Slides/Slides6.thy
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Sun, 22 Dec 2013 07:37:26 +0000
changeset 393 058f29ab515c
parent 391 5c283ecefda6
permissions -rw-r--r--
added

(*<*)
theory Slides6
imports "~~/src/HOL/Library/LaTeXsugar"
begin

notation (latex output)
  set ("_") and
  Cons  ("_::/_" [66,65] 65) 

(*>*)


text_raw {*
  \renewcommand{\slidecaption}{London, 3 October 2013}
  \newcommand{\bl}[1]{\textcolor{blue}{#1}}                        
  \newcommand{\sout}[1]{\tikz[baseline=(X.base), inner sep=-0.1pt, outer sep=0pt]
  \node [cross out,red, ultra thick, draw] (X) {\textcolor{black}{#1}};}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}
  \frametitle{%
  \begin{tabular}{@ {}c@ {}}
  \\[-3mm]
  \Large A Formalisation of the\\[-1mm] 
  \Large Myhill-Nerode Theorem using\\[-1mm] 
  \Large Regular Expressions only
  \end{tabular}}
  
  \begin{center}
   Christian Urban\\
  \small King's College London
  \end{center}\bigskip
 
  \begin{center}
  \small joint work with Chunhan Wu and Xingyuan Zhang from the PLA
  University of Science and Technology in Nanjing
  \end{center}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1->[c]
  \frametitle{}

  \mbox{}\\[2mm]
  \begin{itemize}
  \item my background is in: 
    \begin{itemize}
    \item \normalsize programming languages and 
    \item \normalsize theorem provers
    \end{itemize}\medskip

  \item \normalsize develop Nominal Isabelle for reasoning about programming languages\\[-10mm]\mbox{}
  \end{itemize}
  
  \begin{center}
  \begin{block}{}
  \color{gray}
  \footnotesize
  {\bf\mbox{}\hspace{-1.5mm}Variable Convention:}\\[0mm] 
  If $M_1,\ldots,M_n$ occur in a certain mathematical context
  (e.g. definition, proof), then in these terms all bound variables 
  are chosen to be different from the free variables.\hfill ---Henk Barendregt
  \end{block}
  \end{center}\pause

  \mbox{}\\[-19mm]\mbox{}

  \begin{itemize}
  \item found an error in an ACM journal paper by Bob Harper and Frank Pfenning 
  about LF (and fixed it in three ways)
  \end{itemize}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}


text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[c]
  \frametitle{}

  \begin{itemize}
  \item found also fixable errors in my Ph.D.-thesis about cut-elimination
  (examined by Henk Barendregt and Andy Pitts)\bigskip

  \item formalised a classic OS scheduling algorithm (priority inversion 
  protocol)
    \begin{itemize}
    \item original algorithm was incorrect even being proved correct (with `pencil-and-paper') 
    \item helped us to implement this algorithm correctly and efficiently\\ 
    \end{itemize}\bigskip\pause

  \item used Isabelle to prove properties about access controls and OSes
  \end{itemize}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[c]
  \frametitle{}

  \begin{textblock}{12.9}(1.5,2.0)
  \begin{block}{}
  \begin{minipage}{12.4cm}\raggedright
  \large {\bf Motivation:}\\[2mm]I want to teach \alert{students} 
  theorem\\ provers (especially for inductions).
  \end{minipage}
  \end{block}
  \end{textblock}\pause

  \mbox{}\\[35mm]\mbox{}

  \begin{itemize}
  \item \only<2>{\smath{\text{fib}}, \smath{\text{even}} and \smath{\text{odd}}}%
        \only<3->{\sout{\smath{\text{fib}}, \smath{\text{even}} and \smath{\text{odd}}}}\medskip
  \item<3-> formal language theory \\
  \mbox{}\;\;@{text "\<Rightarrow>"} nice textbooks: Kozen, Hopcroft \& Ullman\ldots
  \end{itemize}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}


text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1->[t]
  \frametitle{Regular Expressions}

  \begin{textblock}{6}(2,4)
  \begin{tabular}{@ {}rrl}
  \bl{$r$} & \bl{$::=$}  & \bl{$\varnothing$}\\
           & \bl{$\mid$} & \bl{$[]$}\\
           & \bl{$\mid$} & \bl{$c$}\\
           & \bl{$\mid$} & \bl{$r_1 \cdot r_2$}\\
           & \bl{$\mid$} & \bl{$r_1 + r_2$}\\
           & \bl{$\mid$} & \bl{$r^*$}\\
  \end{tabular}
  \end{textblock}

  \begin{textblock}{6}(8,3.5)
  \includegraphics[scale=0.35]{Screen1.png}
  \end{textblock}

  \begin{textblock}{6}(10.2,2.8)
  \footnotesize Isabelle:
  \end{textblock}

   \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-5>[t]

  \mbox{}\\[-2mm]

  \small
  \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}ll@ {}}
  \bl{$nullable(\varnothing)$}   & \bl{$=$} & \bl{false} &\\
  \bl{$nullable([])$}            & \bl{$=$} & \bl{true}  &\\
  \bl{$nullable(c)$}             & \bl{$=$} & \bl{false} &\\
  \bl{$nullable(r_1 + r_2)$}     & \bl{$=$} & \bl{$nullable(r_1) \vee nullable(r_2)$} & \\ 
  \bl{$nullable(r_1 \cdot r_2)$} & \bl{$=$} & \bl{$nullable(r_1) \wedge nullable(r_2)$} & \\
  \bl{$nullable(r^*)$}           & \bl{$=$} & \bl{true} & \\
  \end{tabular}\medskip\pause

