(* Author: Xingyuan Zhang, Chunhan Wu, Christian Urban *)
theory Myhill_2
imports Myhill_1 List_Prefix
begin
section {* Second direction of MN: @{text "regular language \<Rightarrow> finite partition"} *}
subsection {* Tagging functions *}
definition
tag_eq :: "('a list \<Rightarrow> 'b) \<Rightarrow> ('a list \<times> 'a list) set" ("=_=")
where
"=tag= \<equiv> {(x, y). tag x = tag y}"
abbreviation
tag_eq_applied :: "'a list \<Rightarrow> ('a list \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> bool" ("_ =_= _")
where
"x =tag= y \<equiv> (x, y) \<in> =tag="
lemma [simp]:
shows "(\<approx>A) `` {x} = (\<approx>A) `` {y} \<longleftrightarrow> x \<approx>A y"
unfolding str_eq_def by auto
lemma refined_intro:
assumes "\<And>x y z. \<lbrakk>x =tag= y; x @ z \<in> A\<rbrakk> \<Longrightarrow> y @ z \<in> A"
shows "=tag= \<subseteq> \<approx>A"
using assms unfolding str_eq_def tag_eq_def
apply(clarify, simp (no_asm_use))
by metis
lemma finite_eq_tag_rel:
assumes rng_fnt: "finite (range tag)"
shows "finite (UNIV // =tag=)"
proof -
let "?f" = "\<lambda>X. tag ` X" and ?A = "(UNIV // =tag=)"
have "finite (?f ` ?A)"
proof -
have "range ?f \<subseteq> (Pow (range tag))" unfolding Pow_def by auto
moreover
have "finite (Pow (range tag))" using rng_fnt by simp
ultimately
have "finite (range ?f)" unfolding image_def by (blast intro: finite_subset)
moreover
have "?f ` ?A \<subseteq> range ?f" by auto
ultimately show "finite (?f ` ?A)" by (rule rev_finite_subset)
qed
moreover
have "inj_on ?f ?A"
proof -
{ fix X Y
assume X_in: "X \<in> ?A"
and Y_in: "Y \<in> ?A"
and tag_eq: "?f X = ?f Y"
then obtain x y
where "x \<in> X" "y \<in> Y" "tag x = tag y"
unfolding quotient_def Image_def image_def tag_eq_def
by (simp) (blast)
with X_in Y_in
have "X = Y"
unfolding quotient_def tag_eq_def by auto
}
then show "inj_on ?f ?A" unfolding inj_on_def by auto
qed
ultimately show "finite (UNIV // =tag=)" by (rule finite_imageD)
qed
lemma refined_partition_finite:
assumes fnt: "finite (UNIV // R1)"
and refined: "R1 \<subseteq> R2"
and eq1: "equiv UNIV R1" and eq2: "equiv UNIV R2"
shows "finite (UNIV // R2)"
proof -
let ?f = "\<lambda>X. {R1 `` {x} | x. x \<in> X}"
and ?A = "UNIV // R2" and ?B = "UNIV // R1"
have "?f ` ?A \<subseteq> Pow ?B"
unfolding image_def Pow_def quotient_def by auto
moreover
have "finite (Pow ?B)" using fnt by simp
ultimately
have "finite (?f ` ?A)" by (rule finite_subset)
moreover
have "inj_on ?f ?A"
proof -
{ fix X Y
assume X_in: "X \<in> ?A" and Y_in: "Y \<in> ?A" and eq_f: "?f X = ?f Y"
from quotientE [OF X_in]
obtain x where "X = R2 `` {x}" by blast
with equiv_class_self[OF eq2] have x_in: "x \<in> X" by simp
then have "R1 ``{x} \<in> ?f X" by auto
with eq_f have "R1 `` {x} \<in> ?f Y" by simp
then obtain y
where y_in: "y \<in> Y" and eq_r1_xy: "R1 `` {x} = R1 `` {y}" by auto
with eq_equiv_class[OF _ eq1]
have "(x, y) \<in> R1" by blast
with refined have "(x, y) \<in> R2" by auto
with quotient_eqI [OF eq2 X_in Y_in x_in y_in]
have "X = Y" .
