. For example Kozen's proof of the
   Myhill-Nerode theorem requires that the automata do not have inaccessible
   states \cite{Kozen97}. Another subtle side-condition is completeness of
-  automata: automata need to have total transition functions and at most one
+  automata, that is automata need to have total transition functions and at most one
   `sink' state from which there is no connection to a final state (Brozowski
-  mentions this side-condition in connection with state complexity
-  \cite{Brozowski10}). Such side-conditions mean that if we define a regular
+  mentions this side-condition in the context of state complexity
+  of automata \cite{Brozowski10}). Such side-conditions mean that if we define a regular
   language as one for which there exists \emph{a} finite automaton that
-  recognises all its strings (Def.~\ref{baddef}), then we need a lemma which
+  recognises all its strings (see Def.~\ref{baddef}), then we need a lemma which
   ensures that another equivalent can be found satisfying the
   side-condition. Unfortunately, such `little' and `obvious' lemmas make
-  formalisations of automata theory hair-pulling experiences.
+  a formalisation of automata theory a hair-pulling experience.
 
 
   In this paper, we will not attempt to formalise automata theory in
@@ -362,19 +362,24 @@
 text {*
   \noindent
   Strings in Isabelle/HOL are lists of characters with the \emph{empty string}
-  being represented by the empty list, written @{term "[]"}.  \emph{Languages}
-  are sets of strings. The language containing all strings is written in
-  Isabelle/HOL as @{term "UNIV::string set"}. The concatenation of two languages 
-  is written @{term "A \<cdot> B"} and a language raised to the power @{text n} is written 
+  being represented by the empty list, written @{term "[]"}.  We assume there
+  are only finitely many different characters.  \emph{Languages} are sets of
+  strings. The language containing all strings is written in Isabelle/HOL as
+  @{term "UNIV::string set"}. The concatenation of two languages is written
+  @{term "A \<cdot> B"} and a language raised to the power @{text n} is written
   @{term "A \<up> n"}. They are defined as usual
 
   \begin{center}
-  
-  @{thm conc_def'[THEN eq_reflection, where A1="A" and B1="B"]}
-  \hspace{7mm}
-  @{thm lang_pow.simps(1)[THEN eq_reflection, where A1="A"]}
-  \hspace{7mm}
-  @{thm lang_pow.simps(2)[THEN eq_reflection, where A1="A" and n1="n"]}
+  \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
+  @{thm (lhs) conc_def'[THEN eq_reflection, where A1="A" and B1="B"]}
+  & @{text "\<equiv>"} & @{thm (rhs) conc_def'[THEN eq_reflection, where A1="A" and B1="B"]}\\
+
+  @{thm (lhs) lang_pow.simps(1)[THEN eq_reflection, where A1="A"]}
+  & @{text "\<equiv>"} & @{thm (rhs) lang_pow.simps(1)[THEN eq_reflection, where A1="A"]}\\
+
+  @{thm (lhs) lang_pow.simps(2)[THEN eq_reflection, where A1="A" and n1="n"]}
+  & @{text "\<equiv>"} & @{thm (rhs) lang_pow.simps(2)[THEN eq_reflection, where A1="A" and n1="n"]}
+  \end{tabular}
   \end{center}
 
   \noindent
@@ -453,11 +458,11 @@
   \begin{center}
   \begin{tabular}{rcl}
   @{text r} & @{text "::="} & @{term ZERO}\\
-   & @{text"|"} & @{term ONE}\\ 
-   & @{text"|"} & @{term "ATOM c"}\\
-   & @{text"|"} & @{term "TIMES r r"}\\
-   & @{text"|"} & @{term "PLUS r r"}\\
-   & @{text"|"} & @{term "STAR r"}
+   & @{text"|"} & @{term One}\\ 
+   & @{text"|"} & @{term "Atom c"}\\
+   & @{text"|"} & @{term "Times r r"}\\
+   & @{text"|"} & @{term "Plus r r"}\\
+   & @{text"|"} & @{term "Star r"}
   \end{tabular}
   \end{center}
 