  \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}}
  \bl{$der\,c\,(\varnothing)$}            & \bl{$=$} & \bl{$\varnothing$} & \\
  \bl{$der\,c\,([])$}            & \bl{$=$} & \bl{$\varnothing$} & \\
  \bl{$der\,c\,(d)$}             & \bl{$=$} & \bl{if $c = d$ then $[]$ else $\varnothing$} & \\
  \bl{$der\,c\,(r_1 + r_2)$}     & \bl{$=$} & \bl{$der\,c\,r_1 + der\,c\,r_2$} & \\
  \bl{$der\,c\,(r_1 \cdot r_2)$} & \bl{$=$} &  \bl{if $nullable(r_1)$}\\
  & & \bl{then $(der\,c\,r_1) \cdot r_2 + der\, c\, r_2$}\\ 
  & & \bl{else $(der\, c\, r_1) \cdot r_2$}\\
  \bl{$der\,c\,(r^*)$}          & \bl{$=$} & \bl{$(der\,c\,r) \cdot r^*$} &\smallskip\\\pause

  \bl{$deriv\,[]\,r$}     & \bl{$=$} & \bl{$r$} & \\
  \bl{$deriv\,(c::s)\,r$} & \bl{$=$} & \bl{$deriv\,s\,(der\,c\,r)$} & \\
  \end{tabular}\medskip

  \bl{$match\,r\,s = nullable (deriv\,s\,r)$}

  \only<4>{
  \begin{textblock}{10.5}(2,5)
  \begin{tikzpicture}
  \draw (0,0) node[inner sep=2mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
{\normalsize\color{darkgray}
  \begin{minipage}{10.5cm}
  \begin{center}
  a)\;\; \bl{$nullable(r) \Leftrightarrow ""\in {\cal L}(r)$}\medskip
  \end{center}

  \begin{center}
  b)\;\; \bl{${\cal L}(der\,c\,r) = Der\,c\,({\cal L}(r))$}
  \end{center}

  where
  \begin{center}
  \bl{$Der\,c\,A \dn \{s\,|\, c\!::\!s \in A\}$}
  \end{center}\medskip\pause

  \begin{center}
  c)\;\; \bl{$match\,r\,s \Leftrightarrow s\in{\cal L}(r)$}
  \end{center}
  \end{minipage}};
  \end{tikzpicture}
  \end{textblock}}

  
  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\begin{tabular}{c}\bl{$(a?\{n\}) \cdot a\{n\}$}\end{tabular}}

\mbox{}\\[-13mm]

\begin{tikzpicture}[y=.2cm, x=.3cm]
 	%axis
	\draw (0,0) -- coordinate (x axis mid) (30,0);
    	\draw (0,0) -- coordinate (y axis mid) (0,30);
    	%ticks
    	\foreach \x in {0,5,...,30}
     		\draw (\x,1pt) -- (\x,-3pt)
			node[anchor=north] {\x};
    	\foreach \y in {0,5,...,30}
     		\draw (1pt,\y) -- (-3pt,\y) 
     			node[anchor=east] {\y}; 
	%labels      
	\node[below=0.6cm] at (x axis mid) {\bl{a}s};
	\node[rotate=90, left=1.2cm] at (y axis mid) {secs};

	%plots
	\draw[color=blue] plot[mark=*, mark options={fill=white}] 
		file {re-python.data};
	\draw[color=brown] plot[mark=pentagon*, mark options={fill=white} ] 
		file {re-ruby.data};
    
	%legend
	\begin{scope}[shift={(4,20)}] 
	\draw[color=blue] (0,0) -- 
		plot[mark=*, mark options={fill=white}] (0.25,0) -- (0.5,0) 
		node[right]{\small Python};
	\draw[yshift=-\baselineskip, color=brown] (0,0) -- 
		plot[mark=pentagon*, mark options={fill=white}] (0.25,0) -- (0.5,0)
		node[right]{\small Ruby};
	\end{scope}
\end{tikzpicture}

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
*}

text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\begin{tabular}{c}\bl{$(a?\{n\}) \cdot a\{n\}$}\end{tabular}}

\mbox{}\\[-13mm]

\begin{tabular}{@ {\hspace{-5mm}}l}
\begin{tikzpicture}[y=.2cm, x=.01cm]
 	%axis
	\draw (0,0) -- coordinate (x axis mid) (1000,0);
    	\draw (0,0) -- coordinate (y axis mid) (0,30);
    	%ticks
    	\foreach \x in {0,200,...,1000}
     		\draw (\x,1pt) -- (\x,-3pt)
			node[anchor=north] {\x};
    	\foreach \y in {0,5,...,30}
     		\draw (1pt,\y) -- (-3pt,\y) 
     			node[anchor=east] {\y}; 
	%labels      
	\node[below=0.6cm] at (x axis mid) {\bl{a}s};
	\node[rotate=90, left=1.2cm] at (y axis mid) {secs};

	%plots
	\draw[color=blue] plot[mark=*, mark options={fill=white}] 
		file {re-python.data};
         \draw[color=green] plot[mark=square*, mark options={fill=white} ] 
		file {re2c.data};
         \draw[color=brown] plot[mark=pentagon*, mark options={fill=white} ] 
		file {re-ruby.data};
    
	%legend
	\begin{scope}[shift={(100,20)}] 
	\draw[color=blue] (0,0) -- 
		plot[mark=*, mark options={fill=white}] (0.25,0) -- (50,0) 
		node[right]{\small Python};
	\draw[yshift=-13, color=brown] (0,0) -- 
		plot[mark=pentagon*, mark options={fill=white}] (0.25,0) -- (50,0)
		node[right]{\small Ruby};
	\draw[yshift=13, color=green] (0,0) -- 
		plot[mark=square*, mark options={fill=white}] (0.25,0) -- (50,0)
		node[right]{\small nullable + der};	
	\end{scope}
\end{tikzpicture}
\end{tabular}