}
then show "inj_on ?f ?A" unfolding inj_on_def by blast
qed
ultimately show "finite (UNIV // R2)" by (rule finite_imageD)
qed
lemma tag_finite_imageD:
assumes rng_fnt: "finite (range tag)"
and refined: "=tag= \<subseteq> \<approx>A"
shows "finite (UNIV // \<approx>A)"
proof (rule_tac refined_partition_finite [of "=tag="])
show "finite (UNIV // =tag=)" by (rule finite_eq_tag_rel[OF rng_fnt])
next
show "=tag= \<subseteq> \<approx>A" using refined .
next
show "equiv UNIV =tag="
and "equiv UNIV (\<approx>A)"
unfolding equiv_def str_eq_def tag_eq_def refl_on_def sym_def trans_def
by auto
qed
subsection {* Base cases: @{const Zero}, @{const One} and @{const Atom} *}
lemma quot_zero_eq:
shows "UNIV // \<approx>{} = {UNIV}"
unfolding quotient_def Image_def str_eq_def by auto
lemma quot_zero_finiteI [intro]:
shows "finite (UNIV // \<approx>{})"
unfolding quot_zero_eq by simp
lemma quot_one_subset:
shows "UNIV // \<approx>{[]} \<subseteq> {{[]}, UNIV - {[]}}"
proof
fix x
assume "x \<in> UNIV // \<approx>{[]}"
then obtain y where h: "x = {z. y \<approx>{[]} z}"
unfolding quotient_def Image_def by blast
{ assume "y = []"
with h have "x = {[]}" by (auto simp: str_eq_def)
then have "x \<in> {{[]}, UNIV - {[]}}" by simp }
moreover
{ assume "y \<noteq> []"
with h have "x = UNIV - {[]}" by (auto simp: str_eq_def)
then have "x \<in> {{[]}, UNIV - {[]}}" by simp }
ultimately show "x \<in> {{[]}, UNIV - {[]}}" by blast
qed
lemma quot_one_finiteI [intro]:
shows "finite (UNIV // \<approx>{[]})"
by (rule finite_subset[OF quot_one_subset]) (simp)
lemma quot_atom_subset:
"UNIV // (\<approx>{[c]}) \<subseteq> {{[]},{[c]}, UNIV - {[], [c]}}"
proof
fix x
assume "x \<in> UNIV // \<approx>{[c]}"
then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[c]}}"
unfolding quotient_def Image_def by blast
show "x \<in> {{[]},{[c]}, UNIV - {[], [c]}}"
proof -
{ assume "y = []" hence "x = {[]}" using h
by (auto simp: str_eq_def) }
moreover
{ assume "y = [c]" hence "x = {[c]}" using h
by (auto dest!: spec[where x = "[]"] simp: str_eq_def) }
moreover
{ assume "y \<noteq> []" and "y \<noteq> [c]"
hence "\<forall> z. (y @ z) \<noteq> [c]" by (case_tac y, auto)
moreover have "\<And> p. (p \<noteq> [] \<and> p \<noteq> [c]) = (\<forall> q. p @ q \<noteq> [c])"
by (case_tac p, auto)
ultimately have "x = UNIV - {[],[c]}" using h
by (auto simp add: str_eq_def)
}
ultimately show ?thesis by blast
qed
qed
lemma quot_atom_finiteI [intro]:
shows "finite (UNIV // \<approx>{[c]})"
by (rule finite_subset[OF quot_atom_subset]) (simp)
subsection {* Case for @{const Plus} *}
definition
tag_Plus :: "'a lang \<Rightarrow> 'a lang \<Rightarrow> 'a list \<Rightarrow> ('a lang \<times> 'a lang)"
where
"tag_Plus A B \<equiv> \<lambda>x. (\<approx>A `` {x}, \<approx>B `` {x})"
lemma quot_plus_finiteI [intro]:
assumes finite1: "finite (UNIV // \<approx>A)"
and finite2: "finite (UNIV // \<approx>B)"
shows "finite (UNIV // \<approx>(A \<union> B))"
proof (rule_tac tag = "tag_Plus A B" in tag_finite_imageD)
have "finite ((UNIV // \<approx>A) \<times> (UNIV // \<approx>B))"
using finite1 finite2 by auto
then show "finite (range (tag_Plus A B))"
unfolding tag_Plus_def quotient_def
by (rule rev_finite_subset) (auto)
next
show "=tag_Plus A B= \<subseteq> \<approx>(A \<union> B)"
