added slides for a talk in St Andrews
authorurbanc
Sun, 20 Nov 2011 22:53:50 +0000
changeset 258 1abf8586ee6b
parent 257 f512026d5d6e
child 259 aad64c63960e
added slides for a talk in St Andrews
IsaMakefile
Journal/Paper.thy
Slides/ROOT2.ML
Slides/Slides2.thy
Slides/document/appel.jpg
Slides/document/harper.jpg
Slides/document/pfenning.jpg
Slides/document/roy.jpg
Slides/slides.pdf
Slides/slides1.pdf
Slides/slides2.pdf
csupp.pdf
csupp.tex
--- a/IsaMakefile	Fri Nov 11 23:38:10 2011 +0000
+++ b/IsaMakefile	Sun Nov 20 22:53:50 2011 +0000
@@ -26,7 +26,7 @@
 	cd Slides/generated ; $(ISABELLE_TOOL) latex -o pdf root.beamer.tex 
 	cp Slides/generated/root.beamer.pdf Slides/slides.pdf     
 
-## Slides
+## Slides 1
 
 session11: Slides/ROOT.ML \
          Slides/document/root* \
@@ -38,6 +38,17 @@
 	cd Slides/generated ; $(ISABELLE_TOOL) latex -o pdf root.beamer.tex 
 	cp Slides/generated/root.beamer.pdf Slides/slides1.pdf   
 
+## Slides 2
+
+session22: Slides/ROOT.ML \
+         Slides/document/root* \
+         Slides/Slides2.thy
+	@$(USEDIR) -D generated -f ROOT2.ML HOL Slides
+
+slides2: session22 
+	rm -f Slides/generated/*.aux # otherwise latex will fall over
+	cd Slides/generated ; $(ISABELLE_TOOL) latex -o pdf root.beamer.tex 
+	cp Slides/generated/root.beamer.pdf Slides/slides2.pdf   
 
 ## long paper
 
--- a/Journal/Paper.thy	Fri Nov 11 23:38:10 2011 +0000
+++ b/Journal/Paper.thy	Sun Nov 20 22:53:50 2011 +0000
@@ -413,7 +413,7 @@
   \end{dfntn}
   
   \noindent
-  And then `forget' automata.
+  And then `forget' automata completely.
   The reason is that regular expressions, unlike graphs, matrices and
   functions, can be easily defined as an inductive datatype. A reasoning
   infrastructure (like induction and recursion) comes for free in
@@ -2114,9 +2114,9 @@
   @{term "Deriv_lang B A"} is regular.
 
   Even more surprising is the fact that for \emph{every} language @{text A}, the language
-  consisting of all substrings of @{text A} is regular \cite{Haines69} (see also 
+  consisting of all (scattered) substrings of @{text A} is regular \cite{Haines69} (see also 
   \cite{Shallit08, Gasarch09}). 
-  A \emph{substring} can be obtained
+  A \emph{(scattered) substring} can be obtained
   by striking out zero or more characters from a string. This can be defined 
   inductively in Isabelle/HOL by the following three rules:
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Slides/ROOT2.ML	Sun Nov 20 22:53:50 2011 +0000
@@ -0,0 +1,5 @@
+(*show_question_marks := false;*)
+
+no_document use_thy "~~/src/HOL/Library/LaTeXsugar";
+quick_and_dirty := true;
+use_thy "Slides2"
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Slides/Slides2.thy	Sun Nov 20 22:53:50 2011 +0000
@@ -0,0 +1,869 @@
+(*<*)
+theory Slides2
+imports "~~/src/HOL/Library/LaTeXsugar"
+begin
+
+notation (latex output)
+  set ("_") and
+  Cons  ("_::/_" [66,65] 65) 
+
+(*>*)
+
+
+text_raw {*
+  %\renewcommand{\slidecaption}{Cambridge, 9 November 2010}
+  %\renewcommand{\slidecaption}{Nijmegen, 25 August 2011}
+  \renewcommand{\slidecaption}{St Andrews, 19 November 2011}
+  \newcommand{\bl}[1]{#1}                        
+  \newcommand{\sout}[1]{\tikz[baseline=(X.base), inner sep=-0.1pt, outer sep=0pt]
+  \node [cross out,red, ultra thick, draw] (X) {\textcolor{black}{#1}};}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}