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
*}

text_raw{*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\begin{tabular}{c}\bl{$(a?\{n\}) \cdot a\{n\}$}\end{tabular}}

\mbox{}\\[-9mm]

\begin{tabular}{@ {\hspace{-5mm}}l}
\begin{tikzpicture}[y=.2cm, x=.0008cm]
 	%axis
	\draw (0,0) -- coordinate (x axis mid) (12000,0);
    	\draw (0,0) -- coordinate (y axis mid) (0,30);
    	%ticks
    	\foreach \x in {0,2000,...,12000}
     		\draw (\x,1pt) -- (\x,-3pt)
			node[anchor=north] {\x};
    	\foreach \y in {0,5,...,30}
     		\draw (1pt,\y) -- (-3pt,\y) 
     			node[anchor=east] {\y}; 
	%labels      
	\node[below=0.6cm] at (x axis mid) {\bl{a}s};
	\node[rotate=90, left=1.2cm] at (y axis mid) {secs};

	%plots
         \draw[color=green] plot[mark=square*, mark options={fill=white} ] 
		file {re2b.data};
	\draw[color=black] plot[mark=square*, mark options={fill=white} ] 
		file {re3.data};	 
        \draw[color=blue] plot[mark=*, mark options={fill=white}] 
		file {re-python.data};
         \draw[color=brown] plot[mark=pentagon*, mark options={fill=white} ] 
		file {re-ruby.data};
    
	%legend
	\begin{scope}[shift={(2000,20)}] 
        \draw[color=blue] (0,0) -- 
		plot[mark=*, mark options={fill=white}] (0.25,0) -- (50,0) 
		node[right]{\small Python};
	\draw[yshift=-13, color=brown] (0,0) -- 
		plot[mark=pentagon*, mark options={fill=white}] (0.25,0) -- (50,0)
		node[right]{\small Ruby};
	\draw[yshift=13, color=green] (0,0) -- 
		plot[mark=square*, mark options={fill=white}] (0.25,0) -- (50,0)
		node[right]{\small nullable + der};	
	\draw[yshift=26, color=black] (0,0) -- 
		plot[mark=square*, mark options={fill=white}] (0.25,0) -- (50,0)
		node[right]{\small nullable + der + simplification};	
	\end{scope}
\end{tikzpicture}
\end{tabular}

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
*}


text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[t]
  \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}}
  \mbox{}\\[-15mm]\mbox{}

  \begin{center}
  \huge\bf\textcolor{gray}{in Theorem Provers}\\
  \footnotesize\textcolor{gray}{e.g.~Isabelle, Coq, HOL4, \ldots}
  \end{center}

  \begin{itemize}
  \item automata @{text "\<Rightarrow>"} graphs, matrices, functions
  \item<2-> combining automata / graphs

  \onslide<2->{
  \begin{center}
  \begin{tabular}{ccc}
  \begin{tikzpicture}[scale=1]
  %\draw[step=2mm] (-1,-1) grid (1,1);
  
  \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3);
  \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3);

  \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  
  \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};

  \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};

  \draw (-0.6,0.0) node {\small$A_1$};
  \draw ( 0.6,0.0) node {\small$A_2$};
  \end{tikzpicture}}

  & 

  \onslide<3->{\raisebox{1.1mm}{\bf\Large$\;\Rightarrow\,$}}

  &

  \onslide<3->{\begin{tikzpicture}[scale=1]
  %\draw[step=2mm] (-1,-1) grid (1,1);
  
  \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3);
  \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3);

  \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  
  \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};

  \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  
  \draw [very thick, red] (C) to [bend left=45] (B);
  \draw [very thick, red] (D) to [bend right=45] (B);

  \draw (-0.6,0.0) node {\small$A_1$};
  \draw ( 0.6,0.0) node {\small$A_2$};
  \end{tikzpicture}}

  \end{tabular}
  \end{center}\medskip

  \only<4-5>{
  \begin{tabular}{@ {\hspace{-5mm}}l@ {}}
  disjoint union:\\[2mm]
  \smath{A_1\uplus A_2 \dn \{(1, x)\,|\, x \in A_1\} \,\cup\, \{(2, y)\,|\, y \in A_2\}}
  \end{tabular}}
  \end{itemize}

  \only<5>{
  \begin{textblock}{13.9}(0.7,7.7)
  \begin{block}{}
  \medskip
  \begin{minipage}{14cm}\raggedright
  Already problems with defining regularity:\bigskip\\
  \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A}\bigskip
  \end{minipage}
  \end{block}
  \end{textblock}}
  \medskip

  \only<6->{\underline{A solution}:\;\;use \smath{\text{nat}}s \;@{text "\<Rightarrow>"}\; state nodes\medskip}

  \only<7->{You have to \alert{rename} states apart!}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[t]
  \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}}
  \mbox{}\\[-15mm]\mbox{}

  \begin{center}
  \huge\bf\textcolor{gray}{in Theorem Provers}\\
  \footnotesize\textcolor{gray}{e.g.~Isabelle, Coq, HOL4, \ldots}
  \end{center}

  \begin{itemize}
  \item Kozen's paper-proof of Myhill-Nerode:\\ 
  requires absence of \alert{inaccessible states}
  \item complementation of automata only works for \alert{complete} automata
  (need sink states)\medskip
  \end{itemize}\bigskip\bigskip

  \begin{center}
  \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A}
  \end{center}


  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[t]
  \frametitle{}
  \mbox{}\\[25mm]\mbox{}

  \begin{textblock}{13.9}(0.7,1.2)
  \begin{block}{}
  \begin{minipage}{13.4cm}\raggedright
  {\bf Definition:}\smallskip\\
  