@@ -498,9 +503,8 @@
 section {* The Myhill-Nerode Theorem, First Part *}
 
 text {*
+  \noindent
   \footnote{Folklore: Henzinger (arden-DFA-regexp.pdf); Hofmann}
-
-  \noindent
   The key definition in the Myhill-Nerode theorem is the
   \emph{Myhill-Nerode relation}, which states that w.r.t.~a language two 
   strings are related, provided there is no distinguishing extension in this
@@ -552,10 +556,10 @@
   equivalence class in @{term "finals {[c]}"}.
   It is straightforward to show that in general 
 
-  \begin{center}
+  \begin{equation}\label{finalprops}
   @{thm lang_is_union_of_finals}\hspace{15mm} 
   @{thm finals_in_partitions} 
-  \end{center}
+  \end{equation}
 
   \noindent
   hold. 
@@ -622,10 +626,25 @@
   transitions---the successor `state' of an equivalence class @{text Y} can
   be reached by adding a character to the end of @{text Y}. This is also the
   reason why we have to use our reverse version of Arden's Lemma.}
-  %In our initial equation system there can only be
-  %finitely many terms of the form @{text "(Y\<^isub>i\<^isub>j, ATOM c\<^isub>i\<^isub>j)"} in a right-hand side 
-  %since by assumption there are only finitely many
-  %equivalence classes and only finitely many characters. 
+  In our running example we have the initial equational system
+
+  \begin{equation}\label{exmpcs}
+  \mbox{\begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
+  @{term "X\<^isub>1"} & @{text "="} & @{text "\<lambda>(ONE)"}\\
+  @{term "X\<^isub>2"} & @{text "="} & @{text "(X\<^isub>1, ATOM c)"}\\
+  @{term "X\<^isub>3"} & @{text "="} & @{text "(X\<^isub>1, ATOM d\<^isub>1) + \<dots> + (X\<^isub>1, ATOM d\<^isub>n)"}\\
+               & & \mbox{}\hspace{3mm}@{text "+ (X\<^isub>3, ATOM c\<^isub>1) + \<dots> + (X\<^isub>3, ATOM c\<^isub>m)"}
+  \end{tabular}}
+  \end{equation}
+  
+  \noindent
+  where @{text "d\<^isub>1\<dots>d\<^isub>n"} is the sequence of all characters
+  except @{text c}, and @{text "c\<^isub>1\<dots>c\<^isub>m"} is the sequence of all
+  characters.  In our initial equation systems there can only be finitely many
+  terms of the form @{text "(Y\<^isub>i\<^isub>j, ATOM c\<^isub>i\<^isub>j)"},
+  since by assumption there are only finitely many equivalence classes and
+  only finitely many characters.
+
   Overloading the function @{text \<calL>} for the two kinds of terms in the
   equational system, we have
   
@@ -698,8 +717,14 @@
   we define the \emph{append-operation} taking a term and a regular expression as argument
 
   \begin{center}
-  @{thm Append_rexp.simps(2)[where X="Y" and r="r\<^isub>1" and rexp="r\<^isub>2", THEN eq_reflection]}\hspace{10mm}
-  @{thm Append_rexp.simps(1)[where r="r\<^isub>1" and rexp="r\<^isub>2", THEN eq_reflection]}
+  \begin{tabular}{r@ {\hspace{2mm}}c@ {\hspace{2mm}}l}
+  @{thm (lhs) Append_rexp.simps(2)[where X="Y" and r="r\<^isub>1" and rexp="r\<^isub>2", THEN eq_reflection]}
+  & @{text "\<equiv>"} & 
+  @{thm (rhs) Append_rexp.simps(2)[where X="Y" and r="r\<^isub>1" and rexp="r\<^isub>2", THEN eq_reflection]}\\
+  @{thm (lhs) Append_rexp.simps(1)[where r="r\<^isub>1" and rexp="r\<^isub>2", THEN eq_reflection]}
+  & @{text "\<equiv>"} & 
+  @{thm (rhs) Append_rexp.simps(1)[where r="r\<^isub>1" and rexp="r\<^isub>2", THEN eq_reflection]}
+  \end{tabular}
   \end{center}
 