+  \frametitle{%
+  \begin{tabular}{@ {}c@ {}}
+  \LARGE Formalising\\[-3mm] 
+  \LARGE Regular Language Theory\\[-3mm] 
+  \LARGE with Regular Expressions,\\[-3mm] 
+  \LARGE \alert<2>{Only}\\[0mm] 
+  \end{tabular}}
+  
+  \begin{center}
+   Christian Urban\\
+  \small King's College London
+  \end{center}\bigskip
+ 
+  \begin{center}
+  \small joint work with Chunhan Wu and Xingyuan Zhang from the PLA
+  University of Science and Technology in Nanjing
+  \end{center}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{}
+
+  \includegraphics[scale=0.5]{roy.jpg}\medskip
+
+  Roy intertwined with my scientific life on many occasions, most 
+  notably:\bigskip 
+
+  \begin{itemize}
+  \item he admitted me for M.Phil.~in St Andrews and\\ 
+  made me like theory\smallskip
+  \item sent me to Cambridge for Ph.D.\bigskip
+  \item made me appreciate precision in proofs
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{}
+
+  \begin{tabular}{c@ {\hspace{2mm}}c}
+  \\[6mm]
+  \begin{tabular}{c}
+  \includegraphics[scale=0.11]{harper.jpg}\\[-2mm]
+  {\footnotesize Bob Harper}\\[-2.5mm]
+  {\footnotesize (CMU)}
+  \end{tabular}
+  \begin{tabular}{c}
+  \includegraphics[scale=0.37]{pfenning.jpg}\\[-2mm]
+  {\footnotesize Frank Pfenning}\\[-2.5mm]
+  {\footnotesize (CMU)}
+  \end{tabular} &
+
+  \begin{tabular}{p{6cm}}
+  \raggedright
+  \color{gray}{published a proof in\\ {\bf ACM Transactions on Computational Logic}, 2005,
+  $\sim$31pp}
+  \end{tabular}\\
+
+  \pause
+  \\[0mm]
+  
+  \begin{tabular}{c}
+  \includegraphics[scale=0.36]{appel.jpg}\\[-2mm] 
+  {\footnotesize Andrew Appel}\\[-2.5mm]
+  {\footnotesize (Princeton)}
+  \end{tabular} &
+
+  \begin{tabular}{p{6cm}}
+  \raggedright
+  \color{gray}{relied on their proof in a\\ {\bf security} critical application}
+  \end{tabular}
+  \end{tabular}\medskip\pause
+
+  \small
+  \begin{minipage}{1.0\textwidth}
+  (I also found an {\bf error} in my Ph.D.-thesis about cut-elimination
+  examined by Henk Barendregt and Andy Pitts.)
+  \end{minipage}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[t]
+  \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}}
+  \mbox{}\\[-15mm]\mbox{}
+
+  \begin{center}
+  \huge\bf\textcolor{gray}{in Theorem Provers}\\
+  \footnotesize\textcolor{gray}{e.g.~Isabelle, Coq, HOL4, \ldots}
+  \end{center}
+
+  \begin{itemize}
+  \item automata @{text "\<Rightarrow>"} graphs, matrices, functions
+  \item<2-> combining automata/graphs
+
+  \onslide<2->{
+  \begin{center}
+  \begin{tabular}{ccc}
+  \begin{tikzpicture}[scale=1]
+  %\draw[step=2mm] (-1,-1) grid (1,1);
+  
+  \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3);
+  \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3);
+
+  \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  
+  \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+
+  \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+
+  \draw (-0.6,0.0) node {\small$A_1$};
+  \draw ( 0.6,0.0) node {\small$A_2$};
+  \end{tikzpicture}}
+
+  & 
+
+  \onslide<3->{\raisebox{1.1mm}{\bf\Large$\;\Rightarrow\,$}}
+
+  &
+
+  \onslide<3->{\begin{tikzpicture}[scale=1]
+  %\draw[step=2mm] (-1,-1) grid (1,1);
+  
+  \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3);
+  \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3);