  A language \smath{A} is \alert{regular}, provided there exists a\\ 
  \alert{regular expression} that matches all strings of \smath{A}.
  \end{minipage}
  \end{block}
  \end{textblock}\pause
  
  {\noindent\large\bf\alert{\ldots{}and forget about automata}}\bigskip\bigskip\pause

  Reasoning infrastructure is for free. But do we lose anything?\medskip\pause

  \begin{minipage}{1.1\textwidth}
  \begin{itemize}
  \item pumping lemma\pause
  \item closure under complementation\pause
  \item \only<6>{regular expression matching}%
       \only<7->{\sout{regular expression matching}
  {\footnotesize(@{text "\<Rightarrow>"}Brzozowski'64, Owens et al '09)}}
  \item<8-> most textbooks are about automata
  \end{itemize}
  \end{minipage}

  
  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}


text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[c]
  \frametitle{\LARGE The Myhill-Nerode Theorem}

  \begin{itemize}
  \item provides necessary and suf\!ficient conditions\\ for a language 
  being regular\\ \textcolor{gray}{(pumping lemma only necessary)}\bigskip

  \item the key notion is the equivalence relation:\medskip
  \begin{center}
  \smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A}
  \end{center}
  \end{itemize}

 
  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[c]
  \frametitle{\LARGE The Myhill-Nerode Theorem}

  \begin{center}
  \only<1>{%
  \begin{tikzpicture}[scale=3]
  \draw[very thick] (0.5,0.5) circle (.6cm);
  \end{tikzpicture}}%
  \only<2->{%
  \begin{tikzpicture}[scale=3]
  \draw[very thick] (0.5,0.5) circle (.6cm);
  \clip[draw] (0.5,0.5) circle (.6cm);
  \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4);
  \end{tikzpicture}}
  \end{center}
  
  \begin{itemize}
  \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}}
  \end{itemize}

  \begin{textblock}{5}(2.1,5.3)
  \begin{tikzpicture}
  \node at (0,0) [single arrow, fill=red,text=white, minimum height=2cm]
  {$U\!N\!IV$};
  \draw (-0.3,-1.1) node {\begin{tabular}{l}set of all\\[-1mm] strings\end{tabular}};
  \end{tikzpicture}
  \end{textblock}

  \only<2->{%
  \begin{textblock}{5}(9.1,7.2)
  \begin{tikzpicture}
  \node at (0,0) [shape border rotate=180,single arrow, fill=red,text=white, minimum height=2cm]
  {@{text "\<lbrakk>s\<rbrakk>"}$_{\approx_{A}}$};
  \draw (0.9,-1.1) node {\begin{tabular}{l}\;\;an equivalence class\end{tabular}};
  \end{tikzpicture}
  \end{textblock}}

  \only<3->{
  \begin{textblock}{11.9}(1.7,3)
  \begin{block}{}
  \begin{minipage}{11.4cm}\raggedright
  Two directions:\medskip\\
  \begin{tabular}{@ {}ll}
  1.)\;finite $\Rightarrow$ regular\\
  \;\;\;\smath{\text{finite}\,(U\!N\!IV /\!/ \approx_A) \Rightarrow \exists r.\;A = {\cal L}(r)}\\[3mm]
  2.)\;regular $\Rightarrow$ finite\\
  \;\;\;\smath{\text{finite}\, (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}
  \end{tabular}

  \end{minipage}
  \end{block}
  \end{textblock}}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}


text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[c]
  \frametitle{\LARGE Initial and Final {\sout{\textcolor{gray}{States}}}}

  \begin{textblock}{8}(10, 2)
  \textcolor{black}{Equivalence Classes}
  \end{textblock}


  \begin{center}
  \begin{tikzpicture}[scale=3]
  \draw[very thick] (0.5,0.5) circle (.6cm);
  \clip[draw] (0.5,0.5) circle (.6cm);
  \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4);
  \only<2->{\draw[blue, fill] (0.0, 0.6) rectangle (0.2, 0.8);}
  \only<3->{\draw[red, fill] (0.2, 0.2) rectangle (0.4, 0.4);
  \draw[red, fill] (0.4, 0.8) rectangle (0.6, 1.0);
  \draw[red, fill] (0.6, 0.0) rectangle (0.8, 0.2);
  \draw[red, fill] (0.8, 0.4) rectangle (1.0, 0.6);}
  \end{tikzpicture}
  \end{center}

  \begin{itemize}
  \item \smath{\text{finals}\,A\,\dn \{[\!|s|\!]_{\approx_{A}}\;|\;s \in A\}}
  \smallskip
  \item we can prove: \smath{A = \bigcup \text{finals}\,A}
  \end{itemize}

  \only<2->{%
  \begin{textblock}{5}(2.1,4.6)
  \begin{tikzpicture}
  \node at (0,0) [single arrow, fill=blue,text=white, minimum height=2cm]
  {$[] \in X$};
  \end{tikzpicture}
  \end{textblock}}