unfolding tag_eq_def tag_Plus_def str_eq_def by auto
qed
subsection {* Case for @{text "Times"} *}
definition
"Partitions x \<equiv> {(x\<^sub>p, x\<^sub>s). x\<^sub>p @ x\<^sub>s = x}"
lemma conc_partitions_elim:
assumes "x \<in> A \<cdot> B"
shows "\<exists>(u, v) \<in> Partitions x. u \<in> A \<and> v \<in> B"
using assms unfolding conc_def Partitions_def
by auto
lemma conc_partitions_intro:
assumes "(u, v) \<in> Partitions x \<and> u \<in> A \<and> v \<in> B"
shows "x \<in> A \<cdot> B"
using assms unfolding conc_def Partitions_def
by auto
lemma equiv_class_member:
assumes "x \<in> A"
and "\<approx>A `` {x} = \<approx>A `` {y}"
shows "y \<in> A"
using assms
apply(simp)
apply(simp add: str_eq_def)
apply(metis append_Nil2)
done
definition
tag_Times :: "'a lang \<Rightarrow> 'a lang \<Rightarrow> 'a list \<Rightarrow> 'a lang \<times> 'a lang set"
where
"tag_Times A B \<equiv> \<lambda>x. (\<approx>A `` {x}, {(\<approx>B `` {x\<^sub>s}) | x\<^sub>p x\<^sub>s. x\<^sub>p \<in> A \<and> (x\<^sub>p, x\<^sub>s) \<in> Partitions x})"
lemma tag_Times_injI:
assumes a: "tag_Times A B x = tag_Times A B y"
and c: "x @ z \<in> A \<cdot> B"
shows "y @ z \<in> A \<cdot> B"
proof -
from c obtain u v where
h1: "(u, v) \<in> Partitions (x @ z)" and
h2: "u \<in> A" and
h3: "v \<in> B" by (auto dest: conc_partitions_elim)
from h1 have "x @ z = u @ v" unfolding Partitions_def by simp
then obtain us
where "(x = u @ us \<and> us @ z = v) \<or> (x @ us = u \<and> z = us @ v)"
by (auto simp add: append_eq_append_conv2)
moreover
{ assume eq: "x = u @ us" "us @ z = v"
have "(\<approx>B `` {us}) \<in> snd (tag_Times A B x)"
unfolding Partitions_def tag_Times_def using h2 eq
by (auto simp add: str_eq_def)
then have "(\<approx>B `` {us}) \<in> snd (tag_Times A B y)"
using a by simp
then obtain u' us' where
q1: "u' \<in> A" and
q2: "\<approx>B `` {us} = \<approx>B `` {us'}" and
q3: "(u', us') \<in> Partitions y"
unfolding tag_Times_def by auto
from q2 h3 eq
have "us' @ z \<in> B"
unfolding Image_def str_eq_def by auto
then have "y @ z \<in> A \<cdot> B" using q1 q3
unfolding Partitions_def by auto
}
moreover
{ assume eq: "x @ us = u" "z = us @ v"
have "(\<approx>A `` {x}) = fst (tag_Times A B x)"
by (simp add: tag_Times_def)
then have "(\<approx>A `` {x}) = fst (tag_Times A B y)"
using a by simp
then have "\<approx>A `` {x} = \<approx>A `` {y}"
by (simp add: tag_Times_def)
moreover
have "x @ us \<in> A" using h2 eq by simp
ultimately
have "y @ us \<in> A" using equiv_class_member
unfolding Image_def str_eq_def by blast
then have "(y @ us) @ v \<in> A \<cdot> B"
using h3 unfolding conc_def by blast
then have "y @ z \<in> A \<cdot> B" using eq by simp
}
ultimately show "y @ z \<in> A \<cdot> B" by blast
qed
lemma quot_conc_finiteI [intro]:
assumes fin1: "finite (UNIV // \<approx>A)"
and fin2: "finite (UNIV // \<approx>B)"
shows "finite (UNIV // \<approx>(A \<cdot> B))"
proof (rule_tac tag = "tag_Times A B" in tag_finite_imageD)
have "\<And>x y z. \<lbrakk>tag_Times A B x = tag_Times A B y; x @ z \<in> A \<cdot> B\<rbrakk> \<Longrightarrow> y @ z \<in> A \<cdot> B"
by (rule tag_Times_injI)
(auto simp add: tag_Times_def tag_eq_def)
then show "=tag_Times A B= \<subseteq> \<approx>(A \<cdot> B)"
by (rule refined_intro)