+
+  \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  
+  \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+
+  \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  
+  \draw (C) to [red, very thick, bend left=45] (B);
+  \draw (D) to [red, very thick, bend right=45] (B);
+
+  \draw (-0.6,0.0) node {\small$A_1$};
+  \draw ( 0.6,0.0) node {\small$A_2$};
+  \end{tikzpicture}}
+
+  \end{tabular}
+  \end{center}\medskip
+
+  \only<4-5>{
+  \begin{tabular}{@ {\hspace{-5mm}}l@ {}}
+  disjoint union:\\[2mm]
+  \smath{A_1\uplus A_2 \dn \{(1, x)\,|\, x \in A_1\} \,\cup\, \{(2, y)\,|\, y \in A_2\}}
+  \end{tabular}}
+  \end{itemize}
+
+  \only<5>{
+  \begin{textblock}{13.9}(0.7,7.7)
+  \begin{block}{}
+  \medskip
+  \begin{minipage}{14cm}\raggedright
+  Problems with definition for regularity:\bigskip\\
+  \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A}\bigskip
+  \end{minipage}
+  \end{block}
+  \end{textblock}}
+  \medskip
+
+  \only<6->{\underline{A solution}:\;\;use \smath{\text{nat}}s \;@{text "\<Rightarrow>"}\; state nodes\medskip}
+
+  \only<7->{You have to \alert{rename} states!}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[t]
+  \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}}
+  \mbox{}\\[-15mm]\mbox{}
+
+  \begin{center}
+  \huge\bf\textcolor{gray}{in Theorem Provers}\\
+  \footnotesize\textcolor{gray}{e.g.~Isabelle, Coq, HOL4, \ldots}
+  \end{center}
+
+  \begin{itemize}
+  \item Kozen's ``paper'' proof of Myhill-Nerode:\\ 
+  \hspace{2cm}requires absence of \alert{inaccessible states}
+  \end{itemize}\bigskip\bigskip
+
+  \begin{center}
+  \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A}
+  \end{center}
+
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[t]
+  \frametitle{}
+  \mbox{}\\[25mm]\mbox{}
+
+  \begin{textblock}{13.9}(0.7,1.2)
+  \begin{block}{}
+  \begin{minipage}{13.4cm}\raggedright
+  {\bf Definition:}\smallskip\\
+  
+  A language \smath{A} is \alert{regular}, provided there exists a\\ 
+  \alert{regular expression} that matches all strings of \smath{A}.
+  \end{minipage}
+  \end{block}
+  \end{textblock}\pause
+  
+  {\noindent\large\bf\alert{\ldots{}and forget about automata}}\bigskip\bigskip\pause
+
+  Infrastructure for free. But do we lose anything?\medskip\pause
+
+  \begin{minipage}{1.1\textwidth}
+  \begin{itemize}
+  \item pumping lemma\pause
+  \item closure under complementation\pause
+  \item \only<6>{regular expression matching}%
+       \only<7->{\sout{regular expression matching}
+  {\footnotesize(@{text "\<Rightarrow>"}Brozowski'64, Owens et al '09)}}
+  \item<8-> most textbooks are about automata
+  \end{itemize}
+  \end{minipage}
+
+  
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE The Myhill-Nerode Theorem}
+
+  \begin{itemize}
+  \item provides necessary and suf\!ficient conditions\\ for a language 
+  being regular\\ \textcolor{gray}{(pumping lemma only necessary)}\bigskip
+
+  \item key is the equivalence relation:\medskip
+  \begin{center}
+  \smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A}
+  \end{center}
+  \end{itemize}
+
+ 
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE The Myhill-Nerode Theorem}
+
+  \begin{center}
+  \only<1>{%
+  \begin{tikzpicture}[scale=3]
+  \draw[very thick] (0.5,0.5) circle (.6cm);
+  \end{tikzpicture}}%
+  \only<2->{%