  \only<3->{%
  \begin{textblock}{5}(10,7.4)
  \begin{tikzpicture}
  \node at (0,0) [shape border rotate=180,single arrow, fill=red,text=white, minimum height=2cm]
  {a final};
  \end{tikzpicture}
  \end{textblock}}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}


text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<-1>[c]
  \frametitle{\begin{tabular}{@ {}l}\LARGE% 
  Transitions\end{tabular}}

  \begin{center}
  \begin{tikzpicture}[scale=3]
  \draw[very thick] (0.5,0.5) circle (.6cm);
  \clip[draw] (0.5,0.5) circle (.6cm);
  \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4);
  \draw[blue, fill] (0.0, 0.6) rectangle (0.2, 0.8);
  \draw[blue, fill] (0.8, 0.4) rectangle (1.0, 0.6);
  \draw[white] (0.1,0.7) node (X) {$X$};
  \draw[white] (0.9,0.5) node (Y) {$Y$};
  \draw[blue, ->, line width = 2mm, bend left=45] (X) -- (Y);
  \node [inner sep=1pt,label=above:\textcolor{blue}{$c$}] at ($ (X)!.5!(Y) $) {};
  \end{tikzpicture}
  \end{center}

  \begin{center}
  \smath{X \stackrel{c}{\longrightarrow} Y \;\dn\; X ; c \subseteq Y}
  \end{center}

  \onslide<8>{
  \begin{tabular}{c}
  \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick]
  \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm]
  \node[state,initial] (q_0) {$R_1$};
  \end{tikzpicture}
  \end{tabular}}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}


text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[c]
  \frametitle{\LARGE Systems of Equations}

  Inspired by a method of Brzozowski\;'64:\bigskip\bigskip

  \begin{center}
  \begin{tabular}{@ {\hspace{-20mm}}c}
  \\[-13mm]
  \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick]
  \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm]

  %\draw[help lines] (0,0) grid (3,2);

  \node[state,initial]   (p_0)                  {$X_1$};
  \node[state,accepting] (p_1) [right of=q_0]   {$X_2$};

  \path[->] (p_0) edge [bend left]   node        {a} (p_1)
                  edge [loop above]   node       {b} ()
            (p_1) edge [loop above]   node       {a} ()
                  edge [bend left]   node        {b} (p_0);
  \end{tikzpicture}\\
  \\[-13mm]
  \end{tabular}
  \end{center}

  \begin{center}
  \begin{tabular}{@ {\hspace{-6mm}}ll@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
  & \smath{X_1} & \smath{=} & \smath{X_1;b + X_2;b \onslide<2->{\alert<2>{+ \lambda;[]}}}\\
  & \smath{X_2} & \smath{=} & \smath{X_1;a + X_2;a}\medskip\\
  \end{tabular}
  \end{center}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1>[t]
  \small

  \begin{center}
  \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll}
  \onslide<1->{\smath{X_1}} & \onslide<1->{\smath{=}} 
      & \onslide<1->{\smath{X_1; b + X_2; b + \lambda;[]}}\\
  \onslide<1->{\smath{X_2}} & \onslide<1->{\smath{=}}    
      & \onslide<1->{\smath{X_1; a + X_2; a}}\\

  & & & \onslide<2->{by Arden}\\

  \onslide<2->{\smath{X_1}} & \onslide<2->{\smath{=}} 
      & \onslide<2->{\smath{X_1; b + X_2; b + \lambda;[]}}\\
  \onslide<2->{\smath{X_2}} & \onslide<2->{\smath{=}}    
      & \only<2->{\smath{X_1; a\cdot a^\star}}\\

  & & & \onslide<4->{by Arden}\\

  \onslide<4->{\smath{X_1}} & \onslide<4->{\smath{=}} 
      & \onslide<4->{\smath{X_2; b \cdot b^\star+ \lambda;b^\star}}\\
  \onslide<4->{\smath{X_2}} & \onslide<4->{\smath{=}}    
      & \onslide<4->{\smath{X_1; a\cdot a^\star}}\\

  & & & \onslide<5->{by substitution}\\

  \onslide<5->{\smath{X_1}} & \onslide<5->{\smath{=}} 
      & \onslide<5->{\smath{X_1; a\cdot a^\star \cdot b \cdot b^\star+ \lambda;b^\star}}\\
  \onslide<5->{\smath{X_2}} & \onslide<5->{\smath{=}}    
      & \onslide<5->{\smath{X_1; a\cdot a^\star}}\\

  & & & \onslide<6->{by Arden}\\

  \onslide<6->{\smath{X_1}} & \onslide<6->{\smath{=}} 
      & \onslide<6->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\
  \onslide<6->{\smath{X_2}} & \onslide<6->{\smath{=}}    
      & \onslide<6->{\smath{X_1; a\cdot a^\star}}\\

  & & & \onslide<7->{by substitution}\\

  \onslide<7->{\smath{X_1}} & \onslide<7->{\smath{=}} 
      & \onslide<7->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\
  \onslide<7->{\smath{X_2}} & \onslide<7->{\smath{=}}    
      & \onslide<7->{\smath{\lambda; b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star 
          \cdot a\cdot a^\star}}\\
  \end{tabular}
  \end{center}

  \only<8->{
  \begin{textblock}{6}(2.5,4)
  \begin{block}{}
  \begin{minipage}{8cm}\raggedright
  
  \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick, inner sep=1mm]
  \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm]

  %\draw[help lines] (0,0) grid (3,2);

  \node[state,initial]   (p_0)                  {$X_1$};
  \node[state,accepting] (p_1) [right of=q_0]   {$X_2$};

  \path[->] (p_0) edge [bend left]   node        {a} (p_1)
                  edge [loop above]   node       {b} ()
            (p_1) edge [loop above]   node       {a} ()
                  edge [bend left]   node        {b} (p_0);
  \end{tikzpicture}