   \noindent
@@ -711,15 +736,15 @@
   \mbox{\begin{tabular}{rc@ {\hspace{2mm}}r@ {\hspace{1mm}}l}
   @{thm (lhs) Arden_def} & @{text "\<equiv>"}~~\mbox{} & \multicolumn{2}{@ {\hspace{-2mm}}l}{@{text "let"}}\\ 
    & & @{text "rhs' ="} & @{term "rhs - {Trn X r | r. Trn X r \<in> rhs}"} \\
-   & & @{text "r' ="}   & @{term "STAR (\<Uplus> {r. Trn X r \<in> rhs})"}\\
-   & &  \multicolumn{2}{@ {\hspace{-2mm}}l}{@{text "in"}~~@{term "append_rhs_rexp rhs' r'"}}\\ 
+   & & @{text "r' ="}   & @{term "Star (\<Uplus> {r. Trn X r \<in> rhs})"}\\
+   & &  \multicolumn{2}{@ {\hspace{-2mm}}l}{@{text "in"}~~@{term "Append_rexp_rhs rhs' r'"}}\\ 
   \end{tabular}}
   \end{equation}
 
   \noindent
   In this definition, we first delete all terms of the form @{text "(X, r)"} from @{text rhs};
   then we calculate the combined regular expressions for all @{text r} coming 
-  from the deleted @{text "(X, r)"}, and take the @{const STAR} of it;
+  from the deleted @{text "(X, r)"}, and take the @{const Star} of it;
   finally we append this regular expression to @{text rhs'}. It can be easily seen 
   that this operation mimics Arden's Lemma on the level of equations. To ensure
   the non-emptiness condition of Arden's Lemma we say that a right-hand side is
@@ -751,7 +776,7 @@
   @{thm (lhs) Subst_def} & @{text "\<equiv>"}~~\mbox{} & \multicolumn{2}{@ {\hspace{-2mm}}l}{@{text "let"}}\\ 
    & & @{text "rhs' ="} & @{term "rhs - {Trn X r | r. Trn X r \<in> rhs}"} \\
    & & @{text "r' ="}   & @{term "\<Uplus> {r. Trn X r \<in> rhs}"}\\
-   & &  \multicolumn{2}{@ {\hspace{-2mm}}l}{@{text "in"}~~@{term "rhs' \<union> append_rhs_rexp xrhs r'"}}\\ 
+   & &  \multicolumn{2}{@ {\hspace{-2mm}}l}{@{text "in"}~~@{term "rhs' \<union> Append_rexp_rhs xrhs r'"}}\\ 
   \end{tabular}
   \end{center}
 
@@ -900,8 +925,10 @@
   We prove this as follows:
 
   \begin{center}
-  @{text "\<forall> ES."} @{thm (prem 1) Subst_all_satisfies_invariant} implies
+  \begin{tabular}{@ {}l@ {}}
+  @{text "\<forall> ES."}\\ \mbox{}\hspace{5mm}@{thm (prem 1) Subst_all_satisfies_invariant} implies
   @{thm (concl) Subst_all_satisfies_invariant}
+  \end{tabular}
   \end{center}
 
   \noindent
@@ -1315,7 +1342,7 @@
   \end{proof}
   
   \noindent
-  The case for @{const STAR} is similar to @{const TIMES}, but poses a few extra challenges. When
+  The case for @{const Star} is similar to @{const TIMES}, but poses a few extra challenges. When
   we analyse the case that @{text "x @ z"} is an element in @{term "A\<star>"} and @{text x} is not the 
   empty string, we 
   have the following picture:
@@ -1382,14 +1409,14 @@
   @{thm tag_str_Star_def[where ?L1.0="A", THEN meta_eq_app]}\smallskip
   \end{center}
 
-  \begin{proof}[@{const STAR}-Case]
+  \begin{proof}[@{const Star}-Case]
   If @{term "finite (UNIV // \<approx>A)"} 
   then @{term "finite (Pow (UNIV // \<approx>A))"} holds. The range of
-  @{term "tag_str_STAR A"} is a subset of this set, and therefore finite.
+  @{term "tag_str_Star A"} is a subset of this set, and therefore finite.
   Again we have to show injectivity of this tagging-function as  
   %
   \begin{center}
-  @{term "\<forall>z. tag_str_STAR A x = tag_str_STAR A y \<and> x @ z \<in> A\<star> \<longrightarrow> y @ z \<in> A\<star>"}
+  @{term "\<forall>z. tag_str_Star A x = tag_str_Star A y \<and> x @ z \<in> A\<star> \<longrightarrow> y @ z \<in> A\<star>"}
   \end{center}  
   %
   \noindent
@@ -1450,7 +1477,7 @@
   \end{equation}
 