+  \begin{tikzpicture}[scale=3]
+  \draw[very thick] (0.5,0.5) circle (.6cm);
+  \clip[draw] (0.5,0.5) circle (.6cm);
+  \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4);
+  \end{tikzpicture}}
+  \end{center}
+  
+  \begin{itemize}
+  \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}}
+  \end{itemize}
+
+  \begin{textblock}{5}(2.1,5.3)
+  \begin{tikzpicture}
+  \node at (0,0) [single arrow, fill=red,text=white, minimum height=2cm]
+  {$U\!N\!IV$};
+  \draw (-0.3,-1.1) node {\begin{tabular}{l}set of all\\[-1mm] strings\end{tabular}};
+  \end{tikzpicture}
+  \end{textblock}
+
+  \only<2->{%
+  \begin{textblock}{5}(9.1,7.2)
+  \begin{tikzpicture}
+  \node at (0,0) [shape border rotate=180,single arrow, fill=red,text=white, minimum height=2cm]
+  {@{text "\<lbrakk>x\<rbrakk>"}$_{\approx_{A}}$};
+  \draw (0.9,-1.1) node {\begin{tabular}{l}an equivalence class\end{tabular}};
+  \end{tikzpicture}
+  \end{textblock}}
+
+  \only<3->{
+  \begin{textblock}{11.9}(1.7,3)
+  \begin{block}{}
+  \begin{minipage}{11.4cm}\raggedright
+  Two directions:\medskip\\
+  \begin{tabular}{@ {}ll}
+  1.)\;finite $\Rightarrow$ regular\\
+  \;\;\;\smath{\text{finite}\,(U\!N\!IV /\!/ \approx_A) \Rightarrow \exists r.\;A = {\cal L}(r)}\\[3mm]
+  2.)\;regular $\Rightarrow$ finite\\
+  \;\;\;\smath{\text{finite}\, (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}
+  \end{tabular}
+
+  \end{minipage}
+  \end{block}
+  \end{textblock}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE Initial and Final {\sout{\textcolor{gray}{States}}}}
+
+  \begin{textblock}{8}(10, 2)
+  \textcolor{black}{Equivalence Classes}
+  \end{textblock}
+
+
+  \begin{center}
+  \begin{tikzpicture}[scale=3]
+  \draw[very thick] (0.5,0.5) circle (.6cm);
+  \clip[draw] (0.5,0.5) circle (.6cm);
+  \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4);
+  \only<2->{\draw[blue, fill] (0.0, 0.6) rectangle (0.2, 0.8);}
+  \only<3->{\draw[red, fill] (0.2, 0.2) rectangle (0.4, 0.4);
+  \draw[red, fill] (0.4, 0.8) rectangle (0.6, 1.0);
+  \draw[red, fill] (0.6, 0.0) rectangle (0.8, 0.2);
+  \draw[red, fill] (0.8, 0.4) rectangle (1.0, 0.6);}
+  \end{tikzpicture}
+  \end{center}
+
+  \begin{itemize}
+  \item \smath{\text{finals}\,A\,\dn \{[\!|x|\!]_{\approx_{A}}\;|\;x \in A\}}
+  \smallskip
+  \item we can prove: \smath{A = \bigcup \text{finals}\,A}
+  \end{itemize}
+
+  \only<2->{%
+  \begin{textblock}{5}(2.1,4.6)
+  \begin{tikzpicture}
+  \node at (0,0) [single arrow, fill=blue,text=white, minimum height=2cm]
+  {$[] \in X$};
+  \end{tikzpicture}
+  \end{textblock}}
+
+  \only<3->{%
+  \begin{textblock}{5}(10,7.4)
+  \begin{tikzpicture}
+  \node at (0,0) [shape border rotate=180,single arrow, fill=red,text=white, minimum height=2cm]
+  {a final};
+  \end{tikzpicture}
+  \end{textblock}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<-1>[c]
+  \frametitle{\begin{tabular}{@ {}l}\LARGE% 
+  Transitions between Eq-Classes\end{tabular}}
+
+  \begin{center}
+  \begin{tikzpicture}[scale=3]
+  \draw[very thick] (0.5,0.5) circle (.6cm);
+  \clip[draw] (0.5,0.5) circle (.6cm);
+  \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4);
+  \draw[blue, fill] (0.0, 0.6) rectangle (0.2, 0.8);
+  \draw[blue, fill] (0.8, 0.4) rectangle (1.0, 0.6);
+  \draw[white] (0.1,0.7) node (X) {$X$};
+  \draw[white] (0.9,0.5) node (Y) {$Y$};