  \end{minipage}
  \end{block}
  \end{textblock}}

  \only<1,2>{%
  \begin{textblock}{3}(0.6,1.2)
  \begin{tikzpicture}
  \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm]
  {\textcolor{red}{a}};
  \end{tikzpicture}
  \end{textblock}}
  \only<2>{%
  \begin{textblock}{3}(0.6,3.6)
  \begin{tikzpicture}
  \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm]
  {\textcolor{red}{a}};
  \end{tikzpicture}
  \end{textblock}}
  \only<4>{%
  \begin{textblock}{3}(0.6,2.9)
  \begin{tikzpicture}
  \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm]
  {\textcolor{red}{a}};
  \end{tikzpicture}
  \end{textblock}}
  \only<4>{%
  \begin{textblock}{3}(0.6,5.3)
  \begin{tikzpicture}
  \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm]
  {\textcolor{red}{a}};
  \end{tikzpicture}
  \end{textblock}}
  \only<5>{%
  \begin{textblock}{3}(1.0,5.6)
  \begin{tikzpicture}
  \node at (0,0) (A) {};
  \node at (0,1) (B) {};
  \draw[<-, line width=2mm, red] (B) to  (A);
  \end{tikzpicture}
  \end{textblock}}
  \only<5,6>{%
  \begin{textblock}{3}(0.6,7.7)
  \begin{tikzpicture}
  \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm]
  {\textcolor{red}{a}};
  \end{tikzpicture}
  \end{textblock}}
  \only<6>{%
  \begin{textblock}{3}(0.6,10.1)
  \begin{tikzpicture}
  \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm]
  {\textcolor{red}{a}};
  \end{tikzpicture}
  \end{textblock}}
  \only<7>{%
  \begin{textblock}{3}(1.0,10.3)
  \begin{tikzpicture}
  \node at (0,0) (A) {};
  \node at (0,1) (B) {};
  \draw[->, line width=2mm, red] (B) to  (A);
  \end{tikzpicture}
  \end{textblock}}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}


text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[c]
  \frametitle{\LARGE A Variant of Arden's Lemma}

  {\bf Arden's Lemma:}\smallskip 

  If \smath{[] \not\in A} then
  \begin{center}
  \smath{X = X; A + \text{something}}
  \end{center}
  has the (unique) solution
  \begin{center}
  \smath{X = \text{something} ; A^\star}
  \end{center}


  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}


text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-2,4->[t]
  \small

  \begin{center}
  \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll}
  \onslide<1->{\smath{X_1}} & \onslide<1->{\smath{=}} 
      & \onslide<1->{\smath{X_1; b + X_2; b + \lambda;[]}}\\
  \onslide<1->{\smath{X_2}} & \onslide<1->{\smath{=}}    
      & \onslide<1->{\smath{X_1; a + X_2; a}}\\

  & & & \onslide<2->{by Arden}\\

  \onslide<2->{\smath{X_1}} & \onslide<2->{\smath{=}} 
      & \onslide<2->{\smath{X_1; b + X_2; b + \lambda;[]}}\\
  \onslide<2->{\smath{X_2}} & \onslide<2->{\smath{=}}    
      & \only<2->{\smath{X_1; a\cdot a^\star}}\\

  & & & \onslide<4->{by Arden}\\

  \onslide<4->{\smath{X_1}} & \onslide<4->{\smath{=}} 
      & \onslide<4->{\smath{X_2; b \cdot b^\star+ \lambda;b^\star}}\\
  \onslide<4->{\smath{X_2}} & \onslide<4->{\smath{=}}    
      & \onslide<4->{\smath{X_1; a\cdot a^\star}}\\

  & & & \onslide<5->{by substitution}\\

  \onslide<5->{\smath{X_1}} & \onslide<5->{\smath{=}} 
      & \onslide<5->{\smath{X_1; a\cdot a^\star \cdot b \cdot b^\star+ \lambda;b^\star}}\\
  \onslide<5->{\smath{X_2}} & \onslide<5->{\smath{=}}    
      & \onslide<5->{\smath{X_1; a\cdot a^\star}}\\

  & & & \onslide<6->{by Arden}\\

  \onslide<6->{\smath{X_1}} & \onslide<6->{\smath{=}} 
      & \onslide<6->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\
  \onslide<6->{\smath{X_2}} & \onslide<6->{\smath{=}}    
      & \onslide<6->{\smath{X_1; a\cdot a^\star}}\\

  & & & \onslide<7->{by substitution}\\

  \onslide<7->{\smath{X_1}} & \onslide<7->{\smath{=}} 
      & \onslide<7->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\
  \onslide<7->{\smath{X_2}} & \onslide<7->{\smath{=}}    
      & \onslide<7->{\smath{\lambda; b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star 
          \cdot a\cdot a^\star}}\\
  \end{tabular}
  \end{center}

  \only<8->{
  \begin{textblock}{6}(2.5,4)
  \begin{block}{}
  \begin{minipage}{8cm}\raggedright
  
  \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick, inner sep=1mm]
  \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm]

  %\draw[help lines] (0,0) grid (3,2);

  \node[state,initial]   (p_0)                  {$X_1$};
  \node[state,accepting] (p_1) [right of=q_0]   {$X_2$};

  \path[->] (p_0) edge [bend left]   node        {a} (p_1)
                  edge [loop above]   node       {b} ()
            (p_1) edge [loop above]   node       {a} ()
                  edge [bend left]   node        {b} (p_0);
  \end{tikzpicture}