   \noindent
-  It is realtively easy to establish the following identidies for left-quotients:
+  It is realtively easy to establish the following properties for left-quotients:
   
   \begin{center}
   \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{2mm}}l}
@@ -1483,8 +1510,10 @@
   @{thm (lhs) der.simps(4)[where ?r1.0="r\<^isub>1" and ?r2.0="r\<^isub>2"]}  
      & @{text "\<equiv>"} & @{thm (rhs) der.simps(4)[where ?r1.0="r\<^isub>1" and ?r2.0="r\<^isub>2"]}\\
   @{thm (lhs) der.simps(5)[where ?r1.0="r\<^isub>1" and ?r2.0="r\<^isub>2"]}  
-     & @{text "\<equiv>"}\\ 
-  \multicolumn{3}{@ {\hspace{5mm}}l@ {}}{@{thm (rhs) der.simps(5)[where ?r1.0="r\<^isub>1" and ?r2.0="r\<^isub>2"]}}\\
+     & @{text "\<equiv>"} & @{text "if"}~@{term "nullable r\<^isub>1"}~@{text "then"}~%
+       @{term "Plus (Times (der c r\<^isub>1) r\<^isub>2) (der c r\<^isub>2)"}\\
+     &             & \phantom{@{text "if"}~@{term "nullable r\<^isub>1"}~}@{text "else"}~%  
+                    @{term "Times (der c r\<^isub>1) r\<^isub>2"}\\ 
   @{thm (lhs) der.simps(6)}  & @{text "\<equiv>"} & @{thm (rhs) der.simps(6)}\smallskip\\
   @{thm (lhs) ders.simps(1)}  & @{text "\<equiv>"} & @{thm (rhs) ders.simps(1)}\\
   @{thm (lhs) ders.simps(2)}  & @{text "\<equiv>"} & @{thm (rhs) ders.simps(2)}\\
@@ -1496,7 +1525,7 @@
   can recognise the empty string:
 
   \begin{center}
-  \begin{tabular}{cc}
+  \begin{tabular}{c@ {\hspace{10mm}}c}
   \begin{tabular}{@ {}l@ {\hspace{1mm}}c@ {\hspace{1.5mm}}l@ {}}
   @{thm (lhs) nullable.simps(1)}  & @{text "\<equiv>"} & @{thm (rhs) nullable.simps(1)}\\
   @{thm (lhs) nullable.simps(2)}  & @{text "\<equiv>"} & @{thm (rhs) nullable.simps(2)}\\
@@ -1568,8 +1597,10 @@
   @{thm (lhs) pder.simps(4)[where ?r1.0="r\<^isub>1" and ?r2.0="r\<^isub>2"]}  
      & @{text "\<equiv>"} & @{thm (rhs) pder.simps(4)[where ?r1.0="r\<^isub>1" and ?r2.0="r\<^isub>2"]}\\
   @{thm (lhs) pder.simps(5)[where ?r1.0="r\<^isub>1" and ?r2.0="r\<^isub>2"]}  
-     & @{text "\<equiv>"}\\ 
-  \multicolumn{3}{@ {\hspace{20mm}}l@ {}}{@{thm (rhs) pder.simps(5)[where ?r1.0="r\<^isub>1" and ?r2.0="r\<^isub>2"]}}\\
+     & @{text "\<equiv>"} & @{text "if"}~@{term "nullable r\<^isub>1"}~@{text "then"}~%
+       @{term "(Times_set (pder c r\<^isub>1) r\<^isub>2) \<union> (pder c r\<^isub>2)"}\\
+     & & \phantom{@{text "if"}~@{term "nullable r\<^isub>1"}~}@{text "else"}~%  
+                    @{term "Times_set (pder c r\<^isub>1) r\<^isub>2"}\\ 
   @{thm (lhs) pder.simps(6)}  & @{text "\<equiv>"} & @{thm (rhs) pder.simps(6)}\smallskip\\
   @{thm (lhs) pders.simps(1)}  & @{text "\<equiv>"} & @{thm (rhs) pders.simps(1)}\\
   @{thm (lhs) pders.simps(2)}  & @{text "\<equiv>"} & @{thm (rhs) pders.simps(2)}\\