+  \draw[blue, ->, line width = 2mm, bend left=45] (X) -- (Y);
+  \node [inner sep=1pt,label=above:\textcolor{blue}{$c$}] at ($ (X)!.5!(Y) $) {};
+  \end{tikzpicture}
+  \end{center}
+
+  \begin{center}
+  \smath{X \stackrel{c}{\longrightarrow} Y \;\dn\; X ; c \subseteq Y}
+  \end{center}
+
+  \onslide<8>{
+  \begin{tabular}{c}
+  \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick]
+  \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm]
+  \node[state,initial] (q_0) {$R_1$};
+  \end{tikzpicture}
+  \end{tabular}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE Systems of Equations}
+
+  Inspired by a method of Brzozowski\;'64:\bigskip\bigskip
+
+  \begin{center}
+  \begin{tabular}{@ {\hspace{-20mm}}c}
+  \\[-13mm]
+  \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick]
+  \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm]
+
+  %\draw[help lines] (0,0) grid (3,2);
+
+  \node[state,initial]   (p_0)                  {$X_1$};
+  \node[state,accepting] (p_1) [right of=q_0]   {$X_2$};
+
+  \path[->] (p_0) edge [bend left]   node        {a} (p_1)
+                  edge [loop above]   node       {b} ()
+            (p_1) edge [loop above]   node       {a} ()
+                  edge [bend left]   node        {b} (p_0);
+  \end{tikzpicture}\\
+  \\[-13mm]
+  \end{tabular}
+  \end{center}
+
+  \begin{center}
+  \begin{tabular}{@ {\hspace{-6mm}}ll@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
+  & \smath{X_1} & \smath{=} & \smath{X_1;b + X_2;b \onslide<2->{\alert<2>{+ \lambda;[]}}}\\
+  & \smath{X_2} & \smath{=} & \smath{X_1;a + X_2;a}\medskip\\
+  \end{tabular}
+  \end{center}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-2,4->[t]
+  \small
+
+  \begin{center}
+  \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll}
+  \onslide<1->{\smath{X_1}} & \onslide<1->{\smath{=}} 
+      & \onslide<1->{\smath{X_1; b + X_2; b + \lambda;[]}}\\
+  \onslide<1->{\smath{X_2}} & \onslide<1->{\smath{=}}    
+      & \onslide<1->{\smath{X_1; a + X_2; a}}\\
+
+  & & & \onslide<2->{by Arden}\\
+
+  \onslide<2->{\smath{X_1}} & \onslide<2->{\smath{=}} 
+      & \onslide<2->{\smath{X_1; b + X_2; b + \lambda;[]}}\\
+  \onslide<2->{\smath{X_2}} & \onslide<2->{\smath{=}}    
+      & \only<2->{\smath{X_1; a\cdot a^\star}}\\
+
+  & & & \onslide<4->{by Arden}\\
+
+  \onslide<4->{\smath{X_1}} & \onslide<4->{\smath{=}} 
+      & \onslide<4->{\smath{X_2; b \cdot b^\star+ \lambda;b^\star}}\\
+  \onslide<4->{\smath{X_2}} & \onslide<4->{\smath{=}}    
+      & \onslide<4->{\smath{X_1; a\cdot a^\star}}\\
+
+  & & & \onslide<5->{by substitution}\\
+
+  \onslide<5->{\smath{X_1}} & \onslide<5->{\smath{=}} 
+      & \onslide<5->{\smath{X_1; a\cdot a^\star \cdot b \cdot b^\star+ \lambda;b^\star}}\\
+  \onslide<5->{\smath{X_2}} & \onslide<5->{\smath{=}}    
+      & \onslide<5->{\smath{X_1; a\cdot a^\star}}\\
+
+  & & & \onslide<6->{by Arden}\\
+
+  \onslide<6->{\smath{X_1}} & \onslide<6->{\smath{=}} 
+      & \onslide<6->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\
+  \onslide<6->{\smath{X_2}} & \onslide<6->{\smath{=}}    
+      & \onslide<6->{\smath{X_1; a\cdot a^\star}}\\
+
+  & & & \onslide<7->{by substitution}\\
+
+  \onslide<7->{\smath{X_1}} & \onslide<7->{\smath{=}} 
+      & \onslide<7->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\