  \end{minipage}
  \end{block}
  \end{textblock}}

  \only<1,2>{%
  \begin{textblock}{3}(0.6,1.2)
  \begin{tikzpicture}
  \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm]
  {\textcolor{red}{a}};
  \end{tikzpicture}
  \end{textblock}}
  \only<2>{%
  \begin{textblock}{3}(0.6,3.6)
  \begin{tikzpicture}
  \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm]
  {\textcolor{red}{a}};
  \end{tikzpicture}
  \end{textblock}}
  \only<4>{%
  \begin{textblock}{3}(0.6,2.9)
  \begin{tikzpicture}
  \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm]
  {\textcolor{red}{a}};
  \end{tikzpicture}
  \end{textblock}}
  \only<4>{%
  \begin{textblock}{3}(0.6,5.3)
  \begin{tikzpicture}
  \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm]
  {\textcolor{red}{a}};
  \end{tikzpicture}
  \end{textblock}}
  \only<5>{%
  \begin{textblock}{3}(1.0,5.6)
  \begin{tikzpicture}
  \node at (0,0) (A) {};
  \node at (0,1) (B) {};
  \draw[<-, line width=2mm, red] (B) to  (A);
  \end{tikzpicture}
  \end{textblock}}
  \only<5,6>{%
  \begin{textblock}{3}(0.6,7.7)
  \begin{tikzpicture}
  \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm]
  {\textcolor{red}{a}};
  \end{tikzpicture}
  \end{textblock}}
  \only<6>{%
  \begin{textblock}{3}(0.6,10.1)
  \begin{tikzpicture}
  \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm]
  {\textcolor{red}{a}};
  \end{tikzpicture}
  \end{textblock}}
  \only<7>{%
  \begin{textblock}{3}(1.0,10.3)
  \begin{tikzpicture}
  \node at (0,0) (A) {};
  \node at (0,1) (B) {};
  \draw[->, line width=2mm, red] (B) to  (A);
  \end{tikzpicture}
  \end{textblock}}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}


text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[c]
  \frametitle{\LARGE The Other Direction}

  One has to prove

  \begin{center}
  \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}
  \end{center}

  by induction on \smath{r}. Not trivial, but after a bit 
  of thinking, one can find a \alert{refined} relation:\bigskip

  
  \begin{center}
  \mbox{\begin{tabular}{c@ {\hspace{7mm}}c@ {\hspace{7mm}}c}
  \begin{tikzpicture}[scale=1.1]
  %Circle
  \draw[thick] (0,0) circle (1.1);    
  \end{tikzpicture}
  &
  \begin{tikzpicture}[scale=1.1]
  %Circle
  \draw[thick] (0,0) circle (1.1);    
  %Main rays
  \foreach \a in {0, 90,...,359}
    \draw[very thick] (0, 0) -- (\a:1.1);
  \foreach \a / \l in {45/1, 135/2, 225/3, 315/4}
      \draw (\a: 0.65) node {\small$a_\l$};
  \end{tikzpicture}
  &
  \begin{tikzpicture}[scale=1.1]
  %Circle
  \draw[red, thick] (0,0) circle (1.1);    
  %Main rays
  \foreach \a in {0, 45,...,359}
     \draw[red, very thick] (0, 0) -- (\a:1.1);
  \foreach \a / \l in {22.5/1.1, 67.5/1.2, 112.5/2.1, 157.5/2.2, 202.4/3.1, 247.5/3.2, 292.5/4.1, 337.5/4.2}
      \draw (\a: 0.77) node {\textcolor{red}{\footnotesize$a_{\l}$}};
  \end{tikzpicture}\\
  \small\smath{U\!N\!IV} & 
  \small\smath{U\!N\!IV /\!/ \approx_{{\cal L}(r)}} &
  \small\smath{U\!N\!IV /\!/ \alert{R}}
  \end{tabular}}
  \end{center}

  \begin{textblock}{5}(9.8,2.6)
  \begin{tikzpicture}
  \node at (0,0) [shape border rotate=270,single arrow, fill=red,text=white, minimum height=0cm]{\textcolor{red}{a}};
  \end{tikzpicture}
  \end{textblock}
  

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[t]
  \frametitle{\LARGE\begin{tabular}{c}Derivatives of RExps\end{tabular}}

  \begin{itemize}
  \item introduced by Brzozowski~'64
  \item produces a regular expression after a character has been ``parsed''\\[-18mm]\mbox{}
  \end{itemize}

  \only<1->{%
  \textcolor{blue}{%
  \begin{center}
  \begin{tabular}{@ {}lc@ {\hspace{3mm}}l@ {}}
  $der\,c\,\varnothing$     & $\dn$ & $\varnothing$\\
  $der\,c\,[]$              & $\dn$ & $\varnothing$\\
  $der\,c\,d$               & $\dn$ & if $c = d$ then $[]$ else $\varnothing$\\
  $der\,c\,(r_1 + r_2)$     & $\dn$ & $der\,c\,r_1 + der\,c\,r_2$\\
  $der\,c\,(r^*)$           & $\dn$ & $(der\,c\,r) \cdot r^*$\\
  $der\,c\,(r_1 \cdot r_2)$ & $\dn$ &  \bl{if $nullable(r_1)$}\\
  & & \bl{then $(der\,c\,r_1) \cdot r_2 + der\, c\, r_2$}\\ 
  & & \bl{else $(der\, c\, r_1) \cdot r_2$}\\
  \end{tabular}
  \end{center}}}

  \only<2->{
  \begin{textblock}{14.1}(1.5,5.7)
  \begin{block}{}
  \begin{quote}
  \begin{minipage}{14.1cm}\raggedright\rm
  derivatives refine \smath{x \approx_{{\cal{L}}(r)} y}\bigskip
  \begin{center}
  \only<2>{\mbox{\hspace{-22mm}}\smath{{\cal{L}}(deriv~x~r) = {\cal{L}}(deriv~y~r)
    \Longleftrightarrow x \approx_{{\cal{L}}(r)} y}}
  \only<3>{\mbox{\hspace{-22mm}}\smath{deriv~x~r = deriv~y~r 
   \Longrightarrow x \approx_{{\cal{L}}(r)} y}}
  \end{center}\bigskip
  \
  \smath{\text{finite}(deriv~A~r)}, but only modulo ACI

  \begin{center}
  \begin{tabular}{@ {\hspace{-10mm}}rcl}
  \smath{(r_1 + r_2) + r_3} & \smath{\equiv} & \smath{r_1 + (r_2 + r_3)}\\
  \smath{r_1 + r_2} &         \smath{\equiv} & \smath{r_2 + r_1}\\
  \smath{r + r} &             \smath{\equiv} & \smath{r}\\
  \end{tabular}
  \end{center}
  \end{minipage}
  \end{quote}
  \end{block}
  \end{textblock}}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<2>[t]
  \frametitle{\LARGE\begin{tabular}{c}Partial Derivatives\end{tabular}}