(auto simp add: tag_eq_def)
next
have *: "finite ((UNIV // \<approx>A) \<times> (Pow (UNIV // \<approx>B)))"
using fin1 fin2 by auto
show "finite (range (tag_Times A B))"
unfolding tag_Times_def
apply(rule finite_subset[OF _ *])
unfolding quotient_def
by auto
qed
subsection {* Case for @{const "Star"} *}
lemma star_partitions_elim:
assumes "x @ z \<in> A\<star>" "x \<noteq> []"
shows "\<exists>(u, v) \<in> Partitions (x @ z). u < x \<and> u \<in> A\<star> \<and> v \<in> A\<star>"
proof -
have "([], x @ z) \<in> Partitions (x @ z)" "[] < x" "[] \<in> A\<star>" "x @ z \<in> A\<star>"
using assms by (auto simp add: Partitions_def strict_prefix_def)
then show "\<exists>(u, v) \<in> Partitions (x @ z). u < x \<and> u \<in> A\<star> \<and> v \<in> A\<star>"
by blast
qed
lemma finite_set_has_max2:
"\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> \<exists> max \<in> A. \<forall> a \<in> A. length a \<le> length max"
apply(induct rule:finite.induct)
apply(simp)
by (metis (hide_lams, no_types) all_not_in_conv insert_iff linorder_le_cases order_trans)
lemma finite_strict_prefix_set:
shows "finite {xa. xa < (x::'a list)}"
apply (induct x rule:rev_induct, simp)
apply (subgoal_tac "{xa. xa < xs @ [x]} = {xa. xa < xs} \<union> {xs}")
by (auto simp:strict_prefix_def)
lemma append_eq_cases:
assumes a: "x @ y = m @ n" "m \<noteq> []"
shows "x \<le> m \<or> m < x"
unfolding prefix_def strict_prefix_def using a
by (auto simp add: append_eq_append_conv2)
lemma star_spartitions_elim2:
assumes a: "x @ z \<in> A\<star>"
and b: "x \<noteq> []"
shows "\<exists>(u, v) \<in> Partitions x. \<exists> (u', v') \<in> Partitions z. u < x \<and> u \<in> A\<star> \<and> v @ u' \<in> A \<and> v' \<in> A\<star>"
proof -
def S \<equiv> "{u | u v. (u, v) \<in> Partitions x \<and> u < x \<and> u \<in> A\<star> \<and> v @ z \<in> A\<star>}"
have "finite {u. u < x}" by (rule finite_strict_prefix_set)
then have "finite S" unfolding S_def
by (rule rev_finite_subset) (auto)
moreover
have "S \<noteq> {}" using a b unfolding S_def Partitions_def
by (auto simp: strict_prefix_def)
ultimately have "\<exists> u_max \<in> S. \<forall> u \<in> S. length u \<le> length u_max"
using finite_set_has_max2 by blast
then obtain u_max v
where h0: "(u_max, v) \<in> Partitions x"
and h1: "u_max < x"
and h2: "u_max \<in> A\<star>"
and h3: "v @ z \<in> A\<star>"
and h4: "\<forall> u v. (u, v) \<in> Partitions x \<and> u < x \<and> u \<in> A\<star> \<and> v @ z \<in> A\<star> \<longrightarrow> length u \<le> length u_max"
unfolding S_def Partitions_def by blast
have q: "v \<noteq> []" using h0 h1 b unfolding Partitions_def by auto
from h3 obtain a b
where i1: "(a, b) \<in> Partitions (v @ z)"
and i2: "a \<in> A"
and i3: "b \<in> A\<star>"
and i4: "a \<noteq> []"
unfolding Partitions_def
using q by (auto dest: star_decom)
have "v \<le> a"
proof (rule ccontr)
assume a: "\<not>(v \<le> a)"
from i1 have i1': "a @ b = v @ z" unfolding Partitions_def by simp
then have "a \<le> v \<or> v < a" using append_eq_cases q by blast
then have q: "a < v" using a unfolding strict_prefix_def prefix_def by auto
then obtain as where eq: "a @ as = v" unfolding strict_prefix_def prefix_def by auto
have "(u_max @ a, as) \<in> Partitions x" using eq h0 unfolding Partitions_def by auto