+  \onslide<7->{\smath{X_2}} & \onslide<7->{\smath{=}}    
+      & \onslide<7->{\smath{\lambda; b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star 
+          \cdot a\cdot a^\star}}\\
+  \end{tabular}
+  \end{center}
+
+  \only<8->{
+  \begin{textblock}{6}(2.5,4)
+  \begin{block}{}
+  \begin{minipage}{8cm}\raggedright
+  
+  \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick, inner sep=1mm]
+  \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm]
+
+  %\draw[help lines] (0,0) grid (3,2);
+
+  \node[state,initial]   (p_0)                  {$X_1$};
+  \node[state,accepting] (p_1) [right of=q_0]   {$X_2$};
+
+  \path[->] (p_0) edge [bend left]   node        {a} (p_1)
+                  edge [loop above]   node       {b} ()
+            (p_1) edge [loop above]   node       {a} ()
+                  edge [bend left]   node        {b} (p_0);
+  \end{tikzpicture}
+
+  \end{minipage}
+  \end{block}
+  \end{textblock}}
+
+  \only<1,2>{%
+  \begin{textblock}{3}(0.6,1.2)
+  \begin{tikzpicture}
+  \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm]
+  {\textcolor{red}{a}};
+  \end{tikzpicture}
+  \end{textblock}}
+  \only<2>{%
+  \begin{textblock}{3}(0.6,3.6)
+  \begin{tikzpicture}
+  \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm]
+  {\textcolor{red}{a}};
+  \end{tikzpicture}
+  \end{textblock}}
+  \only<4>{%
+  \begin{textblock}{3}(0.6,2.9)
+  \begin{tikzpicture}
+  \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm]
+  {\textcolor{red}{a}};
+  \end{tikzpicture}
+  \end{textblock}}
+  \only<4>{%
+  \begin{textblock}{3}(0.6,5.3)
+  \begin{tikzpicture}
+  \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm]
+  {\textcolor{red}{a}};
+  \end{tikzpicture}
+  \end{textblock}}
+  \only<5>{%
+  \begin{textblock}{3}(1.0,5.6)
+  \begin{tikzpicture}
+  \node at (0,0) (A) {};
+  \node at (0,1) (B) {};
+  \draw[<-, line width=2mm, red] (B) to  (A);
+  \end{tikzpicture}
+  \end{textblock}}
+  \only<5,6>{%
+  \begin{textblock}{3}(0.6,7.7)
+  \begin{tikzpicture}
+  \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm]
+  {\textcolor{red}{a}};
+  \end{tikzpicture}
+  \end{textblock}}
+  \only<6>{%
+  \begin{textblock}{3}(0.6,10.1)
+  \begin{tikzpicture}
+  \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm]
+  {\textcolor{red}{a}};
+  \end{tikzpicture}
+  \end{textblock}}
+  \only<7>{%
+  \begin{textblock}{3}(1.0,10.3)
+  \begin{tikzpicture}
+  \node at (0,0) (A) {};
+  \node at (0,1) (B) {};
+  \draw[->, line width=2mm, red] (B) to  (A);
+  \end{tikzpicture}
+  \end{textblock}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE The Other Direction}
+
+  One has to prove
+
+  \begin{center}
+  \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}
+  \end{center}
+
+  by induction on \smath{r}. Not trivial, but after a bit 
+  of thinking, one can find a \alert{refined} relation:\bigskip
+
+  
+  \begin{center}
+  \mbox{\begin{tabular}{c@ {\hspace{7mm}}c@ {\hspace{7mm}}c}
+  \begin{tikzpicture}[scale=1.1]
+  %Circle
+  \draw[thick] (0,0) circle (1.1);    
+  \end{tikzpicture}
+  &
+  \begin{tikzpicture}[scale=1.1]
+  %Circle
+  \draw[thick] (0,0) circle (1.1);    
+  %Main rays
+  \foreach \a in {0, 90,...,359}
+    \draw[very thick] (0, 0) -- (\a:1.1);
+  \foreach \a / \l in {45/1, 135/2, 225/3, 315/4}
+      \draw (\a: 0.65) node {\small$a_\l$};