 
  \only<2>{%
  \textcolor{blue}{%
  \begin{center}
  \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
  $pder\,c\,\varnothing$     & $\dn$ & \alert{$\{\}$}\\
  $pder\,c\,[]$              & $\dn$ & \alert{$\{\}$}\\
  $pder\,c\,d$               & $\dn$ & if $c = d$ then $\{[]\}$ else $\{\}$\\
  $pder\,c\,(r_1 + r_2)$     & $\dn$ & $pder\,c\,r_1 \alert{\cup} pder\,c\,r_2$\\
  $pder\,c\,(r^\star)$       & $\dn$ & $(pder\,c\,r) \cdot r^\star$\\
  $pder\,c\,(r_1 \cdot r_2)$ & $\dn$ & \bl{if $nullable(r_1)$}\\
  & & \bl{then $(pder\,c\,r_1) \cdot r_2 \alert{\cup} pder\, c\, r_2$}\\ 
  & & \bl{else $(pder\, c\, r_1) \cdot r_2$}\\
  \end{tabular}
  \end{center}}}

  \only<2>{
  \begin{textblock}{6}(8.5,2.7)
  \begin{block}{}
  \begin{quote}
  \begin{minipage}{6cm}\rm\raggedright
  \begin{itemize}
  \item partial derivatives
  \item by Antimirov~'95
  \end{itemize}
  \end{minipage}
  \end{quote}
  \end{block}
  \end{textblock}}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[t]
  \frametitle{\LARGE Partial Derivatives}

  \mbox{}\\[0mm]\mbox{}

  \begin{itemize}

  \item \alt<1>{\smath{\text{$pderiv\,x\,r = pderiv\,y\,r$}}}
            {\smath{\underbrace{\text{$pderiv\,x\,r = pderiv\,y\,r$}}_{R}}} 
        refines \textcolor{blue}{$x$ $\approx_{{\cal L}(r)}$ $y$}\\[16mm]\pause
  \item \smath{\text{finite} (U\!N\!IV /\!/ R)} \bigskip\pause
  \item Therefore \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}. Qed.\bigskip\pause

  \item We also gave a direct proof, but not as beautiful.
  \end{itemize}
  
  \only<2->{%
  \begin{textblock}{5}(3.9,7.2)
  \begin{tikzpicture}
  \node at (0,0) [shape border rotate=270,single arrow, fill=red,text=white, minimum height=0cm]{\textcolor{red}{a}};
  \draw (2.2,0) node {Antimirov '95};
  \end{tikzpicture}
  \end{textblock}}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}



text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[t]
  \frametitle{\LARGE What Have We Achieved?}

  \begin{itemize}
  \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}}
  \medskip\pause
  \item regular languages are closed under complementation; this is now easy
  \begin{center}
  \smath{U\!N\!IV /\!/ \approx_A \;\;=\;\; U\!N\!IV /\!/ \approx_{\overline{A}}}
  \end{center}\pause\medskip
  
  \item non-regularity (\smath{a^nb^n})\medskip\pause\pause

  \item take \alert{\bf any} language\\ build the language of substrings\\
  \pause

  then this language \alert{\bf is} regular\;\; (\smath{a^nb^n} $\Rightarrow$ \smath{a^\star{}b^\star})
  
  \end{itemize}

\only<2>{
\begin{textblock}{10}(4,14)
\small
\smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A}
\end{textblock}} 

\only<4>{
\begin{textblock}{5}(2,8.6)
\begin{minipage}{8.8cm}
\begin{block}{}
\begin{minipage}{8.6cm}
If there exists a sufficiently large set \smath{B} (for example infinitely large), 
such that

\begin{center}
\smath{\forall x,y \in B.\; x \not= y \;\Rightarrow\; x \not\approx_{A} y}. 
\end{center}  

then \smath{A} is not regular.\hspace{1.3cm}\small(\smath{B \dn \bigcup_n a^n})
\end{minipage}
\end{block}
\end{minipage}
\end{textblock}
}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}


text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[c]
  \frametitle{\LARGE Conclusion}

  \begin{itemize}
  \item we have never seen a proof of Myhill-Nerode based on
  regular expressions\smallskip\pause

  \item great source of examples (inductions)\smallskip\pause

  \item no need to fight the theorem prover:\\ 
  \begin{itemize}
  \item first direction (790 loc)\\
  \item second direction (400 / 390 loc)
  \end{itemize}
  
  \item I am not saying automata are bad; just proofs about
  them are quite difficult in theorem provers\bigskip

  \item \small our journal paper has just been accepted in JAR (see webpage)
  \end{itemize}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[c]
  \frametitle{\LARGE Future Work}

  \begin{itemize}
  \item regular expression sub-matching with derivatives (Martin Sulzmann PPDP'12)\bigskip 
  \item parsing with derivatives of grammars\\ (Matt Might ICFP'11)
  \end{itemize}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}[b]
  \frametitle{\mbox{}\\[2cm]\textcolor{red}{Thank you very much\\ for listening!\\[5mm]Questions?}}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

(*<*)
end
(*>*)