moreover
have "u_max @ a < x" using h0 eq q unfolding Partitions_def strict_prefix_def prefix_def by auto
moreover
have "u_max @ a \<in> A\<star>" using i2 h2 by simp
moreover
have "as @ z \<in> A\<star>" using i1' i2 i3 eq by auto
ultimately have "length (u_max @ a) \<le> length u_max" using h4 by blast
with i4 show "False" by auto
qed
with i1 obtain za zb
where k1: "v @ za = a"
and k2: "(za, zb) \<in> Partitions z"
and k4: "zb = b"
unfolding Partitions_def prefix_def
by (auto simp add: append_eq_append_conv2)
show "\<exists> (u, v) \<in> Partitions x. \<exists> (u', v') \<in> Partitions z. u < x \<and> u \<in> A\<star> \<and> v @ u' \<in> A \<and> v' \<in> A\<star>"
using h0 h1 h2 i2 i3 k1 k2 k4 unfolding Partitions_def by blast
qed
definition
tag_Star :: "'a lang \<Rightarrow> 'a list \<Rightarrow> ('a lang) set"
where
"tag_Star A \<equiv> \<lambda>x. {\<approx>A `` {v} | u v. u < x \<and> u \<in> A\<star> \<and> (u, v) \<in> Partitions x}"
lemma tag_Star_non_empty_injI:
assumes a: "tag_Star A x = tag_Star A y"
and c: "x @ z \<in> A\<star>"
and d: "x \<noteq> []"
shows "y @ z \<in> A\<star>"
proof -
obtain u v u' v'
where a1: "(u, v) \<in> Partitions x" "(u', v')\<in> Partitions z"
and a2: "u < x"
and a3: "u \<in> A\<star>"
and a4: "v @ u' \<in> A"
and a5: "v' \<in> A\<star>"
using c d by (auto dest: star_spartitions_elim2)
have "(\<approx>A) `` {v} \<in> tag_Star A x"
apply(simp add: tag_Star_def Partitions_def str_eq_def)
using a1 a2 a3 by (auto simp add: Partitions_def)
then have "(\<approx>A) `` {v} \<in> tag_Star A y" using a by simp
then obtain u1 v1
where b1: "v \<approx>A v1"
and b3: "u1 \<in> A\<star>"
and b4: "(u1, v1) \<in> Partitions y"
unfolding tag_Star_def by auto
have c: "v1 @ u' \<in> A\<star>" using b1 a4 unfolding str_eq_def by simp
have "u1 @ (v1 @ u') @ v' \<in> A\<star>"
using b3 c a5 by (simp only: append_in_starI)
then show "y @ z \<in> A\<star>" using b4 a1
unfolding Partitions_def by auto
qed
lemma tag_Star_empty_injI:
assumes a: "tag_Star A x = tag_Star A y"
and c: "x @ z \<in> A\<star>"
and d: "x = []"
shows "y @ z \<in> A\<star>"
proof -
from a have "{} = tag_Star A y" unfolding tag_Star_def using d by auto
then have "y = []"
unfolding tag_Star_def Partitions_def strict_prefix_def prefix_def
by (auto) (metis Nil_in_star append_self_conv2)
then show "y @ z \<in> A\<star>" using c d by simp
qed
lemma quot_star_finiteI [intro]:
assumes finite1: "finite (UNIV // \<approx>A)"
shows "finite (UNIV // \<approx>(A\<star>))"
proof (rule_tac tag = "tag_Star A" in tag_finite_imageD)
have "\<And>x y z. \<lbrakk>tag_Star A x = tag_Star A y; x @ z \<in> A\<star>\<rbrakk> \<Longrightarrow> y @ z \<in> A\<star>"
by (case_tac "x = []") (blast intro: tag_Star_empty_injI tag_Star_non_empty_injI)+
then show "=(tag_Star A)= \<subseteq> \<approx>(A\<star>)"
by (rule refined_intro) (auto simp add: tag_eq_def)
next
have *: "finite (Pow (UNIV // \<approx>A))"
using finite1 by auto
show "finite (range (tag_Star A))"
unfolding tag_Star_def
by (rule finite_subset[OF _ *])
(auto simp add: quotient_def)
qed
subsection {* The conclusion of the second direction *}
lemma Myhill_Nerode2:
fixes r::"'a rexp"
shows "finite (UNIV // \<approx>(lang r))"
by (induct r) (auto)
end