+  \end{tikzpicture}
+  &
+  \begin{tikzpicture}[scale=1.1]
+  %Circle
+  \draw[red, thick] (0,0) circle (1.1);    
+  %Main rays
+  \foreach \a in {0, 45,...,359}
+     \draw[red, very thick] (0, 0) -- (\a:1.1);
+  \foreach \a / \l in {22.5/1.1, 67.5/1.2, 112.5/2.1, 157.5/2.2, 202.4/3.1, 247.5/3.2, 292.5/4.1, 337.5/4.2}
+      \draw (\a: 0.77) node {\textcolor{red}{\footnotesize$a_{\l}$}};
+  \end{tikzpicture}\\
+  \small\smath{U\!N\!IV} & 
+  \small\smath{U\!N\!IV /\!/ \approx_{{\cal L}(r)}} &
+  \small\smath{U\!N\!IV /\!/ \alert{R}}
+  \end{tabular}}
+  \end{center}
+
+  \begin{textblock}{5}(9.8,2.6)
+  \begin{tikzpicture}
+  \node at (0,0) [shape border rotate=270,single arrow, fill=red,text=white, minimum height=0cm]{\textcolor{red}{a}};
+  \end{tikzpicture}
+  \end{textblock}
+  
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[t]
+  \frametitle{\LARGE\begin{tabular}{c}Derivatives of RExps\end{tabular}}
+
+  \begin{itemize}
+  \item introduced by Brozowski~'64
+  \item a regular expressions after a character has been parsed\\[-18mm]\mbox{}
+  \end{itemize}
+
+  \only<1>{%
+  \textcolor{blue}{%
+  \begin{center}
+  \begin{tabular}{@ {}lc@ {\hspace{3mm}}l@ {}}
+  der c $\varnothing$     & $\dn$ & $\varnothing$\\
+  der c []                & $\dn$ & $\varnothing$\\
+  der c d                 & $\dn$ & if c $=$ d then [] else $\varnothing$\\
+  der c ($r_1 + r_2$)     & $\dn$ & (der c $r_1$) $+$ (der c $r_2$)\\
+  der c ($r^\star$)       & $\dn$ & (der c $r$) $\cdot$ $r^\star$\\
+  der c ($r_1 \cdot r_2$) & $\dn$ & if nullable $r_1$\\
+                          &       & then (der c $r_1$) $\cdot$ $r_2$ $+$ (der c $r_2$)\\
+                          &       & else (der c $r_1$) $\cdot$ $r_2$\\
+  \end{tabular}
+  \end{center}}}
+  \only<2>{%
+  \textcolor{blue}{%
+  \begin{center}
+  \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
+  pder c $\varnothing$     & $\dn$ & \alert{$\{\}$}\\
+  pder c []                & $\dn$ & \alert{$\{\}$}\\
+  pder c d                 & $\dn$ & if c $=$ d then $\{$[]$\}$ else $\{\}$\\
+  pder c ($r_1 + r_2$)     & $\dn$ & (pder c $r_1$) \alert{$\cup$} (der c $r_2$)\\
+  pder c ($r^\star$)       & $\dn$ & (pder c $r$) $\cdot$ $r^\star$\\
+  pder c ($r_1 \cdot r_2$) & $\dn$ & if nullable $r_1$\\
+                          &       & then (pder c $r_1$) $\cdot$ $r_2$ \alert{$\cup$} (pder c $r_2$)\\
+                          &       & else (pder c $r_1$) $\cdot$ $r_2$\\
+  \end{tabular}
+  \end{center}}}
+
+  \only<2>{
+  \begin{textblock}{6}(8.5,4.7)
+  \begin{block}{}
+  \begin{quote}
+  \begin{minipage}{6cm}\raggedright
+  \begin{itemize}
+  \item partial derivatives
+  \item by Antimirov~'95
+  \end{itemize}
+  \end{minipage}
+  \end{quote}
+  \end{block}
+  \end{textblock}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[t]
+  \frametitle{\LARGE Partial Derivatives}
+
+  \mbox{}\\[0mm]\mbox{}
+
+  \begin{itemize}
+
+  \item \alt<1>{\smath{\text{pders $x$ $r$ \mbox{$=$} pders $y$ $r$}}}
+            {\smath{\underbrace{\text{pders $x$ $r$ \mbox{$=$} pders $y$ $r$}}_{R}}} 
+        refines \textcolor{blue}{$x$ $\approx_{{\cal L}(r)}$ $y$}\\[16mm]\pause
+  \item \smath{\text{finite} (U\!N\!IV /\!/ R)} \bigskip\pause
+  \item Therefore \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}. Qed.
+  \end{itemize}
+  
+  \only<2->{%
+  \begin{textblock}{5}(3.9,7.2)
+  \begin{tikzpicture}
+  \node at (0,0) [shape border rotate=270,single arrow, fill=red,text=white, minimum height=0cm]{\textcolor{red}{a}};
+  \draw (2.2,0) node {Antimirov '95};
+  \end{tikzpicture}
+  \end{textblock}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[t]
+  \frametitle{\LARGE What Have We Achieved?}
+
+  \begin{itemize}
+  \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}}
+  \medskip\pause
+  \item regular languages are closed under complementation; this is now easy
+  \begin{center}
+  \smath{U\!N\!IV /\!/ \approx_A \;\;=\;\; U\!N\!IV /\!/ \approx_{\overline{A}}}
+  \end{center}\pause\medskip
+  
+  \item non-regularity (\smath{a^nb^n})\medskip\pause\pause
+
+  \item take \alert{\bf any} language; build the language of substrings\\
+  \pause
+
+  then this language \alert{\bf is} regular\;\; (\smath{a^nb^n} $\Rightarrow$ \smath{a^\star{}b^\star})
+  
+  \end{itemize}
+
+\only<2>{
+\begin{textblock}{10}(4,14)
+\small
+\smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A}
+\end{textblock}} 
+
+\only<4>{
+\begin{textblock}{5}(2,8.6)
+\begin{minipage}{8.8cm}
+\begin{block}{}
+\begin{minipage}{8.6cm}
+If there exists a sufficiently large set \smath{B} (for example infinitely large), 
+such that
+
+\begin{center}
+\smath{\forall x,y \in B.\; x \not= y \;\Rightarrow\; x \not\approx_{A} y}. 
+\end{center}  
+
+then \smath{A} is not regular.\hspace{1.3cm}\small(\smath{B \dn \bigcup_n a^n})
+\end{minipage}
+\end{block}
+\end{minipage}
+\end{textblock}
+}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE Conclusion}
+
+  \begin{itemize}
+  \item We have never seen a proof of Myhill-Nerode based on
+  regular expressions.\smallskip\pause
+
+  \item great source of examples (inductions)\smallskip\pause
+
+  \item no need to fight the theorem prover:\\ 
+  \begin{itemize}
+  \item first direction (790 loc)\\
+  \item second direction (400 / 390 loc)
+  \end{itemize}
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[b]
+  \frametitle{\mbox{}\\[2cm]\textcolor{red}{Thank you!\\[5mm]Questions?}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+(*<*)
+end
+(*>*)
\ No newline at end of file
Binary file Slides/document/appel.jpg has changed
Binary file Slides/document/harper.jpg has changed
Binary file Slides/document/pfenning.jpg has changed
Binary file Slides/document/roy.jpg has changed
Binary file Slides/slides.pdf has changed
Binary file Slides/slides1.pdf has changed
Binary file Slides/slides2.pdf has changed
Binary file csupp.pdf has changed
--- a/csupp.tex	Fri Nov 11 23:38:10 2011 +0000
+++ b/csupp.tex	Sun Nov 20 22:53:50 2011 +0000
@@ -43,7 +43,8 @@
 it increasingly clear, that this is not true anymore~\cite{Might11}. And
 there is a real practical need for new results: for example the future HTML5 
 Standard abandons a well-defined grammar specification, in favour of a bespoke
-parser given as pseudo code.
+parser given as pseudo code. Proving any property about this parser is nearly 
+impossible.
 
 This work targets parsers from a certification point of view. Increasingly,
 parsers are part of certified compilers, like
@@ -77,7 +78,7 @@
 (CFGs). This extension introduces new regular operators, such as
 negation and conjunction, on the right-hand side of grammar rules, as well as
 priority orderings for rules. With these extensions, PEG parsing becomes much
-more powerful and more useful in practise. For example disambiguation, formerly expressed by semantic
+more powerful and more useful in practice. For example disambiguation, formerly expressed by semantic
 filters, can now be expressed directly using grammar rules. 
 
 However, there is a serious limitation of PEGs, which affects potential
@@ -93,9 +94,9 @@
 parsing. There are also good indications that we can adapt work on Boolean
 Grammars~\cite{Okhotin04}, which are similar to PEGs and for which the
 paper~\cite{KountouriotisNR09} gives a fixed-point semantics 
-to negation operators, but not to the Kleene star.
+for negation operators, but not to the Kleene star.
 
-For the parsing algorithm, we might be able to build upon
+For our parsing algorithm, we might be able to build upon
 the classic Cocke-Younger-Kasami (CYK)
 algorithms~\cite{KountouriotisNR09} and
 Early~\cite{AycHor02, Earley70} parsers. The defect of CYK algorithms